An Optimization-Based Strategy for Solving Optimal Power Flow Problems in a Power System Integrated with Stochastic Solar and Wind Power Energy
Abstract
:1. Introduction
2. Mathematical Formulation of OPF Problem
2.1. Cost Function Formulation for Thermal Generators
2.2. Cost Function Formulation for Emission and Carbon Tax
2.3. Cost Function Formulation for SPV and Wind Turbine
2.4. Mathematical Modeling of Uncertainties in RES
2.5. Objective Function Formulation
2.6. OPF Equality Constraints
2.7. Inequality Constraints in OPF
2.8. Power Losses and Voltage Deviation
3. Mathematical Formulation for Stochastic SPV and WT Power
4. Optimization Algorithm for OPF Solutions
4.1. Particle Swarm Optimization
4.2. Grey Wolf Optimization
4.3. HPSO-GWO Optimizer
5. Simulation Results and Discussion
5.1. Case 1: Total Cost, Reserve Cost, Direct Cost and Penalty Cost vs. PDF Parameters
5.2. Case 2: Total Cost, Penalty Cost, Reserve Cost and Direct Cost vs. Schedule Power
5.3. Case 3: Minimization of Total Generation Cost without Valve Point Effect
5.4. Case 4: Minimization of Total Generation Cost with Valve Point Effect
5.5. Case 5: Minimization of Total Generation Cost with Valve Point Effect and Carbon Tax
6. Conclusions
- The proposed HPSO-GWO algorithm has been effectively applied to adopted test systems to find the optimal values of the control settings.
- Minimization of total system generation costs without considering valve point effect, with valve effect, and valve effect with carbon tax imposed on emission) is an objective function which has been achieved using the HPSO-GWO algorithm.
- The dominance of the HPSO-GWO algorithm in comparison with the PSO, GWO, SHADE-SF, GOA and BMO algorithms has been confirmed.
- The HPSO-GWO has a speedy and steady convergence characteristic curve in comparison with PSO, GWO and SHADE-SF.
- Penetration from renewable energy sources further increased, and emissions have been reduced by 0.864 ton/h after imposing a carbon tax on emissions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hannan, M.; Tan, S.Y.; Al-Shetwi, A.Q.; Jern, K.P.; Begum, R. Optimized controller for renewable energy sources integration into microgrid: Functions, constraints and suggestions. J. Clean. Prod. 2020, 256, 120419. [Google Scholar] [CrossRef]
- Zia, U.; Wang, S.; Radosavljević, J.; Lai, J. A solution to the optimal power flow problem considering WT and PV generation. IEEE Access 2019, 7, 46763–46772. [Google Scholar]
- Alsharif, M.H.; Kim, J.; Kim, J.H. Opportunities and Challenges of Solar and Wind Energy in South Korea: A Review. Sustainability 2018, 10, 1822. [Google Scholar] [CrossRef] [Green Version]
- Chandy, K.M.; Low, S.H.; Topcu, U.; Xu, H. A simple optimal power flow model with energy storage. In Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 1051–1057. [Google Scholar]
- Minakshi, M.; Sharma, N.; Ralph, D.; Appadoo, D.; Nallathamby, K. Synthesis and Characterization of Li(Co0.5Ni0.5)PO4 Cathode for Li-Ion Aqueous Battery Applications. Electrochem. Solid-State Lett. 2011, 14, A86–A89. [Google Scholar] [CrossRef]
- Sundaram, M.M.; Watcharatharapong, T.; Duraisamy, S.; Rao, P.T.; Munichandraiah, N.; Chakraborty, S.; Ahuja, R. Synthesis, and crystal and electronic structure of sodium metal phosphate for use as a hybrid capacitor in non-aqueous electrolyte. Dalton Trans. 2015, 44, 20108–20120. [Google Scholar] [CrossRef] [Green Version]
- Divakaran, A.M.; Minakshi, M.; Bahri, P.A.; Paul, S.; Kumari, P.; Divakaran, A.M.; Manjunatha, K.N. Rational design on materials for developing next generation lith-ium-ion secondary battery. Prog. Solid State Chem. 2020, 62, 100298. [Google Scholar] [CrossRef]
- Biswas, P.P.; Suganthan, P.; Amaratunga, G.A. Optimal power flow solutions incorporating stochastic wind and solar power. Energy Convers. Manag. 2017, 148, 1194–1207. [Google Scholar] [CrossRef]
- Mota-Palomino, R.; Quintana, V.H. Sparse Reactive Power Scheduling by a Penalty Function—Linear Programming Technique. IEEE Trans. Power Syst. 1986, 1, 31–39. [Google Scholar] [CrossRef]
- Burchett, R.C.; Happ, H.H.; Vierath, D.R. Quadratically convergent optimal power flow. IEEE Power Eng. Rev. 1984, 4, 34–35. [Google Scholar] [CrossRef]
- Habibollahzadeh, H.; Luo, G.-X.; Semlyen, A. Hydrothermal optimal power flow based on a combined linear and nonlinear programming methodology. IEEE Trans. Power Syst. 1989, 4, 530–537. [Google Scholar] [CrossRef]
- Jabr, R.A. A Primal-Dual Interior-Point Method to Solve the Optimal Power Flow Dispatching Problem. Optim. Eng. 2003, 4, 309–336. [Google Scholar] [CrossRef]
- Dashtdar, M.; Najafi, M.; Esmaeilbeig, M. Calculating the locational marginal price and solving optimal power flow problem based on congestion management using GA-GSF algorithm. Electr. Eng. 2020, 102, 1549–1566. [Google Scholar] [CrossRef]
- Moeini-Aghtaie, M.; Abbaspour, A.; Fotuhi-Firuzabad, M.; Hajipour, E. A decomposed solution to multiple-energy carriers optimal power flow. IEEE Trans. Power Syst. 2014, 29, 707–716. [Google Scholar] [CrossRef]
- Bakirtzis, A.; Biskas, P.; Zoumas, C.; Petridis, V. Optimal power flow by enhanced genetic algorithm. IEEE Trans. Power Syst. 2002, 17, 229–236. [Google Scholar] [CrossRef]
- Biswas, P.P.; Suganthan, P.; Mallipeddi, R.; Amaratunga, G.A. Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques. Eng. Appl. Artif. Intell. 2018, 68, 81–100. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar] [CrossRef]
- Duman, S.; Güvenç, U.; Sönmez, Y.; Yörükeren, N. Optimal power flow using gravitational search algorithm. Energy Convers. Manag. 2012, 59, 86–95. [Google Scholar] [CrossRef]
- Bhowmik, A.R.; Chakraborty, A.K. Solution of optimal power flow using nondominated sorting multi objective gravitational search algorithm. Int. J. Electron. Power Energy Syst. 2014, 62, 323–334. [Google Scholar] [CrossRef]
- Bouchekara, H.R.E.-H.; Abido, M.A.; Chaib, A.E. Optimal Power Flow Using an Improved Electromagnetism-like Mechanism Method. Electr. Power Compon. Syst. 2016, 44, 434–449. [Google Scholar] [CrossRef]
- Pinheiro, R.B.; Nepomuceno, L.; Balbo, A.R. Solving largescale reactive optimal power flow problems by a primaldual M2BF approach. Opt. Eng. 2020, 21, 485–515. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science (MHS’95), Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Mirjalili, S. The Ant Lion Optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef] [Green Version]
- Abido, M. Optimal power flow using particle swarm optimization. Int. J. Electr. Power Energy Syst. 2002, 24, 563–571. [Google Scholar] [CrossRef]
- Naderi, E.; Pourakbari-Kasmaei, M.; Abdi, H. An efficient particle swarm optimization algorithm to solve optimal power flow problem integrated with FACTS devices. Appl. Soft Comput. 2019, 80, 243–262. [Google Scholar] [CrossRef]
- Singh, R.P.; Mukherjee, V.; Ghoshal, S. Particle swarm optimization with an aging leader and challengers algorithm for the solution of optimal power flow problem. Appl. Soft Comput. 2016, 40, 161–177. [Google Scholar] [CrossRef]
- Mohamed, A.-A.A.; Mohamed, Y.S.; El-Gaafary, A.A.; Hemeida, A.M. Optimal power flow using moth swarm algorithm. Electr. Power Syst. Res. 2017, 142, 190–206. [Google Scholar] [CrossRef]
- Duman, S. A Modified Moth Swarm Algorithm Based on an Arithmetic Crossover for Constrained Optimization and Optimal Power Flow Problems. IEEE Access 2018, 6, 45394–45416. [Google Scholar] [CrossRef]
- Attia, A.-F.; El Sehiemy, R.A.; Hasanien, H.M. Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. Int. J. Electr. Power Energy Syst. 2018, 99, 331–343. [Google Scholar] [CrossRef]
- Wenlei, B.; Eke, I.; Lee, K.Y. An improved artificial bee colony optimization algorithm based on orthogonal learning for optimal power flow problem. Control Eng. Pract. 2017, 61, 163–172. [Google Scholar]
- Khunkitti, S.; Siritaratiwat, A.; Premrudeepreechacharn, S.; Chatthaworn, R.; Watson, N.R. A hybrid DA-PSO optimization algorithm for multiobjective optimal power flow problems. Energies 2018, 11, 2270. [Google Scholar] [CrossRef] [Green Version]
- Reddy, S.S. Optimal power flow using hybrid differential evolution and harmony search algorithm. Int. J. Mach. Learn. Cybern. 2018, 10, 1077–1091. [Google Scholar] [CrossRef]
- Duman, S.; Li, J.; Wu, L.; Guvenc, U. Optimal power flow with stochastic wind power and FACTS devices: A modified hybrid PSOGSA with chaotic maps approach. Neural Comput. Appl. 2019, 32, 8463–8492. [Google Scholar] [CrossRef]
- Hmida, J.B.; Chambers, T.; Lee, J. Solving constrained optimal power flow with renewables using hybrid modified imperialist competitive algorithm and sequential quadratic programming. Electron. Power Syst. Res. 2019, 177, 105989. [Google Scholar] [CrossRef]
- Shilaja, C.; Arunprasanth, T. Optimal power flow using moth swarm algorithm with gravitational search algorithm considering wind power. Future Gener. Comput. Syst. 2019, 98, 708–715. [Google Scholar]
- Teeparthi, K.; Kumar, D.V. Multi-objective hybrid PSO-APO algorithm based security constrained optimal power flow with wind and thermal generators. Eng. Sci. Technol. Int. J. 2017, 20, 411–426. [Google Scholar] [CrossRef]
- Narimani, M.R.; Azizipanah-Abarghooee, R.; Zoghdar-MoghadamShahrekohne, B.; Gholami, K. A novel approach to multiobjective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type. Energy 2013, 49, 119–136. [Google Scholar] [CrossRef]
- Ramesh, V.; Li, X. A fuzzy multiobjective approach to contingency constrained OPF. IEEE Trans. Power Syst. 1997, 12, 1348–1354. [Google Scholar] [CrossRef]
- He, X.H.; Wang, W.; Wang, Y.N.; Kong, J.; Geng, J.; Fan, S.B. Fuzzy optimal power flow with multi-objective based on artificial bee colony algorithm in power system. Appl. Mech. Mater. 2014, 448, 2473–2477. [Google Scholar]
- Kumar, S.; Chaturvedi, D. Optimal power flow solution using fuzzy evolutionary and swarm optimization. Int. J. Electr. Power Energy Syst. 2013, 47, 416–423. [Google Scholar] [CrossRef]
- Liang, R.-H.; Tsai, S.-R.; Chen, Y.-T.; Tseng, W.-T. Optimal power flow by a fuzzy based hybrid particle swarm optimization approach. Electr. Power Syst. Res. 2011, 81, 1466–1474. [Google Scholar] [CrossRef]
- Sulaiman, M.H.; Mustaffa, Z. Optimal power flow incorporating stochastic wind and solar generation by metaheuristic optimizers. Microsyst. Technol. 2020, 1–15. [Google Scholar] [CrossRef]
- Alsac, O.; Stott, B. Optimal Load Flow with Steady-State Security. IEEE Trans. Power Appar. Syst. 1974, PAS-93, 745–751. [Google Scholar] [CrossRef] [Green Version]
- Yao, F.; Dong, Z.Y.; Meng, K.; Xu, Z.; Iu, H.H.; Wong, K.P. Quantum-inspired particle swarm optimization for power system opera-tions considering wind power uncertainty and carbon tax in Australia. IEEE Trans. Ind. Inform. 2012, 8, 880–888. [Google Scholar] [CrossRef]
- Ahmed, W.; Sheikh, J.A.; Ahmad, S.; Farjana, S.H.; Mahmud, M.A.P. Impact of PV system orientation angle accuracy on greenhouse gases mitigation. Case Stud. Therm. Eng. 2021, 23, 100815. [Google Scholar] [CrossRef]
- Roy, R.; Jadhav, H. Optimal power flow solution of power system incorporating stochastic wind power using Gbest guided artificial bee colony algorithm. Int. J. Electr. Power Energy Syst. 2015, 64, 562–578. [Google Scholar] [CrossRef]
- Chang, T.P. Investigation on frequency distribution of global radiation using different probability density functions. Int. J. Appl. Sci. Eng. 2010, 8, 99–107. [Google Scholar]
- Singh, N.; Singh, S.B. Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance. J. Appl. Math. 2017, 2017, 2030489. [Google Scholar] [CrossRef]
- Black, V. Cost and Performance Data for Power Generation Technologies; National Renewable Energy Laboratory: Golden, CO, USA, 2012.
Parameters | Quantity | Description/Ranges |
---|---|---|
Branches | 41 | [47] |
Buses | 30 | [47] |
Thermal generators | 3 | At bus #1 (slack), #2 and #8 |
SPV plant | 1 | At bus #13 |
WTs | 2 | At bus #5 and #11 |
Load connected | - | 283.4 MW and 126.3 MVAr |
Shunt compensators | 2 | At bus# 5(0.19 MVAr) and at bus# 24(0.04 MVAr) |
Load buses | 24 | (0.95–1.05) p.u. |
Voltages of voltage generation buses | 6 | (0.95–1.10) p.u. |
Control variables | 11 | Schedule active power for 5 sources (except slack). Generation buses voltages. |
Bus # | (MW) | (MW) | a | b | c | d | e | γ | β | α | ω | μT |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 50 | 200 | 0 | 2 | 0.00375 | 18 | 0.037 | 6.49 | −5.554 | 4.091 | 6.667 | 0.0002 |
2 | 20 | 80 | 0 | 1.75 | 0.0175 | 16 | 0.038 | 5.638 | −6.047 | 2.543 | 3.333 | 0.0005 |
8 | 10 | 35 | 0 | 3.25 | 0.00834 | 12 | 0.045 | 3.38 | −3.55 | 5.326 | 2 | 0.002 |
WT No. | Bus No. | Prw (MW) | Scale Factor (c) | Scale Factor (k) | Weibull Mean | Direct Cost Coefficient | Reserve Cost Coefficient | Penalty Cost Coefficient |
---|---|---|---|---|---|---|---|---|
1 | 5 | 75 | 9 | 2 | = 7.976 m/s | = 1.6 | = 3 | = 1.5 |
2 | 11 | 60 | 10 | 2 | = 8.862 m/s | = 1.75 | = 3 | = 1.5 |
Bus No. | Prs (MW) | Mean (μ) | Standard Deviation (σ) | Lognormal Mean | Direct Cost Coefficient | Reserve Cost Coefficient | Penalty Cost Coefficient |
---|---|---|---|---|---|---|---|
13 | 50 | 6 | 0.6 | = 483 W/m2 | = 1.6 | = 3 | = 1.5 |
Parameters | Min. Value | Max. Value | PSO | GWO | HPSO-GWO | SHADE-SF | |
---|---|---|---|---|---|---|---|
Swing generator | PTG1(MW) | 50 | 140 | 136.056 | 134.457 | 133.046 | 135.247 |
Control variables | PTG2(MW) | 20 | 80 | 38.812 | 38.312 | 38.418 | 38.691 |
PWT5(MW) | 0 | 75 | 39.642 | 39.337 | 39.344 | 39.694 | |
PTG8(MW) | 10 | 35 | 10.000 | 10.008 | 10.000 | 10.000 | |
PWT11(MW) | 0 | 60 | 33.696 | 33.277 | 33.257 | 33.673 | |
PSPV13(MW) | 0 | 50 | 31.037 | 33.768 | 35.174 | 32.203 | |
V1(p.u.) | 0.95 | 1.10 | 1.1 | 1.1 | 1.1 | 1.073 | |
V2(p.u.) | 0.95 | 1.10 | 1.090 | 1.087 | 1.090 | 1.058 | |
V5(p.u.) | 0.95 | 1.10 | 1.069 | 1.068 | 1.068 | 1.034 | |
V8(p.u.) | 0.95 | 1.10 | 1.094 | 1.088 | 1.098 | 1.045 | |
V11(p.u) | 0.95 | 1.10 | 1.1 | 1.1 | 1.1 | 1.099 | |
V13(p.u.) | 0.95 | 1.10 | 1.094 | 1.093 | 1.094 | 1.049 | |
Generator reactive power | QTG1(MVAr) | −20 | 150 | −11.682 | −18.768 | −6.721 | −2.494 |
QTG2(MVAr) | −20 | 60 | 18.863 | 27.808 | 4.773 | 12.444 | |
QWT5(MVAr) | −30 | 35 | 25.510 | 23.526 | 35.000 | 22.954 | |
QTG8(MVAr) | −15 | 40 | 40.000 | 40.000 | 40.000 | 40.000 | |
QWT11(MVAr) | −25 | 30 | 19.147 | 19.221 | 17.862 | 30.000 | |
QSPV13(MVAr) | −20 | 25 | 21.706 | 21.759 | 22.235 | 14.879 | |
Objective functions | Gen. cost ($/h) | - | - | 773.213 | 773.566 | 772.736 | 773.979 |
Ploss (MW) | - | - | 5.841 | 5.821 | 5.763 | 6.107 | |
Emission (t/h) | - | - | 1.890 | 1.712 | 1.570 | 1.798 | |
V.D (p.u.) | - | - | 1.033 | 0.999 | 1.047 | 0.452 |
Parameters | Min. Value | Max. Value | PSO | GWO | HPSO-GWO | SHADE-SF | BMO [46] | GOA [46] | |
---|---|---|---|---|---|---|---|---|---|
Swing generator | PTG1(MW) | 50 | 140 | 134.908 | 135.123 | 135.053 | 134.908 | 134.908 | 134.909 |
Control variables | PTG2(MW) | 20 | 80 | 29.057 | 27.090 | 27.630 | 27.966 | 26.602 | 28.066 |
PWT5(MW) | 0 | 75 | 43.875 | 42.769 | 43.290 | 43.406 | 43.817 | 42.766 | |
PTG8(MW) | 10 | 35 | 10.000 | 10.000 | 10.000 | 10.000 | 10.000 | 12.241 | |
PWT11(MW) | 0 | 60 | 37.192 | 36.822 | 37.224 | 36.727 | 36.047 | 36.468 | |
PSPV13(MW) | 0 | 50 | 33.850 | 37.301 | 35.845 | 36.179 | 37.812 | 35.505 | |
V1(p.u.) | 0.95 | 1.10 | 1.100 | 1.100 | 1.099 | 1.0704 | 1.081 | 1.024 | |
V2(p.u.) | 0.95 | 1.10 | 1.089 | 1.089 | 1.088 | 1.0565 | 0.950 | 1.097 | |
V5(p.u.) | 0.95 | 1.10 | 1.070 | 1.071 | 1.072 | 1.0348 | 1.045 | 1.002 | |
V8(p.u.) | 0.95 | 1.10 | 1.086 | 1.082 | 1.099 | 1.0945 | 1.049 | 1.075 | |
V11(p.u) | 0.95 | 1.10 | 1.100 | 1.097 | 1.099 | 1.0996 | 1.100 | 1.061 | |
V13(p.u.) | 0.95 | 1.10 | 1.091 | 1.099 | 1.095 | 1.0531 | 1.068 | 1.064 | |
Generator reactive powers | QTG1(MVAr) | −20 | 150 | −10.613 | −10.334 | −13.645 | −5.100 | 18.050 | −20.000 |
QTG2(MVAr) | −20 | 60 | 18.262 | 14.144 | 22.185 | 13.073 | −20.000 | 60.000 | |
QWT5(MVAr) | −30 | 35 | 25.050 | 27.894 | 25.071 | 22.552 | 30.344 | −5.628 | |
QTG8(MVAr) | −15 | 40 | 40.000 | 40.000 | 40.000 | 40.000 | 40.000 | 40.000 | |
QWT11(MVAr) | −25 | 30 | 19.496 | 17.909 | 20.023 | 30.000 | 27.869 | 19.217 | |
QSPV13(MVAr) | −20 | 25 | 20.487 | 23.054 | 19.259 | 16.498 | 19.998 | 25.000 | |
Objective functions | Gen. cost ($/h) | - | - | 781.321 | 780.924 | 780.587 | 781.293 | 781.652 | 785.711 |
Ploss (MW) | - | - | 5.482 | 5.516 | 5.532 | 5.785 | - | - | |
Emission (t/h) | - | - | 1.762 | 1.786 | 1.778 | 1.762 | - | - | |
Carbon tax | - | - | - | - | - | - | - | - | |
V.D (p.u.) | - | - | 1.021 | 1.066 | 0.978 | 0.466 | - | - |
Parameters | Min. Value | Max. Value | PSO | GWO | HPSO-GWO | SHADE-SF | BMO [46] | GOA [46] | |
---|---|---|---|---|---|---|---|---|---|
Swing generator | PTG1(MW) | 50 | 140 | 123.663 | 122.783 | 123.956 | 123.123 | 123.127 | 134.908 |
Control variables | PTG2(MW) | 20 | 80 | 33.350 | 33.424 | 33.605 | 31.994 | 31.947 | 25.215 |
PWT5(MW) | 0 | 75 | 46.061 | 45.098 | 46.226 | 45.470 | 45.403 | 41.755 | |
PTG8(MW) | 10 | 35 | 10.000 | 10.010 | 10.000 | 10.000 | 10.000 | 14.648 | |
PWT11(MW) | 0 | 60 | 38.838 | 37.739 | 39.033 | 38.310 | 38.270 | 34.946 | |
PSPV13(MW) | 0 | 50 | 36.616 | 39.372 | 35.785 | 39.783 | 39.865 | 38.053 | |
V1(p.u.) | 0.95 | 1.10 | 1.100 | 1.100 | 1.100 | 1.070 | 1.078 | 1.092 | |
V2(p.u.) | 0.95 | 1.10 | 0.950 | 1.089 | 1.090 | 1.056 | 1.064 | 0.958 | |
V5(p.u.) | 0.95 | 1.10 | 1.100 | 1.072 | 1.071 | 1.035 | 1.043 | 1.071 | |
V8(p.u.) | 0.95 | 1.10 | 1.100 | 1.097 | 1.088 | 1.100 | 1.047 | 1.095 | |
V11(p.u) | 0.95 | 1.10 | 1.100 | 1.098 | 1.100 | 1.098 | 1.100 | 1.002 | |
V13(p.u.) | 0.95 | 1.10 | 1.100 | 1.096 | 1.095 | 1.051 | 1.060 | 1.052 | |
Generator reactive powers | QTG1(MVAr) | −20 | 150 | 12.477 | −14.266 | 12.264 | −3.215 | −1.849 | 41.855 |
QTG2(MVAr) | −20 | 60 | −20.000 | 20.714 | −20.000 | 10.738 | 12.406 | −20.000 | |
QWT5(MVAr) | −30 | 35 | 35.000 | 23.310 | 35.000 | 22.232 | 22.918 | 35.000 | |
QTG8(MVAr) | −15 | 40 | 40.000 | 40.000 | 40.000 | 40.000 | 35.686 | 40.000 | |
QWT11(MVAr) | −25 | 30 | 19.789 | 18.089 | 19.916 | 30.000 | 28.506 | −0.900 | |
QSPV13(MVAr) | −20 | 25 | 24.819 | 23.340 | 24.979 | 15.950 | 17.094 | 21.178 | |
Objective functions | Gen. cost ($/h) | - | - | 810.071 | 810.154 | 809.277 | 810.404 | 810.798 | 822.307 |
Ploss (MW) | - | - | 5.128 | 5.029 | 5.132 | 5.281 | - | - | |
Emission (t/h) | - | - | 0.898 | 0.854 | 0.914 | 0.871 | - | - | |
Carbon tax | - | - | 17.96 | 17.08 | 18.28 | 17.42 | - | - | |
V.D (p.u.) | - | - | 1.033 | 1.097 | 1.027 | 0.462 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riaz, M.; Hanif, A.; Hussain, S.J.; Memon, M.I.; Ali, M.U.; Zafar, A. An Optimization-Based Strategy for Solving Optimal Power Flow Problems in a Power System Integrated with Stochastic Solar and Wind Power Energy. Appl. Sci. 2021, 11, 6883. https://doi.org/10.3390/app11156883
Riaz M, Hanif A, Hussain SJ, Memon MI, Ali MU, Zafar A. An Optimization-Based Strategy for Solving Optimal Power Flow Problems in a Power System Integrated with Stochastic Solar and Wind Power Energy. Applied Sciences. 2021; 11(15):6883. https://doi.org/10.3390/app11156883
Chicago/Turabian StyleRiaz, Muhammad, Aamir Hanif, Shaik Javeed Hussain, Muhammad Irfan Memon, Muhammad Umair Ali, and Amad Zafar. 2021. "An Optimization-Based Strategy for Solving Optimal Power Flow Problems in a Power System Integrated with Stochastic Solar and Wind Power Energy" Applied Sciences 11, no. 15: 6883. https://doi.org/10.3390/app11156883
APA StyleRiaz, M., Hanif, A., Hussain, S. J., Memon, M. I., Ali, M. U., & Zafar, A. (2021). An Optimization-Based Strategy for Solving Optimal Power Flow Problems in a Power System Integrated with Stochastic Solar and Wind Power Energy. Applied Sciences, 11(15), 6883. https://doi.org/10.3390/app11156883