Influence of Blood Contamination on Push-Out Bond Strength of Three Calcium Silicate-Based Materials to Root Dentin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Selection
2.2. Root Canal Biomechanical Preparation
2.3. Blood Collection
2.4. Root Canal Filling
2.5. Push-Out Bond Strength Test
2.6. Fracture Pattern Evaluation
2.7. Statistical Analysis
3. Results
3.1. Push-Out Bond Strength
3.2. Fracture Pattern
4. Discussion
5. Conclusions
- Overall results indicate TotalFill presents the highest push-out bond strength values, followed by Biodentine and, lastly, MTA.
- Blood contamination did not affect the dislodgement resistance regardless of the tested hydraulic cement.
- Biomaterials’ comparison within each radicular segment revealed both TotalFill and Biodentine as the preferable alternatives for application in the coronal region. Although all biomaterials present similar bond strength values in the middle third, TotalFill might be the biomaterial of choice for placement in the apical region.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raghavendra, S.S.; Jadhav, G.R.; Gathani, K.M.; Kotadia, P. Bioceramics in endodontics—A review. J. Istanb. Univ. Fac. Dent. 2017, 51, S128–S137. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.M.; Pereira, S.; Sequeira, D.B.; Messias, A.L.; Martins, J.B.; Cunha, H.; Palma, P.J.; Santos, A.C. Biocompatibility of a bioceramic silicone-based sealer in subcutaneous tissue. J. Oral Sci. 2019, 61, 171–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neelakantan, P.; Subbarao, C.; Subbarao, C.V.; De-Deus, G.; Zehnder, M. The impact of root dentine conditioning on sealing ability and push-out bond strength of an epoxy resin root canal sealer. Int. Endod. J. 2011, 44, 491–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashofteh Yazdi, K.; Bolhari, B.; Sabetmoghaddam, T.; Meraji, N.; Kharazifard, M.J. Effect of Blood Exposure on Push-Out Bond Strength of Four Calcium Silicate Based Cements. Iran. Endod. J. 2017, 12, 196–200. [Google Scholar] [CrossRef]
- Santos, J.M.; Palma, P.J.; Ramos, J.C.; Cabrita, A.S.; Friedman, S. Periapical inflammation subsequent to coronal inoculation of dog teeth root filled with resilon/epiphany in 1 or 2 treatment sessions with chlorhexidine medication. J. Endod. 2014, 40, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Dawood, A.E.; Parashos, P.; Wong, R.H.K.; Reynolds, E.C.; Manton, D.J. Calcium silicate-based cements: Composition, properties, and clinical applications. J. Investig. Clin. Dent. 2017, 8. [Google Scholar] [CrossRef]
- Utneja, S.; Nawal, R.R.; Talwar, S.; Verma, M. Current perspectives of bio-ceramic technology in endodontics: Calcium enriched mixture cement-review of its composition, properties and applications. Restor. Dent. Endod. 2015, 40, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review—Part I: Chemical, physical, and antibacterial properties. J. Endod. 2010, 36, 16–27. [Google Scholar] [CrossRef]
- Santos, J.M.; Pereira, J.F.; Marques, A.; Sequeira, D.B.; Friedman, S. Vital Pulp Therapy in Permanent Mature Posterior Teeth with Symptomatic Irreversible Pulpitis: A Systematic Review of Treatment Outcomes. Medicina 2021, 57, 573. [Google Scholar] [CrossRef]
- Palma, P.J.; Martins, J.; Diogo, P.; Sequeira, D.; Ramos, J.C.; Diogenes, A.; Santos, J.M. Does Apical Papilla Survive and Develop in Apical Periodontitis Presence after Regenerative Endodontic Procedures? Appl. Sci. 2019, 9, 3942. [Google Scholar] [CrossRef] [Green Version]
- Tawil, P.Z.; Duggan, D.J.; Galicia, J.C. Mineral trioxide aggregate (MTA): Its history, composition, and clinical applications. Compend. Contin. Educ. Dent. 2015, 36, 247–252. [Google Scholar]
- Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review—Part III: Clinical applications, drawbacks, and mechanism of action. J. Endod. 2010, 36, 400–413. [Google Scholar] [CrossRef]
- Pinto, D.; Marques, A.; Pereira, J.F.; Palma, P.J.; Santos, J.M. Long-Term Prognosis of Endodontic Microsurgery-A Systematic Review and Meta-Analysis. Medicina 2020, 56, 447. [Google Scholar] [CrossRef]
- Palma, P.J.; Marques, J.A.; Santos, J.; Falacho, R.I.; Sequeira, D.; Diogo, P.; Caramelo, F.; Ramos, J.C.; Santos, J.M. Tooth Discoloration after Regenerative Endodontic Procedures with Calcium Silicate-Based Cements-An Ex Vivo Study. Appl. Sci. 2020, 10, 5793. [Google Scholar] [CrossRef]
- Parirokh, M.; Torabinejad, M.; Dummer, P.M.H. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview—Part I: Vital pulp therapy. Int. Endod. J. 2018, 51, 177–205. [Google Scholar] [CrossRef]
- Li, Q.; Hurt, A.P.; Coleman, N.J. The Application of Si-29 NMR Spectroscopy to the Analysis of Calcium Silicate-Based Cement using Biodentine (TM) as an Example. J. Funct. Biomater. 2019, 10, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malkondu, O.; Kazandag, M.K.; Kazazoglu, E. A Review on Biodentine, a Contemporary Dentine Replacement and Repair Material. Biomed. Res. Int. 2014, 2014, 160951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamparini, F.; Siboni, F.; Prati, C.; Taddei, P.; Gandolfi, M.G. Properties of calcium silicate-monobasic calcium phosphate materials for endodontics containing tantalum pentoxide and zirconium oxide. Clin. Oral Investig. 2019, 23, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Lovato, K.F.; Sedgley, C.M. Antibacterial activity of endosequence root repair material and proroot MTA against clinical isolates of Enterococcus faecalis. J. Endod. 2011, 37, 1542–1546. [Google Scholar] [CrossRef]
- Damas, B.A.; Wheater, M.A.; Bringas, J.S.; Hoen, M.M. Cytotoxicity comparison of mineral trioxide aggregates and EndoSequence bioceramic root repair materials. J. Endod. 2011, 37, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.M.; Marques, J.A.; Diogo, P.; Messias, A.; Sousa, V.; Sequeira, D.; Palma, P.J. Influence of pre-operative pulp inflammation in the outcome of full pulpotomy using a dog model. J. Endod. 2021. [Google Scholar] [CrossRef] [PubMed]
- Akbulut, M.B.; Bozkurt, D.A.; Terlemez, A.; Akman, M. The push-out bond strength of BIOfactor mineral trioxide aggregate, a novel root repair material. Restor. Dent. Endod. 2019, 44, e5. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Carmona, J.F.; Felippe, M.S.; Felippe, W.T. The biomineralization ability of mineral trioxide aggregate and Portland cement on dentin enhances the push-out strength. J. Endod. 2010, 36, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Shahi, S.; Rahimi, S.; Yavari, H.R.; Samiei, M.; Janani, M.; Bahari, M.; Abdolrahimi, M.; Pakdel, F.; Aghbali, A. Effects of various mixing techniques on push-out bond strengths of white mineral trioxide aggregate. J. Endod. 2012, 38, 501–504. [Google Scholar] [CrossRef] [PubMed]
- Akcay, H.; Arslan, H.; Akcay, M.; Mese, M.; Sahin, N.N. Evaluation of the bond strength of root-end placed mineral trioxide aggregate and Biodentine in the absence/presence of blood contamination. Eur. J. Dent. 2016, 10, 370–375. [Google Scholar] [CrossRef] [Green Version]
- Vanderweele, R.A.; Schwartz, S.A.; Beeson, T.J. Effect of blood contamination on retention characteristics of MTA when mixed with different liquids. J. Endod. 2006, 32, 421–424. [Google Scholar] [CrossRef]
- Nekoofar, M.H.; Stone, D.F.; Dummer, P.M.H. The effect of blood contamination on the compressive strength and surface microstructure of mineral trioxide aggregate. Int. Endod. J. 2010, 43, 782–791. [Google Scholar] [CrossRef]
- Rahimi, S.; Ghasemi, N.; Shahi, S.; Lotfi, M.; Froughreyhani, M.; Milani, A.S.; Bahari, M. Effect of blood contamination on the retention characteristics of two endodontic biomaterials in simulated furcation perforations. J. Endod. 2013, 39, 697–700. [Google Scholar] [CrossRef]
- Adl, A.; Shojaee, N.S.; Sobhnamayan, F.; Hashemzade, M. The effect of blood contamination on the compressive strength of calcium-enriched mixture. J. Dent. 2015, 16, 37–41. [Google Scholar]
- Chen, W.-P.; Chen, Y.-Y.; Huang, S.-H.; Lin, C.-P. Limitations of push-out test in bond strength measurement. J. Endod. 2013, 39, 283–287. [Google Scholar] [CrossRef]
- Marquezan, F.K.; Kopper, P.M.P.; Dullius, A.; Ardenghi, D.M.; Grazziotin-Soares, R. Effect of Blood Contamination on The Push-Out Bond Strength of Calcium Silicate Cements. Braz. Dent. J. 2018, 29, 189–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goracci, C.; Tavares, A.U.; Fabianelli, A.; Monticelli, F.; Raffaelli, O.; Cardoso, P.C.; Tay, F.; Ferrari, M. The adhesion between fiber posts and root canal walls: Comparison between microtensile and push-out bond strength measurements. Eur. J. Oral Sci. 2004, 112, 353–361. [Google Scholar] [CrossRef]
- Sarkar, N.K.; Caicedo, R.; Ritwik, P.; Moiseyeva, R.; Kawashima, I. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J. Endod. 2005, 31, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Okiji, T. Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine. Int. Endod. J. 2011, 44, 1081–1087. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Jiang, J.; Su, H.; Sun, M.; Wang, P.; Liu, D.; Zhou, Z. Bioactivity, toxicity and dissipation of hexaconazole enantiomers. Chemosphere 2013, 93, 2523–2527. [Google Scholar] [CrossRef]
- Kadic, S.; Baraba, A.; Miletic, I.; Ionescu, A.; Brambilla, E.; Ivanisevic Malcic, A.; Gabric, D. Push-out bond strength of three different calcium silicate-based root-end filling materials after ultrasonic retrograde cavity preparation. Clin. Oral Investig. 2018, 22, 1559–1565. [Google Scholar] [CrossRef]
- Wang, X.; Sun, H.; Chang, J. Characterization of Ca3SiO5/CaCl2 composite cement for dental application. Dent. Mater. 2008, 24, 74–82. [Google Scholar] [CrossRef]
- An, B.; Zhang, D. An analysis of crack growth in dentin at the microstructural scale. J. Mech. Behav. Biomed. Mater. 2018, 81, 149–160. [Google Scholar] [CrossRef]
- Samokhin, G.P.; Smirnov, M.D.; Muzykantov, V.R.; Domogatsky, S.P.; Smirnov, V.N. Red blood cell targeting to collagen-coated surfaces. FEBS Lett. 1983, 154, 257–261. [Google Scholar] [CrossRef] [Green Version]
- Gancedo-Caravia, L.; Garcia-Barbero, E. Influence of humidity and setting time on the push-out strength of mineral trioxide aggregate obturations. J. Endod. 2006, 32, 894–896. [Google Scholar] [CrossRef]
Study Group n = 15 | Biomaterial | Blood Contamination |
---|---|---|
MTA/Blood | ProRoot MTA | Yes |
MTA/Saline | ProRoot MTA | No |
Biodentine/Blood | Biodentine | Yes |
Biodentine/Saline | Biodentine | No |
TotalFill/Blood | TotalFill BC Putty | Yes |
TotalFill/Saline | TotalFill BC Putty | No |
Biomaterial | Mean ± SD | Median |
---|---|---|
ProRoot MTA | 7.44 ± 4.07 | 6.83 |
Biodentine | 8.54 ± 4.49 | 8.62 |
TotalFill BC Putty | 10.32 ± 8.41 | 9.97 |
Radicular Segment | |||
---|---|---|---|
Biomaterial | Coronal (Median) | Middle (Mean ± SD) | Apical (Mean ± SD) |
ProRoot MTA | 4.97 a | 8.22 ± 3.34 a | 7.98 ± 4.28 a,b |
Biodentine | 9.10 b | 9.54 ± 5.53 a | 6.83 ± 3.68 a |
TotalFill BC Putty | 8.64 b | 10.77 ± 4.95 a | 9.56 ± 3.81 b |
Fracture Pattern | |||
---|---|---|---|
Experimental Group | Adhesive | Cohesive | Mixed |
MTA/Blood | 39 | 0 | 6 |
MTA/Saline | 42 | 0 | 3 |
Biodentine/Blood | 45 | 0 | 8 |
Biodentine/Saline | 38 | 1 | 6 |
TotalFill/Blood | 43 | 0 | 2 |
TotalFill/Saline | 37 | 0 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paulo, C.R.; Marques, J.A.; Sequeira, D.B.; Diogo, P.; Paiva, R.; Palma, P.J.; Santos, J.M. Influence of Blood Contamination on Push-Out Bond Strength of Three Calcium Silicate-Based Materials to Root Dentin. Appl. Sci. 2021, 11, 6849. https://doi.org/10.3390/app11156849
Paulo CR, Marques JA, Sequeira DB, Diogo P, Paiva R, Palma PJ, Santos JM. Influence of Blood Contamination on Push-Out Bond Strength of Three Calcium Silicate-Based Materials to Root Dentin. Applied Sciences. 2021; 11(15):6849. https://doi.org/10.3390/app11156849
Chicago/Turabian StylePaulo, Cristina Rodrigues, Joana A. Marques, Diana B. Sequeira, Patrícia Diogo, Rui Paiva, Paulo J. Palma, and João Miguel Santos. 2021. "Influence of Blood Contamination on Push-Out Bond Strength of Three Calcium Silicate-Based Materials to Root Dentin" Applied Sciences 11, no. 15: 6849. https://doi.org/10.3390/app11156849
APA StylePaulo, C. R., Marques, J. A., Sequeira, D. B., Diogo, P., Paiva, R., Palma, P. J., & Santos, J. M. (2021). Influence of Blood Contamination on Push-Out Bond Strength of Three Calcium Silicate-Based Materials to Root Dentin. Applied Sciences, 11(15), 6849. https://doi.org/10.3390/app11156849