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Abstract: Coordination of the production and distribution activities represents a significant op-
portunity to cut costs and limit waste in the food supply chains. In this paper, we propose two
mathematical models. The first one aims to integrate the harvesting, storage, and distribution ac-
tivities of an agricultural company dealing with perishable products. The second one promotes
horizontal collaboration between heterogeneous agri-companies for the distribution phase, in order
to achieve cost savings. Computational experiments, conducted on a set of real-life instances, confirm
the effectiveness and efficiency of the proposed models, which provide multi-level support. At
the tactical level, managerial insights suggest the most profitable parameter setting, in terms of
harvesting frequency and quality of service. At the operational level, the use of a heuristic framework
can support the decision-making of the companies, suggesting when collaboration is profitable.

Keywords: food supply chain; perishable products; distribution; optimization; inventory management

1. Introduction

In the coming years, an increase in global food demand is expected, due to the
growth in the world population. This trend has been going on for several decades. Fresh
fruit and vegetables are and will be among the most demanded products also because
their consumption has several beneficial effects on human health [1,2]. Therefore, one
of today most significant challenges concerns the design and management of efficient
fresh-produce supply chains, which can effectively face the variability of demand and
prices, the perishable nature of the products, the complexity of the logistic systems [3]. In
recent decades, globalization has forced companies all over the world to rethink market
strategies in a sustainable and collaborative way, in order to contain costs and offer a higher
quality product to customers, who are increasingly demanding and knowledgeable [4].
While in the past there was a tendency to locally and sequentially optimize the various
phases of the supply chain, today we are moving towards integrated approaches, which
reduce lead times and offer quicker reactions to the frequent market changes [5].

Aware of this global trend, in this paper we address the integrated and collaborative
harvesting inventory distribution problem (HIDP) with perishable products. It belongs
to the class of the production-inventory-routing problems, which aim to jointly optimize
production, inventory, distribution, and routing decisions. In the most classic configuration,
such a problem involves a supplier, who produces a commodity and replenishes a set of
customers through the use of a fleet of vehicles, within a well defined time horizon. Then,
the most common decisions concern: when and how much to produce, the inventory level
at the supplier and/or at each customer, when and how much to deliver, which vehicle
routes to use [6,7].

Our contribution can be summarized as follows:
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• we propose an optimization model to support in an integrated way an agricultural
company in the harvesting, storage, and distribution decisions. The model can be
used at the tactical level to define the most profitable configuration of the main
operating parameters;

• we propose an optimization model to support horizontal collaboration, in terms of
distribution activities, between two or more heterogeneous agri-companies, which
share part of their customers. The model can increase profit;

• we propose a heuristic framework which can deal with the two proposed optimization
models and invite day-by-day to collaboration, only when profitable for the suppliers.

The remainder of this paper is organized as follows. Section 2 provides a review of
the main contributions in the literature on the use of mathematical models which integrate
production and distribution activities in the case of perishable products. In Section 3,
two mathematical models are introduced and explained to support in an integrated and
collaborative way the decision-making of agri-companies, which deal with harvesting,
storage, and distribution activities. In Section 4, we describe our computational experience
on a case study and some useful managerial insights. Possible future developments and
conclusions are reported in Section 5.

2. Literature Review

The reduction in total operating cost achieved by coordination of production and
distribution planning can range from 3% to 20%, as reported in the pioneristic work of
Chandra and Fisher [8]. The integration of production and distribution activities can bring
innumerable advantages, such as reduction in delivery time, increase in product quality for
the benefit of customer satisfaction, improvement in the overall performance of the food
supply chain [9]. The study of Amorim et al. [10] highlights the economic advantages in
using an integrated approach compared to a decoupled one. Moreover, the coordination of
the different steps of the supply chain has a very positive environmental impact, limiting
pollution [11] and food waste [12]. As reported in [13,14], a very large part of food waste is
currently due to inefficiencies in the fresh food supply chain.

The coordination of production, storage and distribution activities is much more
complex and critical when the supply chain deals with perishable products. Perishability
and shelf-life are among the main issues for achieving sustainability and efficiency in food
logistiscs [15]. According to Amorim et al. [16], a good is perishable if at least one of the
following three conditions takes place, during a well defined time horizon: (i) its physical
status considerably worsens, (ii) the value perceived by customers decreases, (iii) there is a
risk of possible future reduced functionality according to some authority. Products such as
fruits, vegetables, and flowers are characterized by continuous deterioration [17], which
influences the profits achievable from their sale to customers. Basically, the selling price
is not constant, but depends on the quality, which usually begins to decline immediately
after production, or harvesting in the case of agricultural products [18]. In the case of
fresh fruits and vegetables, the expiry date is not printed, then their shelf-life is defined
loose because it can be only estimated based on some information (e.g., physical status,
date of harvesting) [10]. For all these reasons, a branch of research which concerns the
inventory management with deteriorating items has developed over the years. The work
of Nahmias [19] was pioneering, while for some quite recent studies, see [20–22].

In the following, we analylize the most relevant contributions in the literature, where
the decisions about production, inventory, and routing of perishable products are optimized.
We point out that more detailed information about the production-inventory-routing
problems can be found in some comprehensive reviews, see [5,23,24].

Rong et al. [25] propose a mixed integer linear programming (MILP) model for plan-
ning the production and distribution activities in a multi-level food supply chain. The total
costs are minimized, namely production, transportation, storage, disposal, and cooling
costs for transportation equipment and storage facilities. The authors mainly focus on prod-
uct quality, whose decay is strongly related to the temperature along the chain. In particular,
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they include linear or exponential product quality degradation models in their MILP. The
aim is to find a sort of trade-off between quality preservation costs and costs for waste.
Since the proposed modelling approach refers to a generic food supply chain configuration,
it can succesfully be applied in several food industries. Jia et al. [26] consider a two-echelon
supply chain, where a single supplier distributes a single product to a set of retailers,
using a fleet of homogeneous vehicles. They propose a MILP model, which supports the
decision-making of the supplier about the production plan, the customers’ delivery time,
the routing in each period of the planning horizon. The vehicles loading costs are explicitly
taken into account. Considering the computational complexity of the problem, the authors
propose a two-phase algorithm to solve it efficiently. The computational results and a
sensitivity analysis show that the model can be a very useful tool for planning supply chain
activities, when dealing with perishable items. Seyedhosseini et al. [27] consider a supply
chain characterized by a production facility and multiple distribution centers. With the
aim to minimize the total cost, the proposed production-inventory-routing model supports
the decision-making about the production quantities, the distribution centers to be visited,
the quantities to be delivered. To solve the problem efficiently, the authors divide it into
two sub-problems, which deal, respectively, with the production and distribution activities.
The first one is optimally solved, while a particle swarm heuristic is designed to tackle
the distribution submodel. Computational experiments on a set of randomly generated
instances prove the goodness of the proposed approach in terms of solution quality and
time performance. Li et al. [28] use a MILP model to define a production-inventory-routing
problem where quality of perishable products is explicitly considered, and profit maxi-
mized. They test their generic supply chain model on some randomly generated instances
and analyze how food perishability impacts on the solution. Vahdani et al. [9] propose a
mathematical programming approach to integrate some common operational decisions,
like production scheduling, inventory management, and vehicle routing. In particular,
the considered production system is multi-stage and multi-site, while at the delivery
level different transporting vehicles with different capacities are taken into account. The
multi-period nature and the use of time windows make the problem quite difficult to be
optimally solved. Therefore, two heuristic and meta-heuristic algorithms are proposed and
applied to some benchmark instances, with good results. Ghasemkhani et al. [29] present
a multi-product and multi-period integrated production-inventory-routing problem with
time windows, where the fleet of vehicles is heterogenous. The uncertainty in customers
demand is tackled through two fuzzy approaches. The proposed model is tested and
validated on a set of randomly generated numerical examples, which are solved optimally.
Neves-Moreira et al. [7] address a production-inventory-routing-problem in a meat supply
chain, where the producer has a single meat processing centre with several production lines,
and a fleet of vehicles for the distribution to the customers. The authors take into account
many real-life features such as product family setups, food perishability, delivery time
windows. Since the dimension of the problem is very large, a three-phase methodology is
proposed, in order to find good solutions in a reasonable time. At the first step, the size
of the problem is reduced, then an initial solution is found and iteratively improved with
a fix-and-optimize based matheuristic. The approach is tested both on some simple in-
stances from the literature and on a real-life case study. Qiu et al. [30] present a generalized
production-inventory-routing model with perishable inventory. With the aim of making
their model close to reality, they discuss and analyze three different delivery, and selling
priority policies, for a total of nine combinations of inventory management policies. An
exact branch-and-cut algorithm is developed to solve the model, which can significanlty
improve the current operating conditions of a food company located in China. The use
of different work scenarios allows the identification of useful managerial implications.
With the aim to determine an integrated food production, inventory, and distribution plan,
Li et al. [31] formulate a bi-objective MILP model which considers two main objectives:
the minimization of production, inventory, and transportations costs, the maximization
of average food quality. The high computational complexity of the problem requires the
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use of heuristic approaches to solve it in a reasonable time. Therefore, the authors pro-
pose an ε-constraint-based two-phase iterative heuristic and a fuzzy logic method. The
computational results, carried out on a case study and on a set of randomly generated
instances, show the goodness of the proposed approach. Chan et al. [32] propose an MILP
model which aims to balance the following three P’s in the food supply chain: profit,
people, planet. In fact, multiple objectives are jointly taken into account: maximization
of the average food quality, minimization of the amount of CO2 emissions, minimization
of the total weighted delivery time, minimization of the total expense of the system (i.e.,
fixed and variable production cost, total inventory cost, total routing cost). A particle
swarm optimization algorithm is proposed to solve efficiently a real-life case, which refers
to a meat supply chain. Manouchehri et al. [33] focus their attention on product quality,
and on warehouse and vehicle temperature. The proposed production-inventory-routing
problem is solved through a hybrid search algorithm, which combines the advantages
of the variable neighborhood search and simulated annealing. The application to a real
chicken-packing plant in Iran reveals the opportunity to reduce distribution and inventory
costs, and minimizing food waste. A sensitivity analysis is carried out to determine the
most suitable temperature for vehicles and warehouse. Li et al. [6] consider a multi-plant
perishable-food production-routing problem. Since, in many real-life situations, the pack-
age can influence the quality decay rate of the food products, they integrate the package
selection decision within a MILP model, which is solved by a hybrid matheuristic. The
results of the computational experience show that integrating package selection into the
production routing planning is profitable. Moreover, a study on different discount policies
is carried out, in order to understand how they impact the profit.

Some considerations can be drawn from the literature review. First of all, the most
significant contributions about the production-inventory-routing problem in the case of
perishable products are recent, then this topic is currently of great interest in the scien-
tific landscape. Moreover, our review shows that, as regards the production activities,
there is no focus on the harvesting of perishable agri-products. Then, to the best of our
knowledge, this paper can represent one of the first attempts at an integrated harvesting-
inventory-distribution model. As regards the concept of collaboration [34], traditionally
more emphasis has been given to the vertical collaboration [35–37], while the horizontal
collaboration [38–42] has been less explored over the years.

3. Problem Description and Model Formulation

Next, we introduce two optimization models. The first one aims to support in an
integrated way the decision-making about the harvesting, storage, and distribution activi-
ties of a single-supplier. The second one manages horizontal collaboration between two
or more suppliers, as regards the distribution activities. The need for horizontal collabo-
ration between suppliers arises given their heterogeneous and therefore not competitive
nature, but also because they have in common some of the customers of the network.
The two mathematical models have as their main motivation the case study that will be
presented later.

3.1. Single-Supplier Model

We refer to harvesting, storage, and distribution issues faced by an agricultural
company, along a discete time horizon T = {1, . . . , T}, which belongs to the harvest-
ing/distribution season, prior to which planting and growing of crop occur. We denote by
t ∈ T a generic period index.

The company, which deals with a single perishable agri-product, has contractual
obligations to a main customer, but can also exploit the favorable opportunities offered
by spot customers. The main customer has a set of distribution centers (DCs) to be served
along T . The company agrees with the main customer a planting plan, in order to guarantee
the availability of the product to the DCs during T . We denote by ρ the unit production
cost, which takes into account planting and growing activities. Based on the planting plan,



Appl. Sci. 2021, 11, 6855 5 of 20

we denote by Qw the amount of product, which is ripe to be harvested during the week
w of T . The harvesting activities can be carried out γ days per week and each harvesting
day implies a fixed cost η, related to the rental of specialized equipment. Each product
unit (kg), once harvested can be immediately shipped to the customers or stored for later
deliveries. The depot has a capacity Imax, each product unit has a storage cost per period
ht and is arranged according to its age s (s = 1 means fresh product, s = 2 means that the
product was harvested yesterday, etc.). According to company policies, the product cannot
be stored for more than τ time periods, after which it must be discarded. Disposal costs are
not taken into account explicitly. The freshness of the product determines its market value,
then we denote by ps

t and bs
t (bs

t > ps
t ) the unit selling price of product of age s at period t,

to the main customer and spot customers, respectively. A reward β can be earned by the
company for each product unit shipped to the main customer, depending on the quality of
service. This latter is related to the agreed daily shipping time limit θ, and/or to the agreed
fraction δ of the demand, which must be guaranteed to each DC at each period. Therefore,
the unit revenue ps

t of product of age s at period t can be computed as follows:

ps
t = ps

t + β(θ, δ) t = 1, . . . , T, s = 1, . . . , τ (1)

The amount of product marketable at each period depends on the market demand; we
denote by Dtj the demand by the distribution center j at period t, while Gt is the demand
by spot customers at period t.

K vehicles, each vehicle k having the same load capacity L, are available for the
distribution to the DCs. We denote by V = {1, 2, . . . , V} the set of customers (i.e., DCs), and
by 0 the node-depot of the company. Then, the problem can be defined on a complete graph
G = {N ,A}, where N = V ∪ {0} is the set of nodes, while A = {(i, j) : i, j ∈ N , i 6= j} is
the set of arcs. dij and tij are the kilometric distance of the arc (i, j) and the time to travel
it, respectively. Fuel and driver cost define the overall routing cost. We denote by α the
fuel price per kilometer, while λ is the wage rate per minute for the drivers. There are no
routing or distribution costs for spot customers sales. In Table 1, the notation of all problem
data is shown.

The goal is to maximize profit. Revenue depends on sales to the main customer and
spot customer. Cost depends on the inventory management, the routing of the vehicles,
the production (planting/growing) and harvesting activities. The decisions to be made at
each period t concern the amount Qt of product harvested, the amount ys

jkt of product of
age s shipped to distribution center j by vehicle k, the amount zs

t of product of age s sold
to spot customers. Binary variables rt represent the possibility to choose whether or not
to carry out the harvesting at each period. The inventory management is guaranteed by
the variables Is

t , which define the inventory level of product of age s at the end of period
t. The inventory level at the beginning of the time horizon is supposed null. Continuous
variables f jt determine the time to serve DC-customer j at period t, while binary variables
xijkt are active in case arc (i, j) is traveled by vehicle k at period t. In Table 2, we show the
notation for the decision variables of our optimization model.
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Table 1. Notation: problem data.

T harvesting/distribution time horizon, with T = {1, . . . , T};
W set of weeks of the harvesting/distribution time horizon, withW = {1, . . . , W};
Tw set of days of week w;

V set of DCs of the main customer, with V = {1, 2, . . . , V};
N set of nodes, including the company 0, with N = V ∪ {0};
A set of arcs, with A = {(i, j) : i, j ∈ N , i 6= j};
K set of vehicles, with K = {1, 2, . . . , K};
L load capacity of each vehicle;

dij kilometric distance between node i and node j, (i, j) ∈ A;

tij time distance in minutes between node i and node j, (i, j) ∈ A;

α fuel price per kilometer;

λ wage rate for the drivers per minute;

Qw amount of ripe product at week w;

ps
t unit selling price of product of age s at period t to the main customer;

ps
t unit revenue of product of age s at period t to the main customer;

Dtj demand of product at period t by DC j;

ht unit storage cost at period t;

τ maximum storage time;

δ fraction of demand of the main customer to be satisfied at each period (i.e., service level);

M1, M2 sufficiently high constants;

bs
t unit selling price of product of age s at period t to the spot customer;

Gt demand of product at period t by spot customers;

Imax storage capacity;

θ daily shipping time limit referring to the DCs of the main customer (i.e., service level);

β unit reward related to the quality of service offered to the main customers;

ρ unit production cost;

η fixed daily harvesting cost (i.e., rental of specialized equipment);

γ number of harvesting days per week.

Table 2. Notation: decision variables.

Qt ≥ 0 amount of product harvested at period t;

rt ∈ {0, 1} binary variable equal to 1 if harvesting is made at period t;

ys
jkt ≥ 0 amount of product of age s shipped to DC j by vehicle k at period t;

Is
t ≥ 0 inventory level of product of age s at the end of period t;

xijkt ∈ {0, 1} binary variable equal to 1 if vehicle k travels arc (i, j) at period t;

f jt ≥ 0 time to serve DC j at period t;

zs
t ≥ 0 amount of product of age s sold at period t to spot customers.

Next, we introduce the model formulation.

max ∑
j∈V

K

∑
k=1

T

∑
t=1

τ

∑
s=1

ps
t ys

jkt +
T

∑
t=1

τ

∑
s=1

bs
t zs

t −
T

∑
t=1

τ

∑
s=1

ht Is
t

− α
K

∑
k=1

T

∑
t=1

∑
(i,j)∈A

dijxijkt − λ
K

∑
k=1

T

∑
t=1

∑
(i,j)∈A

tijxijkt

− ρ
T

∑
t=1

Qt − η
T

∑
t=1

rt (2)
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∑
t∈Tw

Qt = Qw w = 1, . . . , W (3)

∑
t∈Tw

rt = γ w = 1, . . . , W (4)

Qt ≤ M1rt t = 1, . . . , T (5)
K

∑
k=1

τ

∑
s=1

ys
jkt ≤ Dtj t = 1, . . . , T, j ∈ V (6)

K

∑
k=1

τ

∑
s=1

ys
jkt ≥ δDtj t = 1, . . . , T, j ∈ V (7)

τ

∑
s=1

zs
t ≤ Gt t = 1, . . . , T (8)

Is
0 = 0 s = 1, . . . , τ (9)

I1
t = Qt − ∑

j∈V

K

∑
k=1

y1
jkt − z1

t t = 1, . . . , T (10)

Is
t = Is−1

t−1 − ∑
j∈V

K

∑
k=1

ys
jkt − zs

t t = 1, . . . , T, s = 2, . . . , τ (11)

τ

∑
s=1

Is
t ≤ Imax t = 1, . . . , T (12)

K

∑
k=1

∑
j∈V

x0jkt =
K

∑
k=1

∑
i∈V

xi0kt t = 1, . . . , T (13)

∑
j∈V

x0jkt ≤ 1 t = 1, . . . , T, k = 1, . . . , K (14)

∑
i∈N ,i 6=j

xijkt = ∑
i∈N ,i 6=j

xjikt j ∈ V , t = 1, . . . , T, k = 1, . . . , K (15)

∑
j∈V

τ

∑
s=1

ys
jkt ≤ L t = 1, . . . , T, k = 1, . . . , K (16)

ys
jkt ≤ L ∑

i∈N ,i 6=j
xijkt j ∈ V , t = 1, . . . , T, k = 1, . . . , K

s = 1, . . . , τ (17)

xijkt ≤
τ

∑
s=1

ys
jkt i ∈ N , j ∈ V , i 6= j, t = 1, . . . , T

k = 1, . . . , K (18)
K

∑
k=1

∑
i∈N ,i 6=j

xijkt ≤ 1 j ∈ V , t = 1, . . . , T (19)

f0t = 0 t = 1, . . . , T (20)

f jt ≥ fit + tijxijkt −M2(1− xijkt) i ∈ N , j ∈ V , i 6= j, t = 1, . . . , T

k = 1, . . . , K (21)

f jt ≤ θ j ∈ V , t = 1, . . . , T (22)

Qt ≥ 0 t = 1, . . . , T (23)

rt ∈ {0, 1} t = 1, . . . , T (24)

ys
jkt ≥ 0 j ∈ V , t = 1, . . . , T, k = 1, . . . , K

s = 1, . . . , τ (25)
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Is
t ≥ 0 t = 0, . . . , T, s = 1, . . . , τ (26)

xijkt ∈ {0, 1} (i, j) ∈ A, k = 1, . . . , K, t = 1, . . . , T (27)

f jt ≥ 0 j ∈ V , t = 1, . . . , T (28)

zs
t ≥ 0 t = 1, . . . , T, s = 1, . . . , τ (29)

The objective function (2) maximizes the profit and comprises seven parts: revenue
from the main customer, revenue from spot customers, inventory cost, fuel and driver
cost (i.e., routing cost), production cost, harvesting cost. Constraints (3) and (4) regulate
the amount of daily harvested product. The consistency between harvesting variables
(Qt) and harvesting frequency variables (rt) is ensured by constraints (5). Constraints (6)
and (7) state that the amount of product shipped to the DCs must not exceed their de-
mand and must be consistent with the contractualized service level at each period, re-
spectively. Constraints (8) ensure that the demand of spot customers is not exceeded at
each period. Constraints (9)–(12) regulate the inbound/outbound mechanism of product
to/from the inventory, considering its limited capacity and the assumed initial null level.
Constraints (13)–(15) guarantee the flow balancing on the depot of the company and on
each node-customer, respectively. Constraints (16) ensure that the load capacity of each
vehicle is not exceeded at each period. Constraints (17) and (18) guarantee the consistency
between the variables xijkt and ys

jkt. Constraints (19) prevent the split delivery for each
customer, at each period. Constraints (20) and (21) take into account the time to serve
each customer and ensure the subtour elimination. Constraints (22) set a time limit within
which each customer must necessarily be served at each period. Constraints (23)–(29) are
on the nature of the decision variables. We refer to this model as MSS in the remainder of
this paper.

3.2. Model for Horizontal Collaboration between Suppliers

We refer to the possibility of horizontal collaboration between multiple suppliers, who
have in common some or all customers. In this context, the main hypothesis is that all
suppliers are heterogeneous, that is, not competing with each other. Collaboration is a
strategic decision that, in many cases, can lead to a significant reduction in operational
costs. Given a set C = {1, 2, . . . , C} of supplier companies, collaboration, as intended in
this study, implies that one of them makes available its own fleet, and the depot as hub for
deliveries. Basically, the remaining (C− 1) companies, called spoke-suppliers, send their
goods to the hub, where the transshipment of goods from their vehicles to those of the hub
is carried out, with the aim of optimizing the routing.

The problem can be defined on a complete graph G′ = {N ′,A′}. We denote by
V ′ = {1, 2, . . . , V′} the set of all customers (i.e., DCs), and by 0 the node-hub. Therefore,
N ′ = V ′ ∪ {0} is the set of nodes, while A′ = {(i, j) : i, j ∈ N ′, i 6= j} is the set of arcs. We
refer to V ′c ⊂ V ′ as the set of customers of company c. d′ij and t′ij are the kilometric length
of the arc (i, j) and the time to travel it, respectively.

K′ vehicles, each vehicle k having the same load capacity L′, are made available by the
hub-supplier for the distribution of goods. We denote, respectively, by σc and ψc the fixed
fuel and driver cost that the spoke-supplier c must bear for the depot-to-hub round trip.
τc is the maximum storage time according to the inventory policy of company c, while Kc
is the number of vehicles owned by company c. Other company-related parameters are
known from the solution of model Mc

SS for each supplier c, namely yjtc and Ktc. yjtc is the
optimal amount of product to be shipped to DC j at period t by supplier C, and can be
defined as follows:

yjtc =
τc

∑
s=1

Kc

∑
k=1

ỹs
jkt j ∈ V ′c, t = 1, . . . , T (30)
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where ỹs
jkt is the optimal value of ys

jkt. Ktc is the minimum number of vehicles, according
to the load capacity, to be used by company c at period t to carry the amount of product
∑j∈V ′c yjtc.

Table 3 summarizes the problem data.

Table 3. Notation: problem data.

C set of companies, with C = {1, 2, . . . , C}
V ′ set of DCs to be served, with V ′ = {1, 2, . . . , V′}
N ′ set of nodes, including the hub 0, with N ′ = V ′ ∪ {0};
A′ set of arcs, with A′ = {(i, j) : i, j ∈ N ′, i 6= j};
V ′c subset of DCs to be served by company c;

K′ set of vehicles, with K′ = {1, 2, . . . , K′};
d′ij kilometric distance between node i and node j, (i, j) ∈ A′;
t′ij time distance in minutes between node i and node j, (i, j) ∈ A′;
σc fixed fuel cost for the depot-to-hub round trip by spoke-supplier c;

ψc fixed driver cost for the depot-to-hub round trip by spoke-supplier c;

yjtc amount of product to be shipped by company c to DC j ∈ V ′c at period t;

Ktc number of vehicles to be used for the depot-to-hub round trip by spoke-supplier c at period t.

The goal is to minimize the overall routing cost. Decision variables xijkt and f jt
preserve the same meaning of MSS, while variables ys

jkt are re-defined to take into account
the multi-supplier nature of the model. Then, we denote by yjktc, the amount of product of
supplier c shipped to DC j by vehicle k at period t.

Next, we introduce the model formulation.

min α
K′

∑
k=1

T

∑
t=1

∑
(i,j)∈A′

dijxijkt +
T

∑
t=1

C

∑
c=1

σcKtc

+ λ
K′

∑
k=1

T

∑
t=1

∑
(i,j)∈A′

tijxijkt +
T

∑
t=1

C

∑
c=1

ψcKtc (31)

K′

∑
k=1

yjktc = yjtc c = 1, . . . , C, t = 1, . . . , T, j ∈ V ′c (32)

C

∑
c=1

∑
j∈V ′c

yjktc ≤ L′ t = 1, . . . , T, k = 1, . . . , K′ (33)

yjktc ≤ L′ ∑
i∈N ′ ,i 6=j

xijkt c = 1, . . . , C, j ∈ V ′c, t = 1, . . . , T, k = 1, . . . , K′ (34)

xijkt ≤ ∑
c∈C:j∈V ′c

yjktc i ∈ N ′, j ∈ V ′, t = 1, . . . , T, k = 1, . . . , K′ (35)

yjktc ≥ 0 c = 1, . . . , C, j ∈ V ′c, t = 1, . . . , T, k = 1, . . . , K′ (36)

and the following constraints, introduced in MSS and now referred to the graph G′:
(13)–(15), (19)–(22), (27) and (28).

The objective function (31) aims to minimize the routing costs, represented by four
components: variable fuel cost, fixed fuel cost, variable driver cost, fixed driver cost.

Constraints (32) guarantee that the demand from the distribution centers is met at
each period. Constraints (33) ensure that the load capacity of each vehicle is not exceeded
at each period. Constraints (34) and (35) ensure consistency between variables xijkt and
yjktc, whose non negativity is established by constraints (36). In the remainder of this paper,
we refer to this collaborative routing model as MCR.
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4. Case Study

With the aim to prove the usefulness and efficiency of the above introduced and
explained optimization models, we consider a real-life case study. Two agricultural compa-
nies, located in the Southern Italy, deal with planting, growing, harvesting and distributing
perishable crops to the same main contract customer, which has several distribution centers
scattered throughout Italy, and they can also exploit the more profitable opportunities
offered by spot customers. We refer to the two companies as C1 and C2, respectively. C1
deals with broccoli, while C2 with artichokes.

At the beginning of the season, the main customer decides the planting plan of the
two supplier companies, in terms of scheduling and quantities, in order to have a balanced
amount of goods along the harvesting/distribution season, which usually lasts from
December to April. The main customer has seven DCs, which must be periodically supplied.
C1 and C2 supply, respectively, five and four DCs, and they share two of them. A fleet of
two vehicles with load capacity of 10,000 kg each is owned by C1, while C2 uses only one
vehicle with load capacity of 4000 kg for the distribution of the agricultural products.

Currently, the two companies have inefficiencies regarding the coordination of the
harvesting, storage and routing activities. These three steps of the supply chain are
characterized by conflicting objectives, then an integrated approach is desiderable. Once
mature, each agricultural product can be harvested within a certain time interval. Therefore,
two first fundamental decisions are: how much to harvest at each time period and how
often. Once harvested, each product unit can be stored taking into account the limited
capacity of the inventory, or immediately sent (as fresh product) to the customers, based on
their demand. The inventory capacity of C1 and C2 is 30,000 kg and 10,000 kg, respectively.
The harvested products are perishable, that is, they are subject to deterioration of their
physical state and to the reduction of value perceived by customers, over time. Therefore,
they can be stored for a time period not longer than 4 days, based on the contractual
agreements. Selling price varies with product age. The main customer recognizes a unit
reward to the two suppliers, on the basis of the guaranteed service level, as follows:

βC1(θ, δ) =


0.010 EUR/kg, for θ = 9 h, δ = 0.85
0.005 EUR/kg, for θ = 10 h, δ = 0.85
0 EUR/kg, for θ = 11 h, δ = 0.85


βC2(θ, δ) =

{
0 EUR/kg, for θ = 10 h, δ = 0.75
0.015 EUR/kg, for θ = 10 h, δ = 0.85

}
We have used Model MSS for supporting C1 and C2 at the tactical and operational level.

At the tactical level, in fact, the two companies are willing to determine the most profitable
combination between the harvesting frequency and the quality of service guaranteed to
the main customer. These are fundamental choices because impact all other decisions. At
operational level, they need to be helped by a decision-support system in order to organize
in an integrated manner their harvesting, inventory, and routing activities, and maximize
profit, on a daily base.

Considering that C1 and C2 share a part of their customers, we have also explored
the possibility of horizontal collaboration for what concerns the distribution activities. We
have applied Model MCR, which deals with the routing activities, but receives as input the
quantities to be shipped from the solution of MSS. The type of collaboration explored in
this paper is such that C2 sends the agricultural products to C1, which takes care of the
distribution to customers in exchange for a fee. There are two main reasons that motivated
us to analyze this configuration. First of all, C1 has a very high vehicle load capacity, which
is often largely unused. Moreover, the two suppliers are not competitors, therefore they
are aware that some form of collaboration could bring benefits to both, without negatively
affecting their respective market share.
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4.1. Instances

We refer to a time horizon of six weeks between January and February, which is the
most interesting and challenging period in terms of amount of harvested and shipped
product, within the overall harvesting/distribution season of the fresh vegetables of this
study. During the considered time interval, the amount of harvested broccoli and artichokes
is usually around 360,000 kg and 100,000 kg, respectively.

In order to address the problem under different realistic scenarios, we have generated
10 instances per company. In particular, we have generated the following data, by using a
normal distribution with coefficient of variation equal to 0.10: Qw, Dtj, Gt ps

t , bs
t . The mean

of the amount of weekly ripe product has been set to 60,000 kg and 22,000 kg, respectively,
for C1 and C2. The mean of the daily demand from each DC has been set to 1600 kg and
600 kg, respectively, for the two suppliers, while about spot customers it has been set to
800 kg and 500 kg. The unit selling prices of the fresh product to the main customer has
been estimated, from the historical data made available by the official website of the Italian
Institute of Services for the Agricultural Food Market [43]. bs

t has been estimated assuming
a 10% increase in the price to the main customer. The perishable nature of the agricultural
products of the case study has been taken into consideration assuming a dependence of the
market price on the age of the product, as shown in Figure 1. The two lines represent in
what percentage the market value of the product decreases with increasing age: in the case
of broccoli (i.e., light gray line), a decrease of 5% per day has been considered, while this
value is 2% per day if we refer to artichokes (i.e., dark gray line).

Figure 1. Selling price variation of broccoli and artichokes according to age.

In Table 4, we show the remaining relevant data, retrieved from the current operating
conditions of the two companies. A hyphen means that there is no unique value for the
data, then it can be varied.

Table 4. Case study: Relevant data.

K τ Imax ρ η α λ δ θ h

[unit] [Day] [kg] [EUR/kg] [EUR/Day] [EUR/Kilometer] [EUR/Minute] [Hour] [EUR/Kg]

C1 2 4 30,000 0.10 800 0.30 0.15 0.85 - 0.03
C2 1 4 10,000 0.15 500 0.30 0.15 - 10 0.10

In Tables 5–8, the spatial and temporal distance between nodes for the case of first and
second supplier are, respectively, shown. They have been recovered from GoogleMaps,
taking into account the shortest path between each pair of nodes and the traffic conditions
which occur in the part of the day in which the shipment usually takes place.
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Table 5. Spatial distance between nodes [kilometer], referring to the first supplier.

C1 DC1 DC2 DC3 DC4 DC5

C1 0 392 433 55 277 619
DC1 392 0 152 367 696 236
DC2 433 152 0 405 583 337
DC3 55 367 405 0 362 592
DC4 277 696 583 362 0 851
DC5 619 236 337 592 851 0

Table 6. Temporal distance between nodes [minute], referring to the first supplier.

C1 DC1 DC2 DC3 DC4 DC5

C1 0 235 276 51 188 360
DC1 235 0 113 222 406 152
DC2 276 113 0 245 343 215
DC3 51 222 245 0 226 344
DC4 188 406 343 226 0 480
DC5 360 152 215 344 480 0

Table 7. Spatial distance between nodes [kilometer], referring to the second supplier.

C2 DC1 DC2 DC3 DC4

C2 0 512 739 604 691
DC1 512 0 236 103 272
DC2 739 236 0 145 161
DC3 604 103 145 0 182
DC4 691 272 161 182 0

Table 8. Temporal distance between nodes [minute], referring to the second supplier.

C2 DC1 DC2 DC3 DC4

C2 0 295 432 369 422
DC1 295 0 144 73 171
DC2 432 144 0 98 113
DC3 369 73 98 0 124
DC4 422 171 113 124 0

The computational experiments have been carried out on a PC running Windows
10 Pro with AMD Ryzen 7 2700X Eight-Core Processor 4.00 GHz/16 GB. The proposed
optimization model has been solved by CPLEX 12.7, Academic License.

4.2. Computational Experiments and Managerial Insights—Tactical Level
4.2.1. Single-Supplier Model

At the tactical level, we have adopted MSS, with the aim to determine the most
profitable combination of two important parameters: the harvesting frequency (i.e., number
of harvesting days per week) and the quality of service guaranteed to the DCs.
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The choice of γ is quite critical in that, harvesting very frequently corresponds to
increase the costs related to the renting of the specialized harvesting equipment, but it
allows to ship fresh products quite often; on the other hand, harvesting only in a few days
of the week entails greater use of the warehouse to stock up and delivery of products
with an average higher age (i.e., lower market value). Six alternatives have been explored,
namely γ ∈ {2, . . . , 7}. Observe that γ = 1 is not feasible because τ = 4 is not enough to
ensure that DCs demand can be met every day.

Moreover, we have determined the service level, which maximizes the profit. In this
case, θ ∈ {9, 10, 11} and δ ∈ {0.75, 0.85} have been explored for the two companies,
respectively. Observe that the values to be contractually guaranteed are, respectively,
θ = 11 h and δ = 0.75, but some rewards are ensured in order to encourage the decrease of
θ and the increase of δ.

In Tables 9–11, we report the computational results of the experiments carried out on
the 10 instances generated with reference to the first supplier. We highlight the average
value of 10 key performance indicators (KPIs). The first eight KPIs characterize the objective
funcion (2) of MSS. Moreover, we show the number of trips and the average age of the
product shipped to the main customer and spot customers. First of all, we can say that
the average profit, fixed θ, initially increases as the harvesting frequency increases until
it reaches the peak when γ ∈ {3, 4}. Then, it starts to significantly decrease. The reasons
behind this trend are multiple. As it can be noted, the increase in the harvesting frequency
has two main effects: the revenue (main and spot) increases because the average age
of the product delivered decreases, while storage costs decrease significantly. These two
benefits are “paid” through the increase in harvesting costs. When γ ∈ {5, 6, 7}, the benefits
obtained can no longer offset the additional costs of the harvesting, therefore the average
profit significantly reduces. Note that the routing costs remain constant because all the
parameters related to the distribution activities remain unchanged. Next, we analyze how
KPIs change, by fixing γ and varying θ. Here, we have two main contrasting effects: the
reward insured by the main customer, and the routing costs. The reward pushes towards a
reduction of the daily time limit, but this entails a significant increase in the routing costs
because the flexibility in the choice of the routes is reduced (observe that, as expected, the
number of trips reduces as θ increases). Basically, we can say that when θ = 10 h, the
additional revenue from the main customer is enough to cover the increase in routing costs
and to guarantee the best profitability. At the tactical level, the use of MSS referring to
S1, suggests the following setting: γ = 3 and θ = 10. Observe that, when γ ∈ {3, 4} the
average profit is very similar. However, when the harvesting frequency is three days per
week, the average quality of the product shipped is higher, and this aspect could favor
customer’s satisfaction and loyalty in the mid term.

Table 9. Average KPIs for the case of θ = 9 h (company C1).

KPI γ

2 3 4 5 6 7
Revenue Main [EUR] 119,336.37 123,304.78 124,484.04 125,568.56 125,946.92 125,724.96
Reward Main [EUR] 3282.25 3287.55 3274.44 3277.89 3270.17 3252.99
Revenue Spot [EUR] 11,920.63 12,287.85 13,014.80 12,961.07 13,369.76 14,153.24
Inventory Cost [EUR] 13,585.96 7049.99 4152.71 2550.25 1360.49 678.69
Fuel Cost [EUR] 22,897.35 22,894.17 22,894.26 22,894.17 22,894.26 22,894.17
Driver Cost [EUR] 7172.04 7170.87 7171.14 7170.87 7171.14 7170.87
Production Cost [EUR] 36,341.34 36,341.34 36,341.34 36,341.34 36,341.34 36,341.34
Havesting Cost [EUR] 9600.00 14,400.00 19,200.00 24,000.00 28,800.00 33,600.00
Number of trips [unit] 75.10 75.10 75.10 75.10 75.10 75.10
Average product age [day] 2.18 1.62 1.37 1.22 1.10 1.02

Profit [EUR] 44,942.56 51,023.81 51,013.84 48,850.89 46,019.62 42,446.12
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Table 10. Average KPIs for the case of θ = 10 h (company C1).

KPI γ

2 3 4 5 6 7
Revenue Main [EUR] 119,280.69 123,288.01 124,382.05 125,457.42 125,893.95 125,725.60
Reward Main [EUR] 1640.31 1643.21 1635.84 1637.65 1634.26 1626.49
Revenue Spot [EUR] 11,976.92 12,331.40 13,127.04 13,072.11 13,436.19 14,153.24
Inventory Cost [EUR] 13,594.38 7093.31 4171.01 2556.52 1380.45 680.04
Fuel Cost [EUR] 20,513.85 20,507.28 20,517.18 20,507.22 20,509.71 20,509.71
Driver Cost [EUR] 6520.79 6517.62 6521.78 6517.58 6518.81 6518.81
Production Cost [EUR] 36,341.34 36,341.34 36,341.34 36,341.34 36,341.34 36,341.34
Harvesting Cost [EUR] 9600.00 14,400.00 19,200.00 24,000.00 28,800.00 33,600.00
Number of trips [unit] 72.00 71.80 72.00 71.80 71.90 71.90
Average product age [day] 2.19 1.62 1.37 1.22 1.10 1.02

Profit [EUR] 46,327.57 52,403.08 52,393.63 50,244.52 47,414.10 43,855.43

Table 11. Average KPIs for the case of θ = 11 h (company C1).

KPI γ

2 3 4 5 6 7
Revenue Main [EUR] 119,277.87 123,239.61 124,400.55 125,402.91 125,905.51 125,729.52
Reward Main [EUR] 0.00 0.00 0.00 0.00 0.00 0.00
Revenue Spot [EUR] 11,979.01 12,351.49 13,098.85 13,136.66 13,412.93 14,153.24
Inventory Cost [EUR] 13,587.89 7056.84 4159.49 2561.87 1363.99 686.19
Fuel Cost [EUR] 20,210.28 20,194.41 20,196.75 20,194.35 20,196.30 20,195.55
Driver Cost [EUR] 6429.46 6425.54 6425.69 6424.73 6426.14 6425.03
Production Cost [EUR] 36,341.34 36,341.34 36,341.34 36,341.34 36,341.34 36,341.34
Harvesting Cost [EUR] 9600.00 14,400.00 19,200.00 24,000.00 28,800.00 33,600.00
Number of trips [unit] 68.50 68.40 68.40 68.30 68.40 68.30
Average product age [day] 2.19 1.62 1.37 1.22 1.10 1.02

Profit [EUR] 45,087.91 51,172.98 51,176.14 49,017.28 46,190.68 42,634.65

In Tables 12 and 13, the computational results of the experiments conducted on the
10 instances related to C2 are shown. When the service level is fixed, the profit varies by
varying γ. As the harvesting frequency increases, most of the shipments concern the fresh
product, therefore the storage costs decrease drastically. The overall revenue increases
because the product delivered is on average “younger” and then better paid. In particular,
profit is maximized when γ = 3. If the service level is varied, a reward must be taken into
account when δ = 0.85. In this case, the larger amount of product to be guaranteed daily to
the main customer implies the loss of some market opportunities offered by spot customers.
However, the revenue increase from the main customer is higher than the revenue decrease
from spot customers, therefore this solution is more convenient, whatever the harvesting
frequency. It should be noted that in any case the routing costs do not vary, as parameters
related to distribution remain unchanged. Basically, with reference to the second supplier,
our optimization model MSS suggests the setting γ = 3 and δ = 0.85.

Table 12. Average KPIs for the case of δ = 0.75 (company C2).

KPI γ

2 3 4 5 6 7
Revenue Main [EUR] 78,878.70 79,015.54 79,048.03 78,371.14 76,767.99 76,219.58
Reward Main [EUR] 0.00 0.00 0.00 0.00 0.00 0.00
Revenue Spot [EUR] 14,363.05 15,320.20 15,604.37 16,385.33 17,908.06 18,301.31
Inventory Cost [EUR] 11,245.55 6088.99 3883.02 2462.91 1329.36 798.99
Fuel Cost [EUR] 19,081.74 19,081.74 19,081.74 19,081.74 19,081.74 19,081.74
Driver Cost [EUR] 5835.63 5835.63 5835.63 5835.63 5835.63 5835.63
Production Cost [EUR] 10,193.62 10,193.62 10,193.62 10,193.62 10,193.62 10,193.62
Harvesting Cost [EUR] 7200.00 10,800.00 14,400.00 18,000.00 21,600.00 25,200.00
Number of trips [unit] 41.70 41.70 41.70 41.70 41.70 41.70
Average product age [day] 2.02 1.56 1.35 1.23 1.13 1.08

Profit [EUR] 39,685.21 42,335.75 41,258.39 39,182.57 36,635.70 33,410.91
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Table 13. Average KPIs for the case of δ = 0.85 (company C2).

KPI γ

2 3 4 5 6 7
Revenue Main [EUR] 81,140.74 81,611.02 81,650.38 80,820.37 79,846.40 79,279.38
Reward Main [EUR] 1368.48 1361.19 1353.85 1338.96 1325.22 1315.94
Revenue Spot [EUR] 11,439.08 12,254.63 12,570.39 13,562.64 14,414.08 14,699.79
Inventory Cost [EUR] 11,624.28 6360.80 4048.40 2588.84 1385.03 719.20
Fuel Cost [EUR] 19,081.74 19,081.74 19,081.74 19,081.74 19,084.14 19,081.74
Driver Cost [EUR] 5835.63 5835.63 5835.63 5835.63 5836.43 5835.63
Production Cost [EUR] 10,193.62 10,193.62 10,193.62 10,193.62 10,193.62 10,193.62
Harvesting Cost [EUR] 7200.00 10,800.00 14,400.00 18,000.00 21,600.00 25,200.00
Number of trips [unit] 41.70 41.70 41.70 41.70 41.70 41.70
Average product age [day] 2.05 1.57 1.36 1.23 1.13 1.08

Profit [EUR] 40,013.02 42,955.04 42,015.23 40,022.14 37,486.49 34,264.93

4.2.2. Collaboration between Suppliers

Since suppliers C1 and C2 are geographically very close and share two customers, at
the tactical level we have also explored the possibility of collaboration in the distribution
of goods. In particular, we have solved MCR, using as input the output of MSS in terms
of amount to be shipped to each DC by each supplier at each period. This means that the
decisions about harvesting and storage are fixed, while new solutions are possibile for the
routing phase. Figure 2 shows a graphical example of horizontal collaboration between the
two suppliers. Basically, C2 sends its goods to C1 incurring a routing cost for the round
trip from its depot to that of the other supplier, which acts as a hub. At the hub, the goods
are transferred from the C2 vehicle to the C1 fleet, which deals with the delivery of the
agri-products to the DCs in exchange for a fee.

Figure 2. Graphical example of horizontal collaboration between the two suppliers.

We have solved MCR on ten datasets, obtained by randomly combining the ten in-
stances generated for the two companies, and under the most profitable parameter setting,
according to the discussion made in the previous subsection. The only exception was that,
the time limit was fixed to 11 h for the DCs of C1, which are not shared with C2, in order to
guarantee the feasibility of the problem. We have supposed to implement the horizontal
collaboration in any period of the time horizon. The mean computational time was around
15 s.

In Figure 3, we show how the routing costs vary in the two cases of autonomous and
collaborative distribution.

Figure 3. Routing costs [EUR] in the cases of autonomous and collaborative distribution.
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As it can be noted, the implementation of the collaborative routing leads to an average
reduction in fuel and driver costs of 31.56%, which corresponds to about 16,400 EUR.
However, an important issue concerns the percentage of sharing of such saving between
the two suppliers, which mainly depends on the amount of the fee that C2 pays to C1
for having the service. In Figure 4, we represent how the profit varies between the two
suppliers, as the fee varies. If the service was performed free of charge by supplier C1,
this latter would incur a loss of approximately 5600 EUR compared to non-collaboration,
caused by the additional routing costs and the lack of reward from the main customer.
Instead, C2 would have to bear the only costs to move to and from the C1 depot, therefore
it would have a total saving of about 20,000 EUR. Looking at the graph, we can say that a
fee of at least 140 EUR/day is required for supplier C1 to make profitable the collaboration
with C2. However, the amount of fee which makes collaboration, convenient in the same
way for the two suppliers, is about 310 EUR/day because the average profit increase is
distributed in the fairest way.

Figure 4. Average profit variation for the two suppliers, by varying the fee.

4.3. Computational Experiments and Managerial Insights—Operational Level

At the operational level, the two companies must make 4 types of decisions, which
are listed below:

• harvesting decisions: if and how much to harvest;
• inventory decisions: amount of product of each age to store;
• shipping decisions: amount of product of each age to ship to the main customer and

spot customers;
• routing decisions: routes to reach the different DCs.

With the aim to support the two suppliers operationally, we have proposed a frame-
work, which is schematized in Figure 5.

It suggests the best decisions to maximize the overall profit and verifies if horizontal
collaboration is convenient or not, once a daily fee ω has been fixed.

Given a well defined time horizon, the first step is to solve Model MSS separately for
the two suppliers. The harvesting, inventory and shipping decisions, output of MSS are
inserted into the solution of the overall problem.

At the second step, Model MCR is solved. It receives the shipping decisions as input
and returns the collaborative routes and their relative cost.

At the third step, the profitability of the collaboration for both suppliers is checked.
If yes, the routing decisions resulting from the MCR model are inserted into the solution.
Otherwise, the collaboration is not implemented and autonomous routing decisions, output
of the respective models MSS, are inserted into the overall solution.

We have solved separately MSS for C1 and C2, on the ten instances generated for each
company, and considering only one week as time horizon. Then, we have solved MCR on
the ten datasets, obtained by randomly combining the ten instances generated for each
company. We have considered the three different scenarios in Table 14, in terms of fee that
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C2 pays to C1 for having the distribution service. The computational time was not longer
than 2 min in all cases.

Figure 5. Framework for the operational level.

Table 14. The three different scenarios for the operational level.

Scenario ω
[EUR/Day]

Sc1—C1 has less bargaining power than C2 100.00
Sc2—C1 has greater bargaining power than C2 500.00
Sc3—C1 and C2 have the same bargaining power 310.00

In Table 15, we show the results of our computational experience at the operational
level. The profit in case of autonomous distribution is compared with the three scenarios of
collaborative distribution. As expected, the collaboration brings benefits for both suppliers
according to all 3 scenarios. The first two scenarios favor the second and the first supplier,
respectively. While the third scenario allows the maximization of the benefits for both the
companies, with an average increase in overall profit of 18.32%. Observe that under the
third scenario, collaboration is implemented on average in 94% of the days, which means
that it is almost always profitable for both companies. This percentage drops to 51% and
44%, respectively, if we refer to the first two scenarios.
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Table 15. Profit comparison mous and collaborative distribution under the three different scenarios.

Profit [EUR] Profit Increase [%]

Autonomy Collaboration—Sc1 Collaboration—Sc2 Collaboration—Sc3
C1 C2 C1 C2 Total C1 C2 Total C1 C2 Total

I1 7142.65 7414.50 1.04 8.19 4.68 16.25 0.86 8.41 13.03 15.04 14.06
I2 5332.24 1314.29 3.45 100.69 22.68 12.57 3.77 10.83 25.05 78.00 35.52
I3 9363.34 3591.73 1.65 55.66 16.62 13.46 1.58 10.17 16.14 35.70 21.56
I4 9589.83 4583.81 0.78 27.52 9.43 18.45 2.49 13.29 11.09 25.74 15.83
I5 10,656.61 7734.92 1.13 19.41 8.82 2.80 0.34 1.76 12.13 15.09 13.38
I6 6679.89 1981.08 1.00 37.98 9.46 9.36 2.27 7.74 13.48 52.40 22.38
I7 12,762.68 577.99 0.73 203.52 9.51 6.72 8.57 6.80 10.36 217.77 19.35
I8 4235.38 4508.95 5.08 64.68 35.82 61.68 3.11 31.48 39.79 32.08 35.82
I9 15,232.41 3969.68 0.57 36.00 7.89 9.50 2.00 7.95 9.16 30.82 13.64

I10 10,251.36 4542.15 0.67 17.45 5.82 7.97 1.67 6.03 8.01 23.91 12.89

Avg 9124.64 4021.91 1.25 34.21 11.33 12.62 1.74 9.29 13.43 29.40 18.32

Next, we briefly report the benefits that collaboration can bring to the environment.
We refer to carbon dioxide (CO2) emissions, whose conversion factor is estimated at
2.63 kg/L, as in [38]. In Figure 6, the amount of CO2 emissions (kg) in the case of absence
of collaboration between the two suppliers is compared with the 3 collaborative scenarios.
Basically, the collaboration leads to a significant reduction in CO2 emissions in all cases.
In particular, in the third scenario there is an average reduction of over 31%, which is one
more reason to prefer collaborative routing.

Figure 6. Comparison in terms of CO2 emissions reduction between autonomous and collabora-
tive distribution.

5. Conclusions

In this paper, we have proposed two optimization models to support the decision-
making of two agri-companies, which deal with perishable products. Their business
concerns planting, growing, harvesting, inventory, and delivery management of fresh
vegetables. They have a main contract customer, who has a set of DCs to be daily served,
but they can also exploit the opportunities offered by a spot market. The first model aims
to maximize profit of a single agri-company and concerns the integration and coordination
of the harvesting, storage, delivery and routing decisions. Through a computational
experience conducted on a set of real-life instances, it was possible to identify the most
profitable parameter setting, in terms of the optimal number of days of the week to
be dedicated to harvesting activities and the quality of service to be guaranteed to the
customers. In particular, for the first company it was suggested to serve all the DCs relating
to the main customer within a time limit of 10 h, while for the second to satisfy at least 85%
of the main customer’s demand. In both cases, the optimal number of harvesting days per
week was found to be equal to 3. The second model instead allowed to explore and assess
the benefits achievable from the horizontal collaboration between the two companies of
the case study for what concerns the distribution activities. Computational experience
has revealed that an overall saving on routing costs of up to 31–32% is achievable. At
the operational level, a heuristic framework was presented and implemented in order to
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jointly support the two companies on a daily basis. The results showed that horizontal
collaboration can lead to an average increase in profit of up to 18.32% and a reduction in
CO2 emissions of up to 31.54%, when the two companies have similar bargaining power.
Overall, horizontal collaboration represents an extremely useful and valuable solution,
which can be applied in multiple situations and allows for an improvement in company
economic parameters.

Future developments concern a multi-product and multi-company version of the first
of the two optimization models introduced.
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