Temperature Impact on Engineered Cementitious Composite Containing Basalt Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Designs and Preparation of Specimens
2.3. Mechanical Properties
3. Result and Discussions
3.1. Results of the Compressive Strength Test
3.2. Results of the Indirect Tensile Strength Test
3.3. Results of the Flexural Strength Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shokravi, H.; Shokravi, H.; Bakhary, N.; Koloor, S.S.R.; Petrů, M. Health monitoring of civil infrastructures by Subspace system identification method: An overview. Appl. Sci. 2020, 10, 2786. [Google Scholar] [CrossRef] [Green Version]
- Shokravi, H.; Shokravi, H.; Bakhary, N.; Heidarrezaei, M.; Rahimian Koloor, S.S.; Petrů, M. Application of the subspace-based methods in health monitoring of civil structures: A systematic review and meta-analysis. Appl. Sci. 2020, 10, 3607. [Google Scholar] [CrossRef]
- Shokravi, H.; Shokravi, H.; Bakhary, N.; Koloor, S.S.R.; Petrů, M. A comparative study of the data-driven stochastic subspace methods for health monitoring of structures: A bridge case study. Appl. Sci. 2020, 10, 3132. [Google Scholar] [CrossRef]
- Shokravi, H.; Shokravi, H.; Bakhary, N.; Heidarrezaei, M.; Koloor, S.S.R.; Petru, M. Vehicle-assisted techniques for health monitoring of bridges. Sensors 2020, 20, 3460. [Google Scholar] [CrossRef]
- Mohammadyan-Yasouj, S.E.; Ahangar, H.A.; Oskoei, N.A.; Shokravi, H.; Koloor, S.S.R.; Petrů, M. Thermal performance of alginate concrete reinforced with basalt fiber. Crystals 2020, 10, 779. [Google Scholar] [CrossRef]
- Pan, Z.; Wu, C.; Liu, J.; Wang, W.; Liu, J. Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC). Constr. Build. Mater. 2015, 78, 397–404. [Google Scholar] [CrossRef]
- Luković, M.; Hordijk, D.A.; Huang, Z.; Schlangen, E. Strain Hardening Cementitious Composite (SHCC) for crack width control in reinforced concrete beams. Heron 2019, 64, 181. [Google Scholar]
- Zhang, R.; Meng, Q.; Shui, Q.; He, W.; Chen, K.; Liang, M.; Sun, Z. Cyclic response of RC composite bridge columns with precast PP-ECC jackets in the region of plastic hinges. Compos. Struct. 2019, 221, 110844. [Google Scholar] [CrossRef]
- Nematollahi, B.; Sanjayan, J.; Ahmed Shaikh, F.U. Tensile strain hardening behavior of PVA fiber-reinforced engineered geopolymer composite. J. Mater. Civ. Eng. 2015, 27, 4015001. [Google Scholar] [CrossRef]
- Yu, J.; Leung, C.K.Y. Strength improvement of strain-hardening cementitious composites with ultrahigh-volume fly ash. J. Mater. Civ. Eng. 2017, 29, 5017003. [Google Scholar] [CrossRef]
- Ohno, M.; Li, V.C. A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites. Constr. Build. Mater. 2014, 57, 163–168. [Google Scholar] [CrossRef]
- Zhou, J.; Qian, S.; Beltran, M.G.S.; Ye, G.; van Breugel, K.; Li, V.C. Development of engineered cementitious composites with limestone powder and blast furnace slag. Mater. Struct. 2010, 43, 803–814. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Yang, Y.; Yao, Y. Quasi-static and dynamic compressive mechanical properties of engineered cementitious composite incorporating ground granulated blast furnace slag. Mater. Des. 2013, 44, 500–508. [Google Scholar] [CrossRef]
- Qiu, J.; Tan, H.S.; Yang, E.-H. Coupled effects of crack width, slag content, and conditioning alkalinity on autogenous healing of engineered cementitious composites. Cem. Concr. Compos. 2016, 73, 203–212. [Google Scholar] [CrossRef]
- Paul, S.C.; van Zijl, G.P.A.G. Mechanically induced cracking behaviour in fine and coarse sand strain hardening cement based composites (SHCC) at different load levels. J. Adv. Concr. Technol. 2013, 11, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Sahmaran, M.; Lachemi, M.; Hossain, K.M.A.; Ranade, R.; Li, V.C. Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites. ACI Mater. J. 2009, 106, 308. [Google Scholar]
- Choi, W.-C.; Yun, H.-D.; Kang, J.-W.; Kim, S.-W. Development of recycled strain-hardening cement-based composite (SHCC) for sustainable infrastructures. Compos. Part B Eng. 2012, 43, 627–635. [Google Scholar] [CrossRef]
- Li, V.C. Engineered Cementitious Composites (ECC)-Tailored Composites Through Micromechanical Modeling. J. Adv. Concr. Technol. 1998. [Google Scholar] [CrossRef] [Green Version]
- Li, V.C.; Stang, H.; Krenchel, H. Micromechanics of crack bridging in fibre-reinforced concrete. Mater. Struct. 1993, 26, 486–494. [Google Scholar] [CrossRef]
- Li, V.C.; Leung, C.K.Y. Steady-state and multiple cracking of short random fiber composites. J. Eng. Mech. 1992, 118, 2246–2264. [Google Scholar] [CrossRef] [Green Version]
- Kanda, T.; Li, V.C. Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix. J. Mater. Civ. Eng. 1998, 10, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Kanda, T.; Li, V.C. Multiple cracking sequence and saturation in fiber reinforced cementitious composites. Concr. Res. Technol. 1998, 9, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Hyun, J.H.; Lee, B.Y.; Kim, Y.Y. Composite properties and micromechanical analysis of highly ductile cement composite incorporating limestone powder. Appl. Sci. 2018, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Kanda, T.; Li, V.C. Practical design criteria for saturated pseudo strain hardening behavior in ECC. J. Adv. Concr. Technol. 2006, 4, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Ding, C.; Guo, L.; Chen, B.; Xu, Y.; Cao, Y.; Fei, C. Micromechanics theory guidelines and method exploration for surface treatment of PVA fibers used in high-ductility cementitious composites. Constr. Build. Mater. 2019, 196, 154–165. [Google Scholar] [CrossRef]
- Lu, C.; Li, V.C.; Leung, C.K.Y. Flaw characterization and correlation with cracking strength in Engineered Cementitious Composites (ECC). Cem. Concr. Res. 2018, 107, 64–74. [Google Scholar] [CrossRef]
- Nematollahi, B.; Qiu, J.; Yang, E.-H.; Sanjayan, J. Micromechanics constitutive modelling and optimization of strain hardening geopolymer composite. Ceram. Int. 2017, 43, 5999–6007. [Google Scholar] [CrossRef]
- da Costa, F.B.P.; Righi, D.P.; Graeff, A.G.; da Silva Filho, L.C.P. Experimental study of some durability properties of ECC with a more environmentally sustainable rice husk ash and high tenacity polypropylene fibers. Constr. Build. Mater. 2019, 213, 505–513. [Google Scholar] [CrossRef]
- Halvaei, M.; Jamshidi, M.; Latifi, M. Application of low modulus polymeric fibers in engineered cementitious composites. J. Ind. Text. 2014, 43, 511–524. [Google Scholar] [CrossRef]
- Said, S.H.; Razak, H.A.; Othman, I. Strength and deformation characteristics of engineered cementitious composite slabs with different polymer fibres. J. Reinf. Plast. Compos. 2015, 34, 1950–1962. [Google Scholar] [CrossRef]
- Zhang, R.; Matsumoto, K.; Hirata, T.; Ishizeki, Y.; Niwa, J. Application of PP-ECC in beam–column joint connections of rigid-framed railway bridges to reduce transverse reinforcements. Eng. Struct. 2015, 86, 146–156. [Google Scholar] [CrossRef]
- Brown, R.; Shukla, A.; Natarajan, K.R. Fiber Reinforcement of Concrete Structures; Dept. of Chemical Engineering, University of Rhode Island: Kingston, RI, USA, 2002. [Google Scholar]
- Bahraq, A.A.; Maslehuddin, M.; Al-Dulaijan, S.U. Macro-and Micro-Properties of Engineered Cementitious Composites (ECCs) incorporating industrial waste materials: A review. Arab. J. Sci. Eng. 2020, 45, 1–27. [Google Scholar] [CrossRef]
- Silva, D.A.D.; Betioli, A.M.; Gleize, P.J.P.; Roman, H.R.; Gomez, L.A.; Ribeiro, J.L.D. Degradation of recycled PET fibers in Portland cement-based materials. Cem. Concr. Res. 2005, 35, 1741–1746. [Google Scholar] [CrossRef]
- Machovic, V.; Andertova, J.; Kopecky, L.; Cerny, M.; Borecka, L.; Pribyl, O.; Kolar, F.; Svitilova, J. Effect of aging of PET fibre on the mechanical properties of PET fibre reinforced cement composite. Ceram. Silik. 2008, 52, 172–182. [Google Scholar]
- Zhang, D.; Yu, J.; Wu, H.; Jaworska, B.; Ellis, B.R.; Li, V.C. Discontinuous micro-fibers as intrinsic reinforcement for ductile Engineered Cementitious Composites (ECC). Compos. Part B Eng. 2020, 184, 107741. [Google Scholar] [CrossRef]
- Leung, C.K.Y.; Cheung, Y.N.; Zhang, J. Fatigue enhancement of concrete beam with ECC layer. Cem. Concr. Res. 2007, 37, 743–750. [Google Scholar] [CrossRef]
- Meghwar, S.L.; Khaskheli, G.B.; Kumar, A. Human scalp hair as fiber reinforcement in cement concrete. Mehran Univ. Res. J. Eng. Technol. 2020, 39, 443. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Qian, S.; Ye, G.; Copuroglu, O.; van Breugel, K.; Li, V.C. Improved fiber distribution and mechanical properties of engineered cementitious composites by adjusting the mixing sequence. Cem. Concr. Compos. 2012, 34, 342–348. [Google Scholar] [CrossRef]
- Huang, B.-T.; Li, Q.-H.; Xu, S.-L.; Li, C.-F. Development of reinforced ultra-high toughness cementitious composite permanent formwork: Experimental study and Digital Image Correlation analysis. Compos. Struct. 2017, 180, 892–903. [Google Scholar] [CrossRef]
- Wang, K.; Jansen, D.C.; Shah, S.P.; Karr, A.F. Permeability study of cracked concrete. Cem. Concr. Res. 1997, 27, 381. [Google Scholar] [CrossRef] [Green Version]
- Takewaka, K.; Yamaguchi, T.; Maeda, S. Simulation model for deterioration of concrete structures due to chloride attack. J. Adv. Concr. Technol. 2003, 1, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Şahmaran, M.; Li, V.C. Durability of mechanically loaded engineered cementitious composites under highly alkaline environments. Cem. Concr. Compos. 2008, 30, 72–81. [Google Scholar] [CrossRef]
- Xinhua, X.S.C. Corrosion resistance of reinforced concrete beams with cover replaced by UHTCC. China Civ. Eng. J. 2011, 5, 2541. [Google Scholar]
- Maalej, M.; Ahmed, S.F.U.; Paramasivam, P. Corrosion durability and structural response of functionally-graded concrete beams. J. Adv. Concr. Technol. 2003, 1, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Leung, C.K.Y.; Xu, S.; Cao, Q. Potential use of strain hardening ECC in permanent formwork with small scale flexural beams. J. Wuhan Univ. Technol. Sci. Ed. 2009, 24, 482–487. [Google Scholar] [CrossRef]
- Zhang, R.; Hu, P.; Zheng, X.; Cai, L.; Guo, R.; Wei, D. Shear behavior of RC slender beams without stirrups by using precast U-shaped ECC permanent formwork. Constr. Build. Mater. 2020, 260, 120430. [Google Scholar] [CrossRef]
- Pan, Z.; Liu, J.; Wu, C.; Qiao, Z.; Leung, C.; Meng, S. Experimental study and finite element analysis of seismic behavior of reinforced ECC composite columns. J. Build. Struct. 2017, 38, 38–45. [Google Scholar]
- Qiao, Z.; Pan, Z.; Leung, C.K.Y.; Meng, S. Experimental study and analysis of flexural behavior of ECC/RC composite beams. J. Southeast Univ. 2017, 47, 724–731. [Google Scholar]
- Thanh, H.T.; Li, J.; Zhang, Y.X. Numerical simulation of self-consolidating engineered cementitious composite flow with the V-funnel and U-box. Constr. Build. Mater. 2020, 236, 117467. [Google Scholar] [CrossRef]
- Şahmaran, M.; Al-Emam, M.; Yıldırım, G.; Şimşek, Y.E.; Erdem, T.K.; Lachemi, M. High-early-strength ductile cementitious composites with characteristics of low early-age shrinkage for repair of infrastructures. Mater. Struct. Constr. 2015, 48, 1389–1403. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Zhang, C.; Li, Y.; Zhao, S. Effect of exposure conditions on self-healing behavior of engineered cementitious composite incorporating limestone powder. Cem. Concr. Compos. 2020, 114, 103808. [Google Scholar] [CrossRef]
- Guo, M.; Zhong, Q.; Zhou, Y.; Hu, B.; Huang, Z.; Yue, Y. Influence of flexural loading and chloride exposure on the fatigue behavior of high-performance lightweight engineered cementitious composites. Constr. Build. Mater. 2020, 249, 118512. [Google Scholar] [CrossRef]
- Xi, B.; Zhou, Y.; Yu, K.; Hu, B.; Huang, X.; Sui, L.; Xing, F. Use of nano-SiO2 to develop a high performance green lightweight engineered cementitious composites containing fly ash cenospheres. J. Clean. Prod. 2020, 262, 121274. [Google Scholar] [CrossRef]
- Li, V.C. Tailoring ECC for special attributes: A review. Int. J. Concr. Struct. Mater. 2012, 6, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Li, V.C. High-early-strength engineered cementitious composites for fast, durable concrete repair-material properties. ACI Mater. J. 2011, 108, 3. [Google Scholar]
- Maalej, M.; Li, V.C. Flexural/tensile-strength ratio in engineered cementitious composites. J. Mater. Civ. Eng. 1994, 6, 513–528. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.Y.; Kim, J.-K.; Kim, Y.Y. Prediction of ECC tensile stress-strain curves based on modified fiber bridging relations considering fiber distribution characteristics. Comput. Concr. 2010, 7, 455–468. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.P.; Singh, A.P.; Bajaj, V. Strength and flexural toughness of concrete reinforced with steel-polypropylene hybrid fibres. Asian J. Civ. Eng (Build. Hous.) 2010, 11, 495–507. [Google Scholar]
- Fischer, G.D. Deformation Behavior of Reinforced ECC Flexural Members under Reversed Cyclic Loading Conditions; University of Michigan: Ann Arbor, MI, USA, 2002; ISBN 049355646X. [Google Scholar]
- Said, S.H.; Razak, H.A. The effect of synthetic polyethylene fiber on the strain hardening behavior of engineered cementitious composite (ECC). Mater. Des. 2015, 86, 447–457. [Google Scholar] [CrossRef]
- Singh, S.B.; Munjal, P. Mechanical properties of PVA and polyester fibers based engineered cementitious composites. In Recent Advances in Structural Engineering; Springer: Berlin, Germany, 2019; Volume 1, pp. 715–728. [Google Scholar]
- Sui, L.; Luo, M.; Yu, K.; Xing, F.; Li, P.; Zhou, Y.; Chen, C. Effect of engineered cementitious composite on the bond behavior between fiber-reinforced polymer and concrete. Compos. Struct. 2018, 184, 775–788. [Google Scholar] [CrossRef]
- Ammasi, A.K. Strength and durability of high volume fly ash in engineered cementitious composites. Mater. Today Proc. 2018, 5, 24050–24058. [Google Scholar] [CrossRef]
- Mohammadyan-Yasouj, S.E.; Heidari, N.; Shokravi, H. Influence of waste alumina powder on self-compacting concrete resistance under elevated temperature. J. Build. Eng. 2021, 41, 102360. [Google Scholar] [CrossRef]
- Yu, J.; Lin, J.; Zhang, Z.; Li, V.C. Mechanical performance of ECC with high-volume fly ash after sub-elevated temperatures. Constr. Build. Mater. 2015, 99, 82–89. [Google Scholar] [CrossRef]
- Bhat, P.S.; Chang, V.; Li, M. Effect of elevated temperature on strain-hardening engineered cementitious composites. Constr. Build. Mater. 2014, 69, 370–380. [Google Scholar] [CrossRef] [Green Version]
- Du, Q.; Wei, J.; Lv, J. Effects of high temperature on mechanical properties of polyvinyl alcohol engineered cementitious composites (PVA-ECC). Int. J. Civ. Eng. 2018, 16, 965–972. [Google Scholar] [CrossRef]
- Xu, M.; Song, S.; Feng, L.; Zhou, J.; Li, H.; Li, V.C. Development of basalt fiber engineered cementitious composites and its mechanical properties. Constr. Build. Mater. 2021, 266, 121173. [Google Scholar] [CrossRef]
- Wu, X.; Tian, J.; Ma, H.; Zheng, Y.; Hu, S.; Wang, W.; Du, Y.; Huang, W.; Sun, C.; Zhu, Z. Investigation on interface fracture properties and nonlinear fracture model between ECC and concrete subjected to salt freeze-thaw cycles. Constr. Build. Mater. 2020, 259, 119785. [Google Scholar] [CrossRef]
- Singh, M.; Saini, B.; Chalak, H.D. Performance and composition analysis of engineered cementitious composite (ECC)–A review. J. Build. Eng. 2019, 26, 100851. [Google Scholar] [CrossRef]
- Wu, H.-L.; Yu, J.; Zhang, D.; Zheng, J.-X.; Li, V.C. Effect of morphological parameters of natural sand on mechanical properties of engineered cementitious composites. Cem. Concr. Compos. 2019, 100, 108–119. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, J.; Ma, H. Feasibility study of ECC with self-healing capacity applied on the long-span steel bridge deck overlay. Int. J. Pavement Eng. 2019, 20, 884–893. [Google Scholar] [CrossRef]
- Shokravi, H.; Mohammadyan-Yasouj, S.E.; Rahimian Koloor, S.S.; Petrů, M.; Heidarrezaei, M. Effect of alumina additives on mechanical and fresh properties of self-compacting concrete: A review. Processes 2021, 9, 554. [Google Scholar] [CrossRef]
- Mohammadyan-Yasouj, S.E.; Ahangar, H.A.; Oskoei, N.A.; Shokravi, H.; Koloor, S.S.; Petrů, M. Experimental Study on the Effect of Basalt Fiber and Sodium Alginate in Polymer Concrete Exposed to Elevated Temperature. Processes 2021, 9, 510. [Google Scholar] [CrossRef]
- Torigoe, S.; Horikoshi, T.; Ogawa, A.; Saito, T.; Hamada, T. Study on evaluation method for PVA fiber distribution in engineered cementitious composite. J. Adv. Concr. Technol. 2003, 1, 265–268. [Google Scholar] [CrossRef] [Green Version]
- Niu, H.M.; Xing, Y.M.; Zhao, Y.R. A review on the methods of improving fiber distribution of engineered cementitious composites (ECC). In Advanced Materials Research; Trans Tech Publ: Zurich, Switzerland, 2013; Volume 683, pp. 46–50. [Google Scholar]
- Yang, E.-H.; Yang, Y.; Li, V.C. Use of high volumes of fly ash to improve ECC mechanical properties and material greenness. ACI Mater. J. 2007, 104, 620. [Google Scholar]
- Li, X.; Yang, X.; Ding, Z.; Du, X.; Wen, J. ECC design based on uniform design test method and alternating conditional expectation. Math. Probl. Eng. 2019, 2019, 1–14. [Google Scholar] [CrossRef]
- FISCHER, G.; Shuxin, W. Design of engineered cementitious composites (ECC) for processing and workability requirements. In Brittle Matrix Composites 7; Elsevier: Amsterdam, The Netherlands, 2003; pp. 29–36. [Google Scholar]
- Kabay, N. Abrasion resistance and fracture energy of concretes with basalt fiber. Constr. Build. Mater. 2014, 50, 95–101. [Google Scholar] [CrossRef]
- Ayub, T.; Shafiq, N.; Nuruddin, M.F. Mechanical properties of high-performance concrete reinforced with basalt fibers. Procedia Eng. 2014, 77, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Gao, Z.; Cao, P.; Zhou, C. Mechanical properties tests and multiscale numerical simulations for basalt fiber reinforced concrete. Constr. Build. Mater. 2019, 202, 58–72. [Google Scholar] [CrossRef]
- Badarloo, B.; Kari, A.; Jafari, F. Experimental and numerical study to determine the relationship between tensile strength and compressive strength of concrete. Civ. Eng. J. 2018, 4, 2787–2800. [Google Scholar] [CrossRef] [Green Version]
pH | Solubility | Moisture | Fluoride (PPM) | Calcium | Phosphorous |
---|---|---|---|---|---|
4–7 | Minimum 85% | Maximum 3% | Maximum s1800 | Minimum 21% | Minimum 17% |
Length of Fiber (mm) | Equivalent Diameter (μm) | Water Absorption(%) | Tensile Strength (N/mm2) | Melting Point (C·) | Elastic Modulus (GPa) | Ultimate Elongation (%) |
---|---|---|---|---|---|---|
10 | 13–20 | <0.5 | 4100–4800 | 1050 | 93–110 | 1.3–3.2 |
Concrete Type | Cement (kg/m3) | Silica Sand (kg/m3) | Fly Ash (kg/m3) | Water (kg/m3) | Superplasticizer (kg/m3) | BFs (%) |
---|---|---|---|---|---|---|
Reference mix (R-ECC) | 820 | 656 | 205 | 379 | - | |
BF-ECC | 820 | 656 | 205 | 379 | 8.74 | 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafiei, P.; Shokravi, H.; Mohammadyan-Yasouj, S.E.; Koloor, S.S.R.; Petrů, M. Temperature Impact on Engineered Cementitious Composite Containing Basalt Fibers. Appl. Sci. 2021, 11, 6848. https://doi.org/10.3390/app11156848
Rafiei P, Shokravi H, Mohammadyan-Yasouj SE, Koloor SSR, Petrů M. Temperature Impact on Engineered Cementitious Composite Containing Basalt Fibers. Applied Sciences. 2021; 11(15):6848. https://doi.org/10.3390/app11156848
Chicago/Turabian StyleRafiei, Pouya, Hoofar Shokravi, Seyed Esmaeil Mohammadyan-Yasouj, Seyed Saeid Rahimian Koloor, and Michal Petrů. 2021. "Temperature Impact on Engineered Cementitious Composite Containing Basalt Fibers" Applied Sciences 11, no. 15: 6848. https://doi.org/10.3390/app11156848
APA StyleRafiei, P., Shokravi, H., Mohammadyan-Yasouj, S. E., Koloor, S. S. R., & Petrů, M. (2021). Temperature Impact on Engineered Cementitious Composite Containing Basalt Fibers. Applied Sciences, 11(15), 6848. https://doi.org/10.3390/app11156848