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Abstract: Virtual reality (VR) is quickly becoming the medium of choice for various architecture,
engineering, and construction applications, such as design visualization, construction planning,
and safety training. In particular, this technology offers an immersive experience to enhance the
way architects review their design with team members. Traditionally, VR has used a desktop PC or
workstation setup inside a room, yielding the risk of two users bump into each other while using
multiuser VR (MUVR) applications. MUVR offers shared experiences that disrupt the conventional
single-user VR setup, where multiple users can communicate and interact in the same virtual space,
providing more realistic scenarios for architects in the design stage. However, this shared virtual
environment introduces challenges regarding limited human locomotion and interactions, due
to physical constraints of normal room spaces. This study thus presented a system framework
that integrates MUVR applications into omnidirectional treadmills. The treadmills allow users an
immersive walking experience in the simulated environment, without space constraints or hurt
potentialities. A prototype was set up and tested in several scenarios by practitioners and students.
The validated MUVR treadmill system aims to promote high-level immersion in architectural design
review and collaboration.

Keywords: virtual reality (VR); multiuser VR (MUVR); omnidirectional treadmills; architectural
design review; design collaboration

1. Introduction

The advanced building information modeling (BIM) technology has completely
changed how architects approach building design. The potent BIM tools energize architects’
innovation to create exceptional designs that could not be made by most traditional meth-
ods [1]. However, it is challenging for architects to present complicated and sophisticated
designs if conventional 2D or 3D representations are adopted. Similarly, the ineffective
design presentation might result in communication errors among team members [2]; the
consequence is often costly design variations in the construction stage [3]. Thus, virtual
reality (VR) has much potential for architects and designers, as this revolutionary technol-
ogy transports users into an immersive virtual environment, allowing them to explore a
simulated representation of a particular room, floor, or building design as a whole with
their partners. VR offers practical solutions with computer-generated artificial realities,
and it is now entering mainstream use in various fields, such as entertainment, education,
design, engineering, and health services [4].

VR popularity in the architecture, engineering, and construction (AEC) industries is
increasing as it becomes more affordable for end-users [5,6]. Using VR as a platform for
content delivery allows better user engagement than other traditional methods, as VR head-
sets remove external distractions by shutting out the physical world, creating a complete
immersion experience. Most AEC researches mainly leverage the visualization function
offered by BIM-based VR applications to support design and construction activities [7–10].
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For instance, BIM design can be monitored and compared through VR applications for
decision-making and simulated for pre-construction planning. On the other side, VR is
also helpful in dealing with misunderstanding, spatial sense issues, and clash-detection
problems in the design review process [11]. Thus, it offers considerable potentialities for
improving the inefficiencies in current 2D and 3D design review and coordination practice.
In addition, interactive multiuser VR (MUVR) has been long established in construction
researches, such as safety training. MUVR has been proven beneficial to the overall site
safety performance [12]. However, current BIM-based VR applications in architectural
design are still limited to single-user usages and lack of interactions among users. Collab-
orative VR allows multiple users to attend virtual design or presentation sessions in the
3D environment, and they can work collaboratively in the same room or remotely from
different locations [5].

There is also a common problem seldom addressed by researchers or practitioners
when using VR devices in architectural applications. VR users are usually facing locomotion
limitations due to the designated space constraint [13]. The limits of the real environment
are identified by a virtual grid fence that avoids VR users bump into actual physical walls
or objects in the perceived environment. This constraint affects the navigation efficiency
of 3D models for buildings with considerable floor areas (e.g., airports, exhibition halls,
and shopping arcades) and leads to the risk of two users bump each other when using
MUVR applications. Although artificial VR locomotion (e.g., teleportation) is one of the
solutions for users to navigate the virtual environment by moving themselves to different
locations with the use of hand-held controllers, this method tends to cause VR sickness
due to the discrepancy between expected and perceived sensory information [14]. As such,
omnidirectional treadmills are the cutting-edge solutions for walking simulations in the
virtual environment. The treadmills enable users to move freely, without the concern of
navigational space limitations. Thus, they enhance the illusion of unconstrained human
movements and make the overall VR experience more realistic and immersive [13]. Such
an immersive walking experience can increase users’ sense of presence and motivate users
to interact naturally with others in the virtual environment.

Given these points, this study aimed to develop a BIM-based MUVR treadmill system
to promote high-level immersion in the design review process, offering architects a more
realistic way to design BIM models collaboratively in the virtual environment. A prototype
was set up by integrating MUVR applications into omnidirectional treadmills based on
the client–server model. The system can support multiuser interactions without motion
constraints in the virtual environment. Ultimately, architects are encouraged to collaborate
virtually with their team members during the design review process. The system was
validated by participants who tested the prototype and provided feedback on system
design, particularly when problems or challenges were identified. The participants also
offered objective evidence to ensure that the system aligns with the professional practice
and the VR model is a practical and complete representation of architectural characteristics.
Further, as the level of interest and appeal in VR technology is different with human age,
the participants were divided into two groups to detect any unconscious bias arising from
users’ technology readiness. Finally, discussions of research findings and recommendations
for the system improvements are presented.

2. Theoretical Background

Researchers and practitioners have developed VR technology since the early 1990s.
VR is a computer-generated environment with senses and objects that appear to be real.
Thus, VR technology can be adopted as a communication system component that creates a
simulated space and embeds humans as an integral part of the system [15]. Based on virtual
displays supported by unique processing systems and non-visual sensory components,
such as tactile and auditory functions, VR users can experience a truly immersive-simulated
virtual environment [16]. The terminology of VR can be characterized by the 5Is: intensive,
interactive, immersive, illustrative, and intuitive [17]. Such characteristics have created
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ample research and application opportunities in various fields, such as automation, health-
care, and construction. Their limitations for spatial or temporal inaccessibility to realistic
objects develop the need and ability to realize certain levels of accuracy in the virtual
setting [10]. Moreover, space and equipment functionalities can be substantially validated
through additional interaction capabilities in the virtual environment [18], achieving high
efficiencies in the design review process. However, some studies proved that youths enjoy
new technologies (e.g., VR applications) significantly more than adults do and had a higher
willingness to adopt new technological products [19,20]. This situation can be explained
by the concept of technology readiness, which refers to people’s propensity to use new
technologies to achieve goals in home life and at work [21].

In the AEC industry, the extensive BIM development brings VR applications to a
higher level. The integration of BIM into VR optimizes the performance as BIM-based
models contain rich information that serves as a reliable basis to facilitate decision-making
during the whole project life cycle, starting from planning, design, and construction to
operation and maintenance stages [22]. In particular, VR has predominantly been applied
in architectural design review. The incentive of its widespread adoption is the significant
visual improvement arising from virtual models developed by gaming engines [10]. Ar-
chitects and designers can review the design in a 1:1 scale immersive virtual environment
to analyze design factors such as material types and dimensions to develop an effective
building design [23]. In this highly immersive and realistic way, VR applications can
judge the realistic visual impacts and technical aspects [7]. For instance, architects can
better figure out the spatial relationships between building components to resolve design
conflicts, check headroom compliances, and verify the required assembly detailing of
the final products [24,25]. Furthermore, VR can be adopted to produce virtual mock-ups
replacing physical building models for design overviews [18]. This efficient approach
enables stakeholders to consider and compare different design options simultaneously
without much cost and time implication [26].

BIM-based VR applications have triggered a significant paradigm shift in the AEC
industry. Construction professionals capitalize on integrating BIM into VR technology to
enhance problem-solving efficiency in an immersive virtual environment. In addition, the
advent of cutting-edge VR applications provides opportunities for immersive visualization
that can help construction professionals to improve the sense of scale and spatial relation-
ships of architectural and engineering design [7]. However, some challenges of using VR
have been identified, such as the capability of running high-demand BIM software in VR
applications, the support of multiuser applications, and the human locomotion for VR
manipulations.

Construction professionals come from various disciplines, so an interdisciplinary ap-
proach is vital to address today’s complex engineering and construction problems. As such,
the concept of MUVR disrupts the limitations of the conventional single-user VR setting
where VR has used a gaming PC, yielding challenges when running the latest construction
applications. The typical MUVR platform is set up by using a client–server model [27–29].
Unlike traditional single-user VR applications, MUVR platforms are established to enable
real-time interactions and communications between multiple stakeholders in a shared
virtual environment. A server is integrated to manage over system displays, and each
client can access a data copy to be displayed, either on a local drive by the local area
network or a shared network drive by the wide area network. Once a client is connected to
the server, the server can update the display and synchronize the client’s view regularly.
On the other side, each client transmits pose information from its headsets and controllers
to the server, relayed to other clients for displays. This framework also supports different
modes that enable users to read particular results individually without sharing them with
other clients. This setup of MUVR platforms effectively supports real-time interactions
between users in the shared virtual environment [27].

In most current VR applications, users are only limited to moving in the predetermined
physical space, which may constrain the natural interaction in the virtual environment.
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The gaming treadmills can be an option to offer user movement ability in the virtual
environment by fixing users on a stationary point and reducing their foot friction, so that
they can walk in a stationary platform naturally [30]. VR treadmills have been popularly
adopted in the E-sport entertainment and healthcare industry [31,32]. The self-paced VR
treadmills can be bowl-shaped or flat-shaped, and their integration into VR applications
can provide users with an immersive walking experience [13]. Moreover, VR treadmills
provide great potential in becoming a safe simulator that enables active human locomotion
in the virtual environment. For instance, the omnidirectional treadmill is a VR platform
designed to bring the user back to the center of the active surface when he moves in
any direction and steps off the active surface, avoiding walking over the edge of the
platform [33]. Human locomotion and usability in the virtual environment are the critical
aspects of the omnidirectional treadmill [34]. This kind of VR treadmill offers benefits
such as allowing users to run and jump naturally on a designated platform during VR
simulation, as every foot movement is tracked by the hardware. The average enjoyment
level during physical activities in VR on treadmills is higher, because this movement can
increase user participation in the virtual environment [35]. Thus, there is great potential to
adopt VR treadmills in the AEC industry to enhance the users’ immersive experience, as
the current VR applications are limited to the conventional way without human locomotion.
Significantly, the setup of multiple treadmills can avoid real-world collisions between users
operating MUVR platforms in the same shared physical room.

3. System Framework

This study proposed a BIM-based MUVR treadmill system to offer high-level im-
mersion in design review and collaboration in the design stage. Figure 1 displays the
system framework that consists of four core modules: (1) BIM model, (2) VR platform
with interactive functions, (3) VR headsets and treadmills, and (4) MUVR server. It is
computationally intensive if starting with a building model built by BIM software because
many hidden faces and duplicating vertices are contained in BIM models. Thus, before
importing a BIM model into the VR platform, the BIM model should be optimized by the
computer graphic program’s previsualization process. In other words, the BIM model
needs to be fully optimized so that it can become computationally light-weighted with
low poly-geometry, minimum overlapping faces and vertices, and minimum repetitive
textures to reduce the file size and ensure smooth VR interactions without clashes. After
the geometric optimization, the BIM model is imported into the VR platform to become
the VR model. Several criteria must be fulfilled to establish a realistic virtual environment,
including the real-world immersive experience, realistic object texture, and lighting ef-
fect. The VR model is further optimized for the lighting performance, such as prebaked
lighting effects (e.g., normal map or ambient occlusion map) to produce the surrealistic
rendering quality. Then, a pair of VR headsets and hand-held controllers are adopted for
virtual displays and system manipulations, respectively. Regarding human locomotion, a
pair of omnidirectional treadmills are integrated into the VR platform to offer users the
walkthrough capability in the virtual environment without physical space constraints. All
these devices are mutually supported and compatible with the VR platform. Finally, a
synchronization system was developed to support multiuser interactions in the virtual
environment. The system adopts the client–server model to facilitate multiuser interactions.
As such, an MUVR server was provided to connect the network of other workstations
(i.e., users) to access, hold, and distribute the requested information to clients over a local
area network. Due to its high processing power and sufficient random-access memory in
managing the massive load, the server takes a vital role in optimizing the synchronization
performance between multiusers, offering users stable and reliable MUVR experiences.
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Figure 1. Framework of the BIM-based MUVR omnidirectional treadmill system.

Four interactive functions were developed by intensive coding and programming to
enhance architectural design review and collaboration effectiveness. The functions are
tailor-made features that facilitate architects to review the design with their team members
interactively. The first function is the primitive creation with object manipulations. This
tool allows different objects with standard shapes, such as cubes, rectangles, spheres, and
arrows, to be created in any dimension in the virtual environment. The objects created
can be relocated anywhere or any direction by users without limitations. This tool aims
to unlock user creativity during the design review process. Architects can also review
different design options with their team members, making decisions efficiently and less
costly. The second function is the freeform annotation tool. Annotations can be created on
any object or even in the air of the virtual environment by pen-style mark-ups. Different
brush sizes and pen colors can be chosen to perform better notetaking and sketching effects
when discussing design detailing. These functions can be done by employing the line
renderer component of the software to create lines synchronized in real-time between
multiusers. The third function is the measurement tool. This tool offers quick quantity take-
off in the virtual environment, and a virtual indicating line is provided so that the starting
point can be more accurate. This kind of freestyle measurement (i.e., in any direction, x, y,
or z) would not be possible in any 2D or 3D authoring software. The tool can be applied
for resolving design conflicts by determining spacing distances and minimum sizes, such
as pipework positions and lift door openings. The last function is the scale-model mode
for small-scale views of models for design overview. The scale-model mode is another way
of navigation other than normal building walkthroughs in the virtual environment. This
function allows users to visualize the whole building like a physical model to understand
better the overall design for strategic analysis and design overview. The scale-model mode
also allows users to visualize any particular section in a closer and detailed inspection.
For example, users can utilize the scale-model mode to modify skylights or even measure
whole building heights that would not be possible in real-world situations. The scaling
function further enables users to review the virtual environment in different scales by
zooming in or out. Figure 2 shows the interactive functions of the system and illustrates
how they are manipulated in the virtual environment.
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4. System Development
4.1. Software Requirements

Various software programs were chosen to develop the BIM-based MUVR treadmill
system. For instance, the tools for BIM modeling, BIM model optimizations, VR platform
development, and MUVR network establishment were used. For the BIM model authoring
tool, Autodesk Revit was adopted because of its high accuracy and efficiency in design
and documentation across the project lifecycle. Revit is one of the dominant BIM solutions
for architectural design in the international commercial and research markets [36–38]. The
critical difference between Revit and other modeling software is that Revit comes with a
single package that includes modeling of building structures and mechanical, electrical, and
plumbing (MEP) components. This advantage brings conveniences to other engineering
disciplines for further BIM model development.

To integrate BIM models into VR applications, BIM models are produced in their
native format based on the predetermined project requirements and then exported into a
Filmbox (FBX) file, a flexible file format for geometric optimizations before importing into
VR platforms. The FBX file is a means of importing 3D models into gaming or animation
packages because it can keep most of the geometry information, material data, light, and
environmental settings in the original BIM model. Autodesk 3Ds Max was chosen as the 3D
computer graphics program due to its widespread adoption of geometric optimizations for
design visualization and animation [37,39]. In the computer graphic environment, each 3D
object consists of polygons which can be further be subdivided into faces. However, these
faces are often hidden and are not displayed in the viewport by default. After importing the
FBX-based BIM model into the Autodesk 3Ds Max, the alleged vertices, edges, polygons,
and faces of each 3D object were translated into the editable poly and shown in the xView.
The editable poly modifier was applied to optimize the poly-geometry BIM objects to
reduce the model’s file size with minimum overlapping edges, vertices, and repetitive
textures. There are three primary modifiers in 3Ds Max to reduce the polygon count of
3D models: Optimize modifier, ProOptimizer modifier, and MultiRes modifier. These
modifiers aim to reduce the model processing complexity during the MUVR interaction by
lowering the overall file size while maintaining BIM models’ shape and visual quality.

The VR platform was developed by using the gaming engine, because it can power
VR applications with a high frame rate and realistic user experience in the virtual environ-
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ment [30]. Unity was chosen as the development tool because it offers a more user-friendly
user interface and greater cross-platform, posing considerable potential for further appli-
cations and developments. Furthermore, Unity enables the creation of complex projects
without over-demanding a powerful setup like other gaming engines [40]. This character-
istic can relieve the hardware burden, especially for the system with multiusers usages.
Unity uses C# or JavaScript primarily in the programming language, so scripting is more
flexible, fast, and efficient [30]. In this study, all VR interactive functions were developed
by C# programming scripts in Unity. Unity was also used for lighting optimizations of the
VR model. The Unity High-Definition Render Pipeline (HDRP) was deployed to obtain a
realistic rendering quality to optimize the lighting effects and post-processing effects. There
are two main parts of graphic optimizations regarding the overall lighting effects and mate-
rial textures under HDRP. For lighting effects, Unity adopts unified and coherent Physical
Light Units in the VR world. These units were set based on real-life light’s luminosity
expressed in Lux or Lumens. Other advanced settings under the light section include the
reflection in HDRP, refraction in HDRP, environment lighting, density volume, light layers,
and shadows. For material textures, the new features of HDRP Lit Shader are available
under the Material Inspector. HDRP also uses ambient occlusion to provide ambient light
onto the 3D object’s surface with no surface geometry details. Other parameters, such as
base color, opacity, metallic surface, smoothness, and coat mask, were adjusted to fully
reflect the natural material texture.

Most importantly, the BIM-based MUVR treadmill system was developed based
on the availability of multiplayers and networking solutions. UNet was chosen as the
solution because it is a native Unity networking system that enables the development
of MUVR platforms. Five key features facilitate multiuser applications in the VR world:
Transport Layer, Low-Level Application Programming Interface (LLAPI), High-Level
Application Programming Interface (HLAPI), Matchmaker, and Relay Server. Firstly, UNet
starts with a high-performance Transport Layer based on the User Datagram Protocol to
support different application’s compatibility. From this Transport Layer, two APIs were
built. LLAPI provides comprehensive controls through a socket line interface. At the
same time, HLAPI introduces a secure and straightforward client–server network model.
Moreover, Matchmaker services support the elementary functionality in configuring rooms
for multiuser applications and assist users to locate each other in the virtual environment.
Lastly, Relay Server was applied to solve the connectivity issues behind firewalls to ensure
VR users are always connected. Nevertheless, there are still some synchronization issues
that need to be overcome in the multiuser mode. For instance, every object in the VR world
has its transform properties, including positions, rotations, and scales. However, UNet
only supports the synchronization of position and rotation properties. Thus, additional
programming by C# was scripted to allow the synchronization of the object’s scale between
multiusers.

4.2. Hardware Requirements

In this study, two essential VR devices were integrated into the BIM-based MUVR
treadmill system: VR headsets and omnidirectional treadmills. A MUVR server was
also set up to ensure smooth VR interactions, good visual quality, and stable real-time
synchronizations between multiple users, such as resolutions, frame rates, tick rates, and
buffering time. Furthermore, two sets of Virtuix Omni VR omnidirectional treadmills
were installed, as they can achieve an outstanding balance between speed, comfort level,
space demanding, and preciseness [13,31]. Each treadmill set includes four sub-devices:
the low-friction motion platform, harness, overshoes, and tracking pods. The concave
motion platform with low-friction features plays a prominent role in enabling smooth and
immersive walking motions in the virtual environment. The supportive ring and harness
provide maximum safety and versatility during rapid and unconstrained movements, such
as walking, running, and turning swiftly.
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After comparing with other popular VR headsets in the market, two sets of HTC VIVE
Pro were selected for the system, due to the advantages of precise room-scale tracking,
vibrant screen colors with immensely high contrast, and realistic immersion [41]. The
high-resolution active-matrix organic light-emitting diode (AMOLED) screens with the
90 Hz refresh rate and 110◦ field of view are the primary benefits of offering rich colors,
contrasts, and comprehensive views in the VR world. Furthermore, four SteamVR base
stations support up to 10 × 10 m tracking areas in the physical space. The base station
performs its function by flooding the room uniformly with a non-visible light (i.e., infrared
pulse) so that the receptors on tracked devices can intercept the light and interpret the user
location to the base stations. This feature allows sub-millimeter precise tracking, which is
ideal for MUVR interactions in this study.

In addition, the MUVR server takes up the role of the authoritative source of events
in the multiplayer virtual environment. It is responsible for receiving and processing the
clients’ input (e.g., spawning objects or lines) and then transmitting and synchronizing
accurate data to the connected clients so that the display is stable and reliable [27,28].
Installing the MUVR server reduces the original workstation’s communication workloads
and processing burdens if it serves both client and server roles [42]. Furthermore, by
entering the correct internet protocol (IP) address under the local area network, the com-
munication between clients can be accomplished without direct access to the internet. As
a result, the local server can perform its role smoothly with stable and reliable perfor-
mance [28,42,43]. In other words, the VR software can be operated more steadily with the
VR hardware with minimum forced termination, freezing, crashing, and time delay during
data synchronizations between multiusers.

4.3. System Architecture

The BIM-based MUVR treadmill system was developed based on the client–server
architecture displayed in Figure 3. Using this approach, the VR graphic client workstations
handle the computing-intensive graphics, while the MUVR server handles the synchro-
nization communication between the two client stations. Instead of using one workstation
to play both client and server roles, this architecture defines workload distributions of
the graphic computation and synchronization communication into different workstations,
offering greater expansion potential with more VR client usages in future development.

The networking and synchronization for multiuser usages were tested after estab-
lishing the client–server architecture. First, a workstation was used as the MUVR server,
and the other two workstations were connected to the server by keying in a particular IP
address. Troubleshooting was applied to fix the networking problems, and a local area
network connection was finally feasible. Then data synchronizations were tested, and the
performance was evaluated by the stability and reliability of the system. During the testing,
it was also found that the synchronization for the multiuser functionality did not support
object scaling, drawings, object manipulations, measurements, and dimensioning. Thus,
additional programming was scripted to create a new real-time synchronization system on
top of the original networking system facilitating data transfers between multiusers during
their interactions in the shared virtual environment. The testing and troubleshooting of the
networking and synchronization ensured that the system could achieve high fidelity of
the visual quality while maintaining instant responses to all user interactions with a high
refresh rate.
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4.4. System Effectiveness

A prototype of the BIM-based MUVR treadmill system was set up based on the
client–server model. The prototype was tested to validate the system effectiveness in
architectural design review and collaboration. The evaluation measures include (1) user
interaction, (2) user locomotion, and (3) system synchronization. The system simulates
typical design review activities, such as conflict resolution, design detailing, and design
overview for the user interaction measures. The evaluation also involves instant design
collaboration to test users’ creativity. For the measure of user locomotion, the walking
experience on VR treadmills was tested. The evaluation includes the preciseness and
agility of human locomotion in the shared virtual environment and the sufficiency of
safety provisions offered by the treadmills. For the measure of system synchronization, the
stability and reliability of the MUVR server were evaluated. These involve the performance
of client–server communication in terms of speed and spontaneity.

5. Validations
5.1. Methods

The target participants of the testing are practicing architects from the AEC industry.
Despite that a majority of construction professionals are aware of VR, the levels of their
familiarity and enthusiasm of VR technology might be different depending on their age
groups. Thus, architecture students studying in local universities were also recruited for
the testing. The purposes are to detect any prejudice from user generations against new
VR technology and verify whether the research findings of this study vary significantly
with different age groups.

Figure 4 shows the BIM-based VR model for testing in this study. The building is
a hypothetical community center with a construction floor area of about 2500 m2. It is a
three-story building with a total height of 13 m. Before the testing, the participants were
given briefings about the research background, building design, client–server architecture,
interaction tools, and VR-device operations. Next, the participants were requested to follow
the designated routes and accomplish the design review tasks in the virtual environment.
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Afterward, the participants were allowed to navigate the model freely by themselves to
test the system thoroughly. The participants were asked to offer valuable feedback on the
system’s performance and evaluate its effectiveness in design review applications. Finally,
the participants were requested to suggest some insightful recommendations for the system
improvement.
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The testing consisted of several hypothetical tasks carried out by the participants
during the design review process. Figure 5 shows the multiple scenarios for the participants
to test and verify the interaction tools and VR treadmills. During the testing, the participants
accomplished the design review tasks as if they were involved in routine architectural
design review with their team members of a building project. The first task is about design
conflict resolutions. Starting from the building entrance, the participants walked to the lift
doors on the ground floor. One of the participants used the measurement tool to check the
height of wall openings. Then the other participants advised the headroom clearance in
compliance with the lift installation and applied the annotation tool to highlight the height
inadequacy on the openings. A snapshot was finally taken to capture the checking records.
The second task is to verify the design details of glass balustrades. The participants went to
the corridor on the first floor. One of the participants used the measurement tool to verify
the sizes of glazing panels and applied the annotation tool to mark the required assembly
details for discussions with the other participant. The third task is the design overview
and comparison of the proposed design options. The participants exited the building and
adopted the scale-model mode to zoom out the 1:1 building model into a small-scale model.
Similar to the overview of a physical model, the participant walked around the model and
modified the design by the primitive creation tool. Different options were compared with
the consideration of their impacts on the building envelope. The fourth task is about the
creation of the conceptual design. The participants kept using the scale-model mode and
walked to a vacant site. Using the primitive creation tool, the participants created massing
models collaboratively and discussed the creative building models and their effects on the
surrounding environments.
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ing along the staircase.

5.2. Results

Eight participants agreed to join the testing, and they were divided into two groups.
Group 1 consists of four practitioners, while Group 2 includes four students. The prac-
titioners are experienced architects practicing in Hong Kong. They have been involved
in various types and sizes of building projects, and their principal job duties are to plan,
develop, and implement the architectural design. The students are final-year students
studying the undergraduate program of architecture in Hong Kong. They have received
basic training in computational design in architecture. All participants have the basic
knowledge and know-how of using VR devices but no experience with VR treadmills or
similar locomotion platforms. Figure 6 shows a pair of participants testing the system
inside the BIM laboratory.

After the testing, all participants were asked to rate their experiences in using the
system based on the evaluation measures with a 7-point Likert scale, whereas 7 represents
strongly agree, and 1 represents strongly disagree. The evaluation measures were classified
into three groups based on multiple scenarios and design review tasks: (1) user interaction,
(2) user locomotion, and (3) system synchronization. Mean scores with standard deviations
of the evaluation measures were determined. The normality test was also used to determine
if the dataset was well modeled by a normal distribution. Then the two-sample t-test was
conducted to examine whether the opinions of practitioners and students were sufficiently
consistent. The mean scores are recognized as having no statistically significant difference
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when the significance level (p-value) is higher than 0.05 [44]. Additionally, all participants
were requested to rate the overall immersion level, using the system, according to their
experiences of accomplishing the hypothetical tasks and the final stage of free walking.
Table 1 summarizes the mean scores and results of the t-test.
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Table 1. Mean scores and results of the t-test.

Evaluation Measures
All

n = 8
Mean (SD)

Group 1
n = 4

Mean (SD)

Group 2
n = 4

Mean (SD)
t Sig.

(p-Value)

User interaction
Conflict resolution 5.13 (1.45) 5.00 (1.87) 5.25 (0.83) −0.21 0.84
Design detailing 5.00 (1.73) 5.25 (1.48) 4.75 (1.92) 0.36 0.73
Design overview 5.75 (1.20) 5.50 (1.66) 6.00 (0.00) −0.52 0.62
Design creativity 5.00 (1.66) 4.75 (1.92) 5.25 (1.30) −0.37 0.72

User locomotion
Preciseness 4.13 (1.54) 3.50 (1.80) 4.75 (0.83) −1.09 0.32

Agility 4.00 (1.00) 3.25 (0.83) 4.75 (0.43) −2.78 0.03
Safety 5.63 (1.49) 5.25 (1.79) 6.00 (1.00) −0.63 0.55

System synchronization
Stability 5.13 (1.69) 4.50 (1.80) 5.75 (1.30) −0.97 0.37

Reliability 5.63 (1.22) 5.00 (1.22) 6.25 (0.83) −1.46 0.19

Overall immersion
experience 5.50 (1.12) 5.00 (1.22) 6.00 (0.71) −1.22 0.27

Group 1: Practitioners. Group 2: Students.

First, the normality test showed that the sampling distribution of the means is normal.
Thus, the two-sample t-test is valid because the two groups are independent random
samples from normal distributions. Second, the means of all participants regarding the
interaction experiences are 5 or above, while the measure of design overview received
the highest mean (mean = 5.75). This measure also received the highest mean in Group
1—practitioners (mean = 5.5) and Group 2—students (mean = 6). The t-test found no
statistically significant differences between the two groups of participants in evaluating
user interactions. Third, the safety of user locomotion on treadmills was evaluated. This
measure had the best performance among all participants (mean = 5.63); the mean of
Group 1 is 5.25, whereas Group 2 is 6. The results of the t-test further show that there
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were no significant differences between the two groups of participants in this measure.
However, the measures of preciseness and agility similarly received means below 4 in
Group 1 only. In particular, the mean of agility is distinctly low (mean = 3.25). According to
the t-test, the mean of agility in Group 1 was significantly lower than in Group 2 (t = −2.78,
p = 0.03). Fourth, the means of the system synchronization rated by all participants are
above 5; especially the measure of reliability showed good performance (mean = 5.63). This
measure also received the highest mean in Group 1 (mean = 5) and Group 2 (mean = 6.25).
The t-test found that the differences between Group 1 and Group 2 in the overall system
synchronization were not statistically significant. Finally, all participants were requested
to evaluate the overall immersion level provided by the system. Considering the holistic
system setup and the user experiences in different scenarios, all participants were satisfied
with the overall immersion experience (mean = 5.5). The mean of the overall immersion
level of Group 1 is 5, whereas Group 2 is 6. No statistically significant differences between
the two groups were found in this study.

6. Discussion

This study developed a system that integrates MUVR applications into omnidirec-
tional treadmills. A prototype was set up and tested by the participants to validate the
system in user interaction, user locomotion, and system synchronization. This section dis-
cusses the results of applying the system in architectural design review and collaboration.

Firstly, collaborative VR allows multiple users to attend design review sessions in the
shared virtual environment. According to the results, the system can enhance interaction
experiences facilitated by the interactive functions of the VR platform. Based on the means
of the user interaction measures, they were rated well by the participants, especially the
interactive experience during the design overview. In this case, the participants used most
interaction tools (i.e., scale-model mode, measurement tool, and primitive creation tool) to
review design options of the building model with their partners. With the VR treadmills,
the participants could walk around the same way that they would in reality, achieving more
realistic interactions and collaboration in the immersive virtual environment. Moreover,
VR is not just a valuable means of design visualizations or model walkthroughs; it can
also be used as an effective design tool. According to the results, designing in the virtual
environment is possible. The interactive functions of the system allow the innovative
design to be created in the shared virtual environment. For the conflict resolutions and
design detailing, the participants were satisfied with the system. During the testing, the
participants were involved in the tasks about clarifications of the headroom clearance of
lift door openings and verifications of the assembly details of glass balustrades. Using
MUVR for architectural design review allows architects and their team members to step
into the building model for interactions. They can assess any virtual spaces inside the
building to better understand spatial requirements and stimulated final products. This
type of collaborative immersion enhances strong team communication and enables true
collaborative design, ultimately speeding up the whole design process. These findings are
in line with those of previous studies on the effects of VR on the design review process,
particularly the enhanced interactions arising from MUVR applications.

Secondly, human locomotion is a VR technology that enables the movement from
one place to another in the virtual environment. In this study, human locomotion was
enabled by the omnidirectional treadmills that offer users high-level simulations of the
natural movement and alleviate their VR sickness. The participants highly appreciated
the system’s safety, as the harness protection locks the user securely on the treadmills.
Generally, VR applications can be set up in any space. For that reason, the larger the room
space, the farther the users can walk within the perceived environment. However, for a
room-scale VR setup, the users might come to the physical limits of the room and choose
to teleport themselves to a different virtual location. In this study, the participants walked
around the building models to review architectural design without limitations. However,
the participants showed concerns about the agility and preciseness of using the system. The
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omnidirectional treadmills provide platforms that enhance the illusion of unconstrained
movement. With the harness protections, the participants can move naturally in a linear
direction on every building floor. Nevertheless, running motions inside the building model
were not recommended, due to the slipperiness of the overshoes worn by the users. Most
of the participants also felt difficulty stopping precisely, due to the reduced foot friction
on the treadmills. This deficiency disturbed the participants, because they needed to
move back and forth until reaching a particular location to discuss the design matter with
their partners. Further, when the participants came to the staircase, the walking feature
became an inclination mode in which users moved like climbing a steep ramp. In this case,
the participants experienced a reduced reality level in natural walking. Interestingly, it
was found that human locomotion experiences between the practitioners and students
were different, particularly the walking speed and versatility of the practitioners on the
treadmills. Before the testing, the practitioners took much time to learn the treadmill
operations. They also showed concerns about the erratic movement when walking on the
treadmills. Comparatively, the students got used to the treadmills fast, and it took a while
to accustom themselves to moving on them. This kind of new technology is exciting and
appealing to younger generations, and they will gravitate towards gaming applications
such as the MUVR treadmill system developed in this study. Thus, the students indicated
a strong intent to be engaged in the testing without hesitation. These results align with
the literature on technology readiness, which advocates the influence of human age over
technology use.

Thirdly, the system is the integration of VR devices into the omnidirectional treadmills
with the MUVR server. As the server plays an essential role in optimizing the synchro-
nization performance between multiusers, its performance is one of the critical factors for
MUVR success. According to the results, the stability and reliability of the system were
rated well by the participants. These outcomes indicate the participants’ satisfaction with
the synchronization speed and the ability to synchronize data between multiusers when
moving and interacting in the virtual environment. Nevertheless, if model scaling was
activated extensively to involve many objects in a single frame, the synchronization speed
was reduced when extra latency was introduced. Most of the participants observed that
the objects or mark-ups created can be synchronized well with suitable resolutions in a 1:1
ratio of the virtual environment.

The practitioners were interviewed after the testing. All of them considered that
collaborative VR is a practical approach to architectural design review with inexpensive
VR devices available in the market. Under the MUVR mode, architects can collaborate
with their team members and adopt various intuitive tools for their interactions. With the
integration of the omnidirectional treadmills, unobtrusive and natural-feeling locomotion
is achieved by the system, helping users engage fully in the immersive virtual environment.
In addition, the free and natural movement over the treadmills relieves motion sickness
from disorienting experiences. However, there are still several critical challenges that need
to be overcome. The participants addressed some limitations and suggestions of the system
to enhance its practical effectiveness. First, creating a computer-generated 3D model for
use in VR requires a much higher level of detail to be incorporated into this model. Every
visible surface needs to be modeled, and the construction details should be fully resolved.
Failure to do so will highlight design deficiencies when viewed in this artificial reality. The
practitioners expected the system to be more accurate due to their rich practical experience
and exposure to the real-life design review process. Second, the MUVR experience can be
made more immersive by adding an appropriate audio track replicating sounds likely to
be heard in the virtual environment, making the sensory experience even more realistic.
Third, the locomotion setting can be improved by providing walking-speed adjustments
or other customizations so that every user can be accustomed to the system expeditiously.
Fourth, the enhanced graphics processing unit of the system can improve the reduced
synchronization speed, due to network latency. However, this enhancement requires an
immense amount of computing power to process quality computer graphics. Finally, the
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system can integrate other BIM-based 3D models (e.g., structural models and MEP models)
into the current architectural model to achieve interdisciplinary design coordination.

7. Limitations and Future Research Areas

Several limitations to this study need to be acknowledged. Some of them are connected
to inform future research areas. First, a total of eight participants joined the system
testing. Although the sample size is not large, the data were collected from the participants
during the in-person interview, and the whole testing setup was rigorous, to secure quality
data collection. Second, the MUVR treadmill system was developed to involve a pair
of participants to accomplish several design review tasks. Such multiple-user settings
limit the scope of this study. The system can be enhanced for further investigation of the
outcomes of individual-user participation and the VR experiences of single and multiple
users in different scenarios. Third, this study was focused on architectural design review
and collaboration. Thus, all participants invited are practitioners and students in the field
of architecture. Further research is recommended to investigate how other construction
professionals, such as engineers and surveyors, can adopt the system.

8. Conclusions

The BIM-based MUVR treadmill system was developed to enhance the immersion
level of architectural design review and collaboration. The prototype of the system was
verified and validated by eight participants. The results revealed that the system per-
formed well in user interactions in the virtual environment. Significantly, the participants
were most satisfied with the design overview function that allows architects and their
team members to review the overall architectural design with increased collaboration. To
enhance the immersive experience, the participants walked around and navigated the
building model on the VR treadmills. This study confirmed the safety performance of
the treadmills. However, the identified challenges are the reduced level of reality when
walking along staircases and the inaccuracy of precise stops at any particular location.
Further, as the system comprises new VR technology, the participants were divided into
two groups to detect any unconscious bias from different user generations. The findings
demonstrated that the group of practicing architects and the group of architecture students
scored differently in the agility of VR locomotion. This result reflects the new technology
readiness of the younger generation when using VR devices. This observation is the only
significant difference identified in this study between the two participant groups. This
study also proved that the MUVR server was stable and reliable. The system performed
reasonably to synchronize data between multiple VR users. Finally, the participants recom-
mended several suggestions to maximize the system’s effectiveness, such as improving
the level of detail of the VR model, providing audio tracks to users, and enhancing the
computing power for graphics processing. To conclude, VR has been gradually applied in
the AEC industry, and the need for BIM-based collaboration capabilities has increased. As
a result, collaborative VR has been recognized as an essential application for design and
construction. Thus, the system improves the level of immersion in MUVR applications
and paves the way to VR innovations in response to industry needs. The system allows
architects to interact directly with their team members and participate more collaboratively
in the design review process.
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