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Abstract: The author has derived the closed-form dynamic equations for a planar musculoskeletal
chain composed of a generic number n of rigid links connected by ideal revolute joints. Single-joint
and multi-joint muscles have been modeled as linear force actuators that can span from one joint to
all the joints of the chain. The generic shape and size of each individual link of the chain accounts
for different alignments among the center of mass of the link, the centers of rotation of the joints
that articulate the link with its neighbors, and the points of application of the muscle forces and
the possible contact external resistances acting on the link. The joint torque and the reaction force
acting on each joint have been determined in closed-form by analytical quantification of the unique
contribution of each individual kinematic and kinetic variable: (1) force of each single-joint or multi-
joint muscle spanning or non-spanning the joint; (2) weight and contact external resistances acting
on each individual link of the chain; (3) position, angular velocity, and angular acceleration of each
individual link of the chain. The analytical results derived in this study can be applied to multilink
musculoskeletal chains with deep/superficial and segmental/global muscles.
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1. Introduction

The serial chain composed of rigid links connected by revolute joints is a reference
model in robotics [1,2] and musculoskeletal biomechanics [3,4]. Closed-form dynamic
equations (the dynamic equations that contain all the variables in explicit input-output
form) have been derived for planar serial chains with a limited number (two or three)
links, under additional simplifying assumptions related to both the passive and active
elements of the chain [5–8]. Often, the links are modeled as slender rods, and each joint
is assumed to be driven by an abstract torque actuator that produces a torque about the
joint axis with no effect on the joint reaction force. As the number of links increases, the
complexity of the closed-form equations becomes prohibitive [4] (p. 394), and computations
are usually performed iteratively, for one link at a time [1,2,4]. The resulting Newton–Euler
equations are not in closed form, as the motion of a single link is kinematically coupled to
the motion of the other links, and the contribution of individual variables can no longer be
discriminated [1,2,4,9].

The joints of a musculoskeletal chain are driven by muscles that can span multiple
joints and induce axial (traction and compressive) and shear joint reaction forces [10–13].
Individual muscle actions, external forces acting on the chain, and inertial forces related to
link movement can all contribute to joint torques and joint reaction forces [11,14,15]. Precise
determination of the contribution that these unique components provide to the reaction
forces acting on specific joint structures is one of the most crucial issues in musculoskeletal
biomechanics [16–18].

The aim of this study is to derive the closed-form dynamic equations for a planar
musculoskeletal chain, composed of a generic number n of rigid links of generic shape and
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size, and driven by single-joint and multi-joint muscle actuators that can span from one
joint to all the joints of the chain. The specific goal is to determine the joint torque and the
reaction force acting on each joint in closed-form by analytical quantification of the unique
contribution of each relevant biomechanical parameter: (1) the force of each single-joint or
multi-joint muscle spanning or non-spanning the joint; (2) the weight and contact external
resistances acting on each individual link of the chain; (3) the position, angular velocity,
and angular acceleration of each individual link of the chain.

The general closed-form equations derived in this study can be readily simplified to
be applied to more basic chain models, for example, considering a limited number of links,
replacing single and multi-joint joint muscle actuators with ideal torque actuators, and
introducing simplifying assumptions on the link geometry and on the system of forces
acting on each link. In particular, we will verify that the general closed-form equations can
be reduced to the closed-form equations that have been reported for chains driven by ideal
torque actuators and composed of two [4] or three [8] links modeled as slender rods, in
absence of contact external resistances.

The analytical results derived in this study can be applied to multilink musculoskeletal
chains with deep/superficial and segmental/global muscles.

2. Methods and Results
2.1. The Chain Model

We considered a planar musculoskeletal chain composed of a generic number n of
rigid links connected by ideal revolute joints. Each link of the chain has a generic shape and
size (Figure 1). Two adjacent links, link i − 1 and link i, articulate at joint i (i = 2, 3, . . . , n).
The proximal link of the chain (link 1) is also articulated with a fixed base at joint 1, and the
distal link (link n) only articulates with link n − 1 at joint n. The fixed base of the chain
is referred to as “link 0”. The center of rotation of joint i is denoted by Ji, and two points,
J0 (distinct from J1) and Jn+1 (distinct from Jn), were arbitrarily selected within the base
and link n, respectively. Single-joint and multi-joint muscles attached to the chain and base
were modeled as linear force actuators that can span 1 to nS joints (nS ≤ n).
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Figure 1. Mechanical diagram of the individual link i of the chain. The diagram includes the forces
acting on the link, and the relevant points, unit vectors, and angular quantities associated with the
link. The definition of these quantities is also reported in the “Nomenclature”.
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The following parameters are associated with each link i (i = 0, 1, . . . , n) of the
chain (Figure 1): the distance li = |JiJi+1| between Ji and Ji+1, the unit vector ûi of JiJi+1
(JiJi+1 = liûi), the angle θi between ûi and the horizontal X-axis (the counterclockwise
direction of rotation is considered positive); the distance lCi = |JiCi| from Ji of the center
of mass Ci of the link, the unit vector ûCi of JiCi (JiCi = lCi ûCi ), the angle εCi between ûCi
and ûi; the mass mi, the moments of inertia IJi and ICi about Ji and Ci; the accelerations
→
a Ji and

→
a Ci of Ji and Ci; the angular velocity

→
ωi =

.
θi k̂ and acceleration

.
→
ωi =

..
θi k̂ (k̂ is

the unit vector normal to the plane of the chain); and the unit vectors ŵi = k̂× ûi and
ŵCi = k̂× ûCi .

The external forces acting on each link i (i = 0, 1, . . . , n) are listed below (Figure 1):

• The weight mi
→
g of the link applied at Ci.

• A contact external resistance
→
R i may act on a point PRi of the link at distance lRi from

Ji (εRi is the angle between JiPRi and ûi, and γRi
the angle between

→
R i and ûi). The

contact external force
→
R0 acting on the base is typically the ground reaction force.

The case of multiple contact external resistances acting on a link is examined in the
discussion section.

• The sum of muscle forces ∑
m

→
F

m

ij exerted on points Pm
ij of link i by the muscles joining

link i to the other links j (j = i ± 1 for single-joint muscles, j = i ± 2 for two-joint
muscles, etc.). The sum is extended over all muscles joining link i to link j.

The joint reaction force
→
φi,i−1, exerted on link i by link i − 1, and

→
φi,i+1, entered on

link i by link i + 1. Only one joint reaction force acts on link 0 (
→
φ01) and on link n (

→
φn,n−1).

It is assumed that the line of action of
→
φi,i−1 passes through Ji and that of

→
φi,i+1 through

Ji+1. Biomechanically, the joint reaction force is the resultant of the bone-to-bone contact
force and the forces developed by the tension of capsuloligamentous tissue.

The following relations hold:
→
φi,i+1 = −

→
φi+1,i,

→
F

m

ij = −
→
F

m

ji ,
.
θ0 =

..
θ0 = 0, and

→
a J0 =

→
a C0 =

→
a J1 = 0.

2.2. Force Equations and Joint Reaction Forces

The dynamic force equations of individual links i (i = 0, 1, . . . , n) are given by

i−1

∑
j=i−ns

(j≥0)

(
∑
m

→
F

m

ij

)
+

i+ns

∑
j=i+1
(j≤n)

(
∑
m

→
F

m

ij

)
+ mi

→
g +

→
R i +

→
φi,i−1 +

→
φi,i+1 = mi

→
a Ci (1)

where
→
φ−1,0 =

→
φn,n+1 = 0 and the index j may only range between 0 and n. Adding to-

gether thelast n− k equations (i = k + 1, k + 2, . . . , n) or the first k +1 ones(i = 0, 1, . . . , k),

and taking into account that
→
F

m

ij = −
→
F

m

ji and
→
φi,i+1 = −

→
φi+1,i, one can express the joint

reaction forces
→
φk,k+1 (k = 0, 1, . . . , n− 1) in relation to the other parameters:

→
φk,k+1 =

n

∑
i=k+1

(
mi
→
g +

→
R i

)
−

n

∑
i=k+1

mi
→
a Ci +

k+ns

∑
j2 = k + 1
(j2 ≤ n)

k

∑
j1 = j2 − ns
(j1 ≥ 0)

(
∑
m

→
F

m

j2 j1

)
(2)

→
φk,k+1 = −

k

∑
i=0

(
mi
→
g +

→
R i

)
+

k

∑
i=0

mi
→
a Ci +

k+ns

∑
j2 = k + 1
(j2 ≤ n)

k

∑
j1 = j2 − ns
(j1 ≥ 0)

(
∑
m

→
F

m

j2 j1

)
(3)
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These two equations are equivalent, as it can be directly proved considering the force
equation applied to the whole system of links, including link 0:

n

∑
i=0

(
mi
→
g +

→
R i

)
=

n

∑
i=0

mi
→
a Ci (4)

The accelerations
→
a Ci (i = 1, 2, . . . , n) can be expressed as a function of the angular

velocity and acceleration of the individual links by applying recursively the equation the
relates the accelerations of two arbitrary points of a rigid body:

→
a Ci =

i−1
∑

j=0

(→
a Jj+1 −

→
a Jj

)
+
(→

a Ci −
→
a Ji

)
=

i−1
∑

j=0
(

..
θj k̂× ljûj −

.
θ

2
j ljûj) + (

..
θi k̂× lCi ûCi −

.
θ

2
i lCi ûCi )

=
i−1
∑

j=0
(

..
θjljŵj −

.
θ

2
j ljûj) + (

..
θilCi ŵCi −

.
θ

2
i lCi ûCi )

(5)

Equation (5) enables the closed-form determination of the inertial-term sum
∑n

i=k+1 mi
→
a Ci (k = 0, 1, . . . , n− 1) in Equation (2)

n
∑

i=k+1
mi
→
a Ci =

n
∑

i=k+1
mi

i−1
∑

j=0
(

..
θjljŵj −

.
θ

2
j ljûj) +

n
∑

i=k+1
mi(

..
θilCi ŵCi −

.
θ

2
i lCi ûCi )

=

(
n
∑

j=k+1
mj

)
k
∑

i=0
(

..
θiliŵi −

.
θ

2
i liûi)

+(1− δk,n−1)
n−1
∑

i=k+1

[(
n
∑

j=i+1
mj

)
(

..
θiliŵi −

.
θ

2
i liûi)

]
+

n
∑

i=k+1
mi(

..
θilCi ŵCi −

.
θ

2
i lCi ûCi )

(6)

and the corresponding sum ∑k
i=0 mi

→
a Ci = ∑k

i=1 mi
→
a Ci (k = 1, 2, . . . , n) in Equation (3).

k
∑

i=0
mi
→
a Ci =

k
∑

i=1
mi

i−1
∑

j=0
(

..
θjljŵj −

.
θ

2
j ljûj) +

k
∑

i=1
mi(

..
θilCi ŵCi −

.
θ

2
i lCi ûCi )

=
k−1
∑

i=0

(
k
∑

j=i+1
mj

)
(

..
θiliŵi −

.
θ

2
i liûi) +

k
∑

i=1
mi(

..
θilCi ŵCi −

.
θ

2
i lCi ûCi )

(7)

With Equations (6) and (7), Equations (2) and (3) yield two equivalent closed-form

expressions of the joint reaction forces
→
φk,k+1 at the proximal joint 1 (k = 0)

→
φ0,1 = −m0

→
g −

→
R0 +

ns
∑

j=1

(
∑
m

→
F

m

j0

)
=

n
∑

i=1
(mi
→
g +

→
R i) +

ns
∑

j=1

(
∑
m

→
F

m

j0

)
−

n−1
∑

i=1

[(
n
∑

j=i+1
mj

)
(

..
θiliŵi −

.
θ

2
i liûi)

]
−

n
∑

i=1
mi(

..
θilCi ŵCi −

.
θ

2
i lCi ûCi )

(8)

and at the other joints 2, 3, . . . , n (k = 1, 2, . . . , n− 1).

→
φk,k+1 =

n
∑

i=k+1
(mi
→
g +

→
R i) +

k+ns
∑

j2 = k + 1
(j2 ≤ n)

k
∑

j1 = j2 − ns
(j1 ≥ 0)

(
∑
m

→
F

m

j2 j1

)
−
(

n
∑

j=k+1
mj

)
k
∑

i=0
(

..
θiliŵi −

.
θ

2
i liûi)

−(1− δk,n−1)
n−1
∑

i=k+1

[(
n
∑

j=i+1
mj

)
(

..
θiliŵi −

.
θ

2
i liûi)

]
−

n
∑

i=k+1
mi(

..
θilCi ŵCi −

.
θ

2
i lCi ûCi )

(9)
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→
φk,k+1 = −

k
∑

i=0
(mi
→
g +

→
R i) +

k+ns
∑

j2=k+1
(j2≤n)

k
∑

j1 = j2 − ns
(j1 ≥ 0)

(
∑
m

→
F

m

j2 j1

)
+

k−1
∑

i=0

(
k
∑

j=i+1
mj

)
(

..
θiliŵi −

.
θ

2
i liûi)

+
k
∑

i=1
mi(

..
θilCi ŵCi −

.
θ

2
i lCi ûCi )

(10)

For the distal joint n (k = n− 1) Equations (9) and (10) become
→
φn−1,n = mn

→
g+

→
Rn +

n−1
∑

j=n−ns

(
∑
m

→
F

m

nj

)
−mn

n−1
∑

i=0
(

..
θiliŵi −

.
θ

2
i liûi)−mn(

..
θnlCn ŵCn −

.
θ

2
nlCn ûCn)

= −
n−1
∑

i=0
(mi
→
g +

→
R i) +

n−1
∑

j=n−ns

(
∑
m

→
F

m

nj

)
+

n−2
∑

i=0

(
n−1
∑

j=i+1
mj

)
(

..
θiliŵi −

.
θ

2
i liûi)

+
n−1
∑

i=1
mi(

..
θilCi ŵCi −

.
θ

2
i lCi ûCi )

(11)

The joint reaction force
→
φk,k+1 acting on the joint articulating link k and link k + 1

directly depends on the sum of the forces of all single-joint and multi-joint muscles spanning
the joint, independently of their link attachments:

→
F

M

k,k+1 =
k+ns

∑
j2 = k + 1
(j2 ≤ n)

k

∑
j1 = j2 − ns
(j1 ≥ 0)

(
∑
m

→
F

m

j2 j1

)
(12)

2.3. Moment Equations and Muscle Torques

The dynamic moment equation of link n about Jn is given by

n−1
∑

j=n−ns

(
∑
m

JnPm
nj ×

→
F

m

nj

)
·k̂−mng lCn cos(θn + εCn) + RnlRn sin

(
γRn − εRn

)
= IJn

..
θn + JnCn ×mn

→
a Jn ·k̂

= ICn

..
θn + JnCn ×mn

→
a Cn ·k̂

where IJn = ICn + mnl2
Cn

(Huygens–Steiner theorem). This equation, considering

Equation (5) for
→
a Cn , becomes

n−1
∑

j=n−ns

(
∑
m

JnPm
nj×

→
F

m

nj

)
·k̂−mng lCn cos(θn + εCn) + RnlRn sin

(
γRn − εRn

)
= IJn

..
θn+mnlCn

n−1
∑

i=1
li[

..
θi cos(θn + εCn − θi) +

.
θ

2
i sin(θn + εCn − θi)]

(13)

For k = 1, 2, . . . , n− 1, the moment equation of link k about Jk includes the moment

of the joint reaction force
→
φk, k+1:

k−1
∑

j=k−ns

(j≥0)

(
∑
m

JkPm
kj ×

→
F

m

kj

)
· k̂ +

k+ns
∑

j = k + 1
(j ≤ n)

(
∑
m

JkPm
kj ×

→
F

m

kj

)
· k̂−mkg lCk cos

(
θk + εCk

)
+ RklRk sin

(
γRk
− εRk

)

+JkJk+1 ×
→
φk, k+1 · k̂ = ICk

..
θk + JkCk ×mk

→
a Ck · k̂

Substitution of
→
φk, k+1 with the right-hand side of Equation (2) or (3) gives

Equations (14) and (15), respectively:
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k−1
∑

j=k−ns

(j≥0)

(
∑
m

JkPm
kj ×

→
F

m

kj

)
·k̂ +

k+ns
∑

j = k + 1
(j ≤ n)

(
∑
m

JkPm
kj ×

→
F

m

kj

)
·k̂−mkg lCk cos

(
θk + εCk

)
+ lRk Rk sin

(
γRk
− εRk

)

+JkJk+1 ×
n
∑

i=k+1

(
mi
→
g +

→
R i −mi

→
a Ci

)
·k̂ + JkJk+1 ×

k+ns
∑

j2=k+1
(j2≤n)

k
∑

j1 = j2 − ns
(j1 ≥ 0)

(
∑
m

→
F

m

j2 j1

)
·k̂

= ICk

..
θk + JkCk ×mk

→
a Ck ·k̂

(14)

k−1
∑

j=k−ns

(j≥0)

(
∑
m

JkPm
kj ×

→
F

m

kj

)
·k̂ +

k+ns
∑

j = k + 1
(j ≤ n)

(
∑
m

JkPm
kj ×

→
F

m

kj

)
·k̂−mkg lCk cos

(
θk + εCk

)
+ lRk Rk sin

(
γRk
− εRk

)

−JkJk+1 ×
k
∑

i=0
(mi
→
g +

→
R i −mi

→
a Ci )·k̂ + JkJk+1 ×

k+ns
∑

j2=k+1
(j2≤n)

k
∑

j1 = j2 − ns
(j1 ≥ 0)

(
∑
m

→
F

m

j2 j1

)
·k̂

= ICk

..
θk + JkCk ×mk

→
a Ck ·k̂

(15)

To regroup the muscle force moments, the sum involving the muscle forces
→
F

m

j2 j1 is
split into three terms:

JkJk+1 ×
k+ns
∑

j2=k+1
(j2≤n)

k
∑

j1=j2−ns

(j1≥0)

(
∑
m

→
F

m

j2 j1

)
=

k+ns
∑

j2=k+1
(j2≤n)

k
∑

j1=j2−ns

(j1≥0)

(
∑
m

JkPm
j2 j1 ×

→
F

m

j2 j1

)
+

k+nS
∑

j2=k+1
(j2≤n)

k
∑

j1 = j2 − nS
(j1 ≥ 0)

(
∑
m

Pm
j2 j1 Jk+1 ×

→
F

m

j2 j1

)

=
k+nS

∑
j2=k+1
(j2≤n)

(
∑
m

JkPm
j2k ×

→
F

m

j2k

)
+

k+ns−1
∑

j2=k+1
(j2≤n)

k−1
∑

j1 = j2 − ns
(j1 ≥ 0)

(
∑
m

JkPm
j2 j1 ×

→
F

m

j2 j1

)

−
k+ns
∑

j2=k+1
(j2≤n)

k
∑

j1 = j2 − ns
(j1 ≥ 0)

(
∑
m

Jk+1Pm
j2 j1 ×

→
F

m

j2 j1

)

The moments of all muscle forces in Equations (14) and (15) can then be rewritten as

k−1
∑

j=k−ns

(j≥0)

(∑
m

JkPm
kj ×

→
F

m

kj

)
· k̂ +

k+ns
∑

j=k+1
(j≤n)

(
∑
m

JkPm
kj ×

→
F

m

kj

)
+ JkJk+1 ×

k+ns
∑

j2=k+1
(j2≤n)

k
∑

j1 = j2 − ns
(j1 ≥ 0)

(
∑
m

→
F

m

j2 j1

)

=
k−1
∑

j=k−ns

(j≥0)

(
∑
m

JkPm
kj ×

→
F

m

kj

)
· k̂−

k+ns
∑

j=k+1
(j≤n)

(
∑
m

JkPm
jk ×

→
F

m

jk

)
+

k+ns
∑

j2 = k + 1
(j2 ≤ n)

(
∑
m

JkPm
j2k ×

→
F

m

j2k

)

+
k+ns−1

∑
j2=k+1
(j2≤n)

k−1
∑

j1=j2−ns

(j1≥0)

(
∑
m

JkPm
j2 j1 ×

→
F

m

j2 j1

)
−

k+ns
∑

j2=k+1
(j2≤n)

k
∑

j1 = j2 − ns
(j1 ≥ 0)

(
∑
m

Jk+1Pm
j2 j1 ×

→
F

m

j2 j1

)

=
k+ns−1

∑
j2=k
(j2≤n)

k−1
∑

j1=j2−ns

(j1≥0)

(
∑
m

JkPm
j2 j1 ×

→
F

m

j2 j1

)
−

k+ns
∑

j2=k+1
(j2≤n)

k
∑

j1 = j2 − ns
(j1 ≥ 0)

(
∑
m

Jk+1Pm
j2 j1 ×

→
F

m

j2 j1

)
(16)
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Theinertialfactors JkCk×mk
→
a Ck ·k̂, JkJk+1×∑n

i=k+1 mi
→
a Ci ·k̂, and JkJk+1×∑k

i=0 mi
→
a Ci ·k̂

(where JkCk = lCk ûCk and JkJk+1 = lkûk) in Equations (14) and (15) are readily deduced

from Equations (5)–(7), respectively (θ0 =
.
θ0 =

..
θ0 = 0):

JkCk ×mk
→
a Ck ·k̂ = mklCk

k−1

∑
i=0

li[
..
θi cos

(
θk + εCk − θi

)
+

.
θ

2
i sin

(
θk + εCk − θi

)
] + mkl2

Ck

..
θk (k = 1, . . . , n) (17)

JkJk+i ×
n
∑

i=k+1
mi
→
a Ci ·k̂

= lk

(
n
∑

j=k+1
mj

)
k−1
∑

i=0
li[

..
θi cos(θk − θi) +

.
θ

2
i sin(θk − θi)] +

(
n
∑

j=k+1
mj

)
l2
k

..
θk

+(1− δk,n−1)lk
n−1
∑

i=k+1

(
n
∑

j=i+1
mj

)
li[

..
θi cos(θi − θk)−

.
θ

2
i sin(θi − θk)]

+lk
n
∑

i=k+1
milCi [

..
θi cos

(
θi + εCi − θk

)
−

.
θ

2
i sin

(
θi + εCi − θk

)
] (k = 1, . . . , n− 1)

(18)

JkJk+i ×
k
∑

i=0
mi
→
a Ci·k̂

= lk
k−1
∑

i=0

(
k
∑

j=i+1
mj

)
li[

..
θi cos(θk − θi) +

.
θ

2
i sin(θk − θi)]

+lk
k
∑

i=1
milCi [

..
θi cos

(
θk − θi − εCi

)
+

.
θ

2
i sin

(
θk − θi − εCi

)
] (k = 1, . . . , n)

(19)

Equations (14) and (15), considering Equations (16)−(19), result in the following two
equivalent moment equations for the individual link k (k = 1, 2, . . . , n− 1)

k+ns−1
∑

j2=k
(j2≤n)

k−1
∑

j1=j2−ns

(j1≥0)

(
∑
m

JkPm
j2 j1 ×

→
F

m

j2 j1

)
· k̂−

k+ns
∑

j2=k+1
(j2≤n)

k
∑

j1 = j2 − ns
(j1 ≥ 0)

(
∑
m

Jk+1Pm
j2 j1 ×

→
F

m

j2 j1

)
· k̂−mkg lCk cos

(
θk + εCk

)

+RklRk sin
(
γRk
− εRk

)
+

n
∑

i=k+1
[−miglk cos θk + Rilk sin

(
γRi

+ θi − θk
)
]

= mklCk

k−1
∑

i=0
li[

..
θi cos

(
θk + εCk − θi

)
+

.
θ

2
i sin

(
θk + εCk − θi

)
]

+lk

(
n
∑

j=k+1
mj

)
k−1
∑

i=0
li[

..
θi cos(θk − θi) +

.
θ

2
i sin(θk − θi)] +

(
IJk +

n
∑

j=k+1
mj · l2

k

)
..
θk

+(1− δk,n−1)lk
n−1
∑

i=k+1

(
n
∑

j=i+1
mj

)
li[

..
θi cos(θi − θk)−

.
θ

2
i sin(θi − θk)]

+lk
n
∑

i=k+1
milCi [

..
θi cos

(
θi + εCi − θk

)
−

.
θ

2
i sin

(
θi + εCi − θk

)
]

(20)

k+ns−1
∑

j2=k
(j2≤n)

k−1
∑

j1=j2−ns

(j1≥0)

(
∑
m

JkPm
j2 j1 ×

→
F

m

j2 j1

)
· k̂−

k+ns
∑

j2=k+1
(j2≤n)

k
∑

j1=j2−ns

(j1≥0)

(
∑
m

Jk+1Pm
j2 j1 ×

→
F

m

j2 j1

)
· k̂−mkg lCk cos

(
θk + εCk

)

+RklRk sin
(
γRk
− εRk

)
+

k
∑

i=0

[
miglk cos θk − Rilk sin

(
γRi

+ θi − θk
)]

= mklCk

k−1
∑

i=0
li[

..
θi cos

(
θk + εCk − θi

)
+

.
θ

2
i sin

(
θk + εCk − θi

)
]

−lk
k−1
∑

i=0

(
k
∑

j=i+1
mj

)
li[

..
θi cos(θk − θi) +

.
θ

2
i sin(θk − θi)] + IJk

..
θk

−lk
k
∑

i=1
milCi [

..
θi cos

(
θk − θi − εCi

)
+

.
θ

2
i sin

(
θk − θi − εCi

)
]

(21)
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The first term on the left-hand side of Equations (20) and (21) represents the moment
τk about Jk of the muscle forces exerted on the links distal to joint k by the single-joint and
multi-joint muscles that span joint k

τk =
k+ns−1

∑
j2 = k
(j2 ≤ n)

k−1

∑
j1 = j2 − ns
(j1 ≥ 0)

(
∑
m

JkPm
j2 j1 ×

→
F

m

j2 j1

)
·k̂ (22)

The second term, τk+1, has the same meaning but refers to joint k + 1.
The final step is the determination of the closed-form expression of each single torques

τk (k = 1, 2, . . . , n − 1), instead of the differences τk − τk+1. The distal torque τn has
already been determined by Equation (13). Adding together the moment Equation (20) or
(21) with k = k∗, k∗ + 1, . . . , n gives two equivalent expressions for τk∗

τk∗ =
k∗+ns−1

∑
j2=k∗

(j2≤n)

k∗−1
∑

j1=j2−ns

(j1≥0)

(
∑
m

Jk∗P
m
j2 j1 ×

→
F

m

j2 j1

)
·k̂

=
n
∑

k=k∗

[
mkg lCk cos

(
θk + εCk

)
− RklRk sin

(
γRk
− εRk

)]
+

n−1
∑

k=k∗

n
∑

i=k+1

[
miglk cos θk − Rilk sin

(
γRi

+ θi − θk
)]

+
n
∑

k=k∗
mklCk

k−1
∑

i=0
li[

..
θi cos

(
θk + εCk − θi

)
+

.
θ

2
i sin

(
θk + εCk − θi

)
]

+
n−1
∑

k=k∗
lk

(
n
∑

j=k+1
mj

)
k−1
∑

i=0
li[

..
θi cos(θk − θi) +

.
θ

2
i sin(θk − θi)]

+
n−1
∑

k=k∗

(
IJk +

n
∑

j=k+1
mj · l2

k

)
..
θk + IJn

..
θn

+
n−1
∑

k=k∗
(1− δk,n−1)lk

n−1
∑

i=k+1

(
n
∑

j=i+1
mj

)
li[

..
θi cos(θi − θk)−

.
θ

2
i sin(θi − θk)]

+
n−1
∑

k=k∗
lk

n
∑

i=k+1
milCi [

..
θi cos

(
θi + εCi − θk

)
−

.
θ

2
i sin

(
θi + εCi − θk

)
]

(23)

τk∗ =
k∗+ns−1

∑
j2=k∗

(j2≤n)

k∗−1
∑

j1 = j2 − ns
(j1 ≥ 0)

(
∑
m

Jk∗P
m
j2 j1 ×

→
F

m

j2 j1

)
·k̂

=
n
∑

k=k∗
[mkg lCk cos

(
θk + εCk

)
− RklRk sin

(
γRk
− εRk

)
]

−
n−1
∑

k=k∗

k
∑

i=0
[miglk cos θk − Rilk sin

(
γRi

+ θi − θk
)
]

+
n
∑

k=k∗
mklCk

k−1
∑

i=0
li[

..
θi cos

(
θk + εCk − θi

)
+

.
θ

2
i sin

(
θk + εCk − θi

)
]

−
n−1
∑

k=k∗
lk

k−1
∑

i=0

(
k
∑

j=i+1
mj

)
li[

..
θi cos(θk − θi) +

.
θ

2
i sin(θk − θi)] +

n
∑

k=k∗
IJk

..
θk

−
n−1
∑

k=k∗
lk

k
∑

i=1
milCi [

..
θi cos

(
θk − θi − εCi

)
+

.
θ

2
i sin

(
θk − θi − εCi

)
]

(24)

In Appendix A, these equations are compared to the corresponding equations reported
for chains driven by ideal torque actuators and composed of two or three links modeled as
slender roads.

3. Discussion

We have derived the closed-form dynamic equations and joint reaction forces for a
planar musculoskeletal chain, composed of a generic number n of rigid links of generic
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shape and size, and driven by single-joint and multi-joint muscle actuators that can span
from one joint to all the joints of the chain. These closed-form analytical equations can be
applied to multilink musculoskeletal chains with deep/superficial and segmental/global
muscles.

Equations (8)–(11) highlight that the joint reaction force
→
φk,k+1 exerted by link k + 1

on link k through joint k + 1 is determined by the forces
→
F

m

ij of single-joint and multi-joint
muscles spanning the joint (i ≤ k and j ≥ k + 1), with an additional one of the following
two equivalent sets of data: (1) the angular velocity and acceleration of each individual
link of the chain (link 1 to link n), and the weight and the contact external resistance acting
on each link distal to the joint (link k + 1 to link n); (2) the angular velocity and acceleration
of each link proximal to the joint (link 1 to link k), and the weight and contact external
resistance acting on these links and the base (link 0 to link k). The choice of data set depends

on the unknown contact external forces
→
R i. For example, in many strengthening exercises

executed lying down or sitting on a bench, the force acting on the base
→
R0 is the only

unknown contact external force, and the joint reaction forces can be determined using the
first set of data (Equation (9)). In contrast, in the dynamic wall-squat exercise [19], the force
exerted by the wall on the back is unknown, and the load acting on the lower-limb joints
can be determined using the second set of data, provided that the ground reaction force
→
R0 is determined by a force plate (Equation (10)). In both cases, the force of the muscles
spanning the joint of interest should be properly estimated [20–24], which is beyond the
scope of the study.

The reaction force
→
φk,k+1 acting on joint k + 1 is indirectly affected by the force

→
F

m

ij of

muscles not spanning the joint (i < j ≤ k or k + 1 ≤ i < j). The torque developed by
→
F

m

ij
yields inertial forces on links i and j, which propagate along the chain, contributing to the
load acting on each joint (Equation (9)). This is, for example, the case in the effect of the
soleus muscle force on the tibiofemoral joint during single-leg landing [25]. Nevertheless,
the present study highlights that, in the static condition, a muscle force cannot affect the
load acting on joints not spanned by the muscle.

Notably, with the use of the global reference frame, the link angular velocities
.
θi occur

in the closed-form dynamic equations only through the centripetal terms proportional to
.
θ

2
i , avoiding the Coriolis terms proportional to the products of link angular velocities in

the local joint frames. This considerably simplifies the closed-form dynamic equations
(Appendix A).

The limitations of this study are mainly related to the bidimensional nature of the
adopted musculoskeletal chain model. In three dimensions, the mathematic formalism
relative to the closed-form dynamic equations of the system becomes extremely complex [4].
An example of such 3D analysis has been recently presented for a six-link chain, with
sagittal plane symmetry, to model the biomechanics of the barbell bench press exercise [26].

Another limitation stems from the assumption that only one contact external resistance
acts on link i. In general, multiple contact external resistances can simultaneously act
on an individual link of the chain. In two dimensions, the system of contact external
resistances acting on a link constitutes a co-planar system of forces acting on a rigid

body. This system can always be reduced to the resultant force
→
R applied at a point

of the central axis (if
→
R 6= 0), or to a force couple (if

→
R = 0). The first case (

→
R 6= 0) was

considered in this study. In the latter case (
→
R = 0), the dynamic force equations and the joint

reaction forces (Equations (9) and (10)) are not affected by the contact external resistances,
while the torque of the equivalent force couple should simply be added to the moment
Equations (20) and (21). The 2D reaction forces exerted on link i by link i − 1 constitute a

co-planar system of forces acting on a rigid body as well. In general, the resultant
→
φi,i−1

of these forces is non-zero in musculoskeletal joints. Therefore, this system of forces was
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reduced to the vector
→
φi,i−1 applied at a point of the central axis. It was assumed that

the line of action of this applied vector passes through Ji. This implies that the moment of
→
φi,i−1 about Ji is zero. In biomechanics, this assumption is often considered acceptable as
long as the joint is not close to the extremes of its range of motion [27]. Furthermore, this
assumption does not affect the force dynamic equations and the closed-form expression of
the joint reaction forces (Equations (9) and (10)).

With these limitations, the analytical results derived in this paper can be applied to
the study of the biomechanics of multilink musculoskeletal chains with deep/superficial
and segmental/global muscles. One possible use is for modeling spinal dynamics during
spine flexion, extension, and lateral flexion movements, where each vertebra is represented
as a link. Another possible application that concerns chains with more than three links and
deep/superficial multi-joint muscles is related to the flexion/extension movements of the
fingers. The extrinsic flexor muscles of the fingers, the flexor digitorum superficialis and
flexor digitorum profundus, cross more than three joints, from the elbow to the proximal
interphalangeal joint, and from the wrist to the distal interphalangeal joint, respectively.
Many natural lower limb movements, such as those occurring during walking, running, and
jumping, involve sagittal-plane motion of the hip, knee, ankle, and metatarsophalangeal
joints. The dynamics of these movements can be analyzed by Equations (1)–(24), as long as
the toes (the basis of the chain) remain in contact with the ground.

It is important to point out that, in contrast to numerical computational models of
human motion, the closed-form analytical model established in the present study clearly
highlights the functional contribution to the joint forces and torques of each relevant
biomechanical parameter (force of each single-joint or multi-joint muscle spanning or
non-spanning the joint; weight and contact external resistances acting on each individual
link of the chain; position, angular velocity, and angular acceleration of each individual
link of the chain). Therefore, the effect of a change in any of these parameters can be
readily assessed and understood. Ultimately, with our explicit analytical model, one can
readily determine the outcome corresponding to any set of input values, either simulated
or estimated experimentally by kinematic and electromyographic measurements and opti-
mization techniques. This might also serve as a theoretical framework for the development
of neurophysiological models for the study of neural control over joint movement and
functional joint stability [28–33] in complex musculoskeletal chains.

4. Conclusions

This study presents a general approach for the closed-form solution to the dynamics of
a planar musculoskeletal chain, composed of an arbitrary number n of rigid links of generic
shape and size, and driven by single-joint and multi-joint muscle actuators. Specifically,
Equations (8)–(13) and (20)–(24) constitute the closed-form expressions of the joint torque
and the reaction force acting on each joint of the chain. These results can be applied to the
study of the biomechanics of multilink musculoskeletal chains with deep/superficial and
segmental/global muscles.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Nomenclature

Points
Ci center of mass of link i
Ji center of rotation of the joint between link i − 1 and link i

Pm
ij point of application of the muscle force

→
F

m

ij acting on link i

PRi point of application of the external force
→
R i acting on link i
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Distances
li distance |JiJi+1| between Ji and Ji+1
lCi distance |JiCi| between Ji and Ci
lRi distance

∣∣JiPRi

∣∣ between Ji and PRi

Unit vectors
k̂ unit vector normal to the plane of the chain
ûi unit vector of JiJi+1 (JiJi+1 = liûi)

ûCi unit vector of JiCi (JiCi = lCi ûCi )
ŵi = k̂× ûi
ŵCi = k̂× ûCi

Angles
θi angle between the vector JiJi+1 and the horizontal line
εCi angle between JiJi+1 and JiCi
εRi angle between JiJi+1 and JiPRi

γRi
angle between JiJi+1 and

→
R i

Velocities and accelerations
→
a Ci acceleration of Ci
→
a Ji

acceleration of Ji
→
ωi =

.
θi k̂ angular velocity of link i

.
→
ωi =

..
θi k̂ angular acceleration of link i

Inertial quantities
ICi moment of inertia of link i with respect to Ci
IJi

moment of inertia of link i with respect to Ji
mi mass of link i
Forces
→
F

m

ij muscle force exerted on link i by the muscle m joining link i and link j
→
φi,i+1 joint reaction force exerted on link i by link i + 1
mi
→
g weight of link i

→
R i contact external force acting on link i
Mathematical symbols
δk,n−1 Kronecker delta (δk,n−1 = 1 if k = n− 1, δk,n−1 = 0 if k 6= n− 1)
· scalar product of two vectors
× vector product of two vectors

Appendix A. Moment Equations for Chains with Two or Three Links

The closed-form Equations (13), (23), and (24) for the joint torque τk developed by
single-joint and multi-joint muscles can be compared to the corresponding closed-form
equations that have been reported for chains driven by ideal torque actuators and composed
of two [4] or three [8] links modeled as slender rods.

• Moment equations for a two-link chain

Equations (13) and (23) with n = 2 give the closed-form expressions of τ1 and τ2 for a
two-link chain:

τ2 = m2g lC2 cos
(
θ2 + εC2

)
− R2lR2 sin

(
γR2
− εR2

)
+ m2lC2 l1[

..
θ1 cos

(
θ2 + εC2 − θ1

)
+

.
θ

2
1 sin

(
θ2 + εC2 − θ1

)
] + IJ2

..
θ2

τ1 =
2
∑

k=1

[
mkg lCk cos

(
θk + εCk

)
− RklRk sin

(
γRk
− εRk

)]
+
[
m2gl1 cos θ1 − R2l1 sin

(
γR2

+ θ2 − θ1
)]

+m2lC2 l1[
..
θ1 cos

(
θ2 + εC2 − θ1

)
+

.
θ

2
1 sin

(
θ2 + εC2 − θ1

)
] +
(

IJ1 + m2l2
1
) ..
θ1 + IJ2

..
θ2

+l1m2lC2 [
..
θ2 cos

(
θ2 + εC2 − θ1

)
−

.
θ

2
2 sin

(
θ2 + εC2 − θ1

)
]

These equations, for εCk = εRk = γRk
= 0, Rk = 0, and θk =

k
∑

i=1
αi, coincide with

the closed-form equations derived by Zatsiorsky [4] (p. 380) in the joint space. The above
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equations for τ2 and τ1, derived in the global reference frame, include 3 and 7 inertial
terms, respectively, whereas the corresponding equations in the joint space include 6 and
11 inertial terms [4].

• Moment equations for a three-link chain

For the three-link chain (n = 3), Equations (13) and (23) give

τ3 = m3g lC3 cos
(
θ3 + εC3

)
− R3lR3 sin

(
γR3
− εR3

)
+ m3lC3

2

∑
i=1

li

[
..
θi cos

(
θ3 + εC3 − θi

)
+

.
θ

2
i sin

(
θ3 + εC3 − θi

)]
+ IJ3

..
θ3

τ2 =
3
∑

k=2

[
mkg lCk cos

(
θk + εCk

)
− RklRk sin

(
γRk
− εRk

)]
+
[
m3gl2 cos θ2 − R3l2 sin

(
γR3

+ θ3 − θ2
)]

+m2lC2 l1[
..
θ1 cos

(
θ2 + εC2 − θ1

)
+

.
θ

2
1 sin

(
θ2 + εC2 − θ1

)
]

+m3lC3

2
∑

i=1
li[

..
θi cos

(
θ3 + εC3 − θi

)
+

.
θ

2
i sin

(
θ3 + εC3 − θi

)
]

+l2m3l1[
..
θ1 cos(θ2 − θ1) +

.
θ

2
1 sin(θ2 − θ1)] +

(
IJ2 + m3l2

2
) ..
θ2 + IJ3

..
θ3

+l2m3lC3 [
..
θ3 cos

(
θ3 + εC3 − θ2

)
−

.
θ

2
3 sin

(
θ3 + εC3 − θ2

)
]

τ1 =
3
∑

k=1

[
mkg lCk cos

(
θk + εCk

)
− RklRk sin

(
γRk
− εRk

)]
+

3
∑

i=2

[
migl1 cos θ1 − Ril1 sin

(
γRi

+ θi − θ1
)]

+m3gl2 cos θ2 − R3l2 sin
(
γR3

+ θ3 − θ2
)
+ m2lC2 l1[

..
θ1 cos

(
θ2 + εC2 − θ1

)
+

.
θ

2
1 sin

(
θ2 + εC2 − θ1

)
]

+m3lC3

2
∑

i=1
li[

..
θi cos

(
θ3 + εC3 − θi

)
+

.
θ

2
i sin

(
θ3 + εC3 − θi

)
]

+l2m3l1[
..
θ1 cos(θ2 − θ1) +

.
θ

2
1 sin(θ2 − θ1)] +

[
IJ1 + (m2 + m3)l2

1
] ..
θ1 +

(
IJ2 + m3l2

2
) ..
θ2 + IJ3

..
θ3

+l1m3l2[
..
θ2 cos(θ2 − θ1)−

.
θ

2
2 sin(θ2 − θ1)]

+l1
3
∑

i=2
milCi [

..
θi cos

(
θi + εCi − θ1

)
−

.
θ

2
i sin

(
θi + εCi − θ1

)
]

+l2m3lC3 [
..
θ3 cos

(
θ3 + εC3 − θ2

)
−

.
θ

2
3 sin

(
θ3 + εC3 − θ2

)
]

These equations, for εCk = εRk = γRk
= 0, Rk = 0, and θk =

k
∑

i=1
αi, coincide with the

closed-form equations derived by Cesari et al. [8] in the joint space. The above equations
for τ3, τ2 and τ1, derived in the global reference frame, include 5, 13, and 22 inertial terms,
respectively, whereas the corresponding equations in the joint space include 13, 24, and 35
terms [8].
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