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Abstract: We investigated the generation of proton- and alpha-induced nuclear cross-section data in
the production of Indium-111 (111In) for application in nuclear medicine. Here, we are interested in
three reaction channels, which are 109Ag (α, 2n), 111Cd (p, n) and 112Cd (p, 2n), in the production
of 111In. A random forest algorithm was used to generate nuclear cross-section data by using an
experimental nuclear cross-section from the Experimental Nuclear Reaction Data (EXFOR) database
as input. Hence, reasonably accurate regression curves of nuclear cross-section data could be
produced with the evaluated nuclear data library ENDF/B-VII.0 set as the benchmark.

Keywords: 111In radionuclide; machine learning; supervised learning

1. Introduction

Nuclear reaction cross-section data are very important to the field of medical radiobiol-
ogy in both diagnostic imaging and targeted therapy for cancer treatment because they can
be used to optimize established and new nuclear reaction routes, which is crucial for the
optimization of the production of radionuclide [1]. One of the most common radionuclides
in diagnostic nuclear medicine is Indium-111 (111In), whose relatively short decay life and
low energy gamma photon emissions make it popular for radiolabeling target cells [2].
The usual production of 111In is performed by irradiating cadmium with protons, which
can be achieved using a particle accelerator. In addition, nuclear cross-section data are
important in nuclear reactions to identify possible production pathways for maximizing the
yield of radionuclide and minimizing the impurity. For example, Ali et al. (2021) studied
the production pathway of copper-67 via proton-induced nuclear reaction with a zinc-68
target since there is a limited supply of copper-67, and the production nuclear reaction
68Zn (p, 2p) 67Cu could be achieved by using incident proton energy-operable in-house
medical cyclotron. Another example is that 72As can also be used in theranostic therapy,
specifically in positron emission tomography (PET). In the production of 72As, Ge and Se
targets are used in proton-induced nuclear reaction. Other than proton-induced nuclear
reaction, muon capture has also previously been used in the production of various useful
radionuclides such as technetium-99m, which is the decay product of molybdenum-99 [3].
Resonant photonuclear isotope transmutation has also been reported previously to use
photonuclear reaction in the production of technetium-99 [4].
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Machine learning has become increasingly popular in recent years, especially for
making accurate predictions by training on a large dataset. The availability of big and
public curated databases in various fields of science makes a data-driven approach such as
machine learning favorable in modeling physical sciences. In the field of nuclear physics,
databases of evaluated and experimental nuclear cross-sections such as the Evaluated
Nuclear Data File (ENDF/B-VII.0) database, the Recommended Nuclear Data for the
Production of Selected Therapeutic Radionuclides database and the Experimental Nuclear
Reaction Data (EXFOR) database are constantly updated with excitation functions of
nuclear reactions of various important radionuclides in medical radiobiology [5–7]. Despite
being a new approach in nuclear physics, machine learning has been applied to improve
the accuracy of nuclear cross-section data by using random forest algorithms [8]. A
random forest algorithm is used as a benchmark for the quality of the Evaluated Nuclear
Data Files (ENDF) library by tracing discrepancy between simulated and experimental
effective neutron multiplication factors, ke f f . Gaussian process regression has also been
performed to generate a data-driven nuclear cross-section of a nickel target using the
EXFOR library as the predictor [9] and to make predictions on the uncertainty of the
nuclear cross-section data.

In this paper, a random forest algorithm is used to build models to generate the nuclear
cross-section data of proton- and deuteron-induced nuclear reactions with 111In as the
emission. 109Ag (α, 2n) 111In, 111Cd (p, n) 111In and 112Cd (p, 2n) 111In are the reaction
channels that we were interested in. The generated nuclear cross-section data were then
compared with the evaluated nuclear data library TENDL-2019 and the Recommended
Nuclear Data for the Production of Selected Therapeutic Radionuclides database [7,8].

2. Materials and Methods

The predictor of this study consisted of the proton and deuteron incident energy in the
range of 0–80 MeV and the experimental nuclear cross-section data obtained from the EX-
FOR library. The descriptor was the TENDL-2019 evaluated library and the Recommended
Nuclear Data for the Production of Selected Therapeutic Radionuclides database, where
regression was performed. The list of predictors and descriptors is tabulated inside Table 1.
The experimental nuclear cross-section data of the TENDL-2019 evaluated library and the
Recommended Nuclear Data for the Production of Selected Therapeutic Radionuclides
database are also plotted in Figure 1. TENDL-2019 is a nuclear data library based on TALYS
code calculation, while the Recommended Nuclear Data for the Production of Selected
Therapeutic Radionuclides database is based on the spline interpolation of experimental
nuclear cross-section data. In Figure 1c, the results of Hermanne et al. (2014) are slightly
higher compared to other experimental cross-section results and the spline fitted line, espe-
cially in between 10 and 13 MeV, because it is not included during the spline fitting of the
112Cd (p, 2n) 111In cross-section in the Recommended Nuclear Data for the Production of
Selected Therapeutic Radionuclides database [21]. However, we included the experimental
cross-section data of Hermanne et al. (2014) to increase the amount of input data available
for training [21].

Table 1. List of the predictors and descriptors used as input–output (I/O).

Variable Name I/O

Incident Energy (MeV ) I

Experimental cross− sec tion data (mB ) [2,9,10] I

TENDL− 2019 evaluated library (mB ) O

Recommended Nuclear Data for the Production of Selected Therapeutic Radionuclides
database O

The predictors and descriptors were normalized using min–max normalization. To
avoid overfitting our model, we performed a k-fold cross-validation, where k is a randomly
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chosen subset of equal or almost equal sets before being used for validation at least
once for each subset. Here, k was set to 5, which means we performed 5-fold cross-
validation. Then, feature selection was performed, followed by Bayesian optimization
to determine the optimized number of predictors and the combination of predictors and
hyperparameters used.

A random forest algorithm was used in our study. Random forest is a type of super-
vised machine learning algorithm where multiple decision trees are grown recursively
using ensemble methods. Each of these decisions acts as a regression function, and later,
all are averaged out as the output of the random forest algorithm. There are two different
kinds of ensemble methods used in random forest algorithms, namely boosted trees and
bagged trees [23,24]. In bagged trees, random predictors of the same size are used to
build the decision tree, while in boosted trees, the weight of each decision tree of the weak
learner is adjusted. Random forest is a non-parametric algorithm that does not assume any
prior parameters.

Figure 1. Graph of nuclear cross-section data of (a) 109Ag (α, 2n) 111In, (b) 111Cd (p, n) 111In and (c)
112Cd (p, 2n) 111In nuclear reactions from various studies used in this work [2,11–22] in between 0
and 80 MeV proton incident energy.

3. Results and Discussions

As a preliminary step, forward feature selection was performed to optimize the
number of predictors. Since the models of our machine learning depend on the number
and combination of predictors, estimators such as correlation coefficient (R2) and the root
mean square error (RMSE) can be the benchmark to evaluate the performance of our
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machine learning. The correlation coefficient (R2) measures the closeness of a prediction to
the actual value, which is defined as

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − 〈y〉)

2 . (1)

RMSE is defined as

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
, (2)

where n is the number of observations, yi is the actual value, ŷi is the predicted value and
〈y〉 is the overall mean. The ideal way to generate nuclear cross-section data is if the models
can give an R2 value close to one and RMSE close to zero. Then, we initially removed all of
the single point experimental datasets before proceeding with the forward feature selection.
When the forward feature selection was applied, more features were added into the feature
space sequentially. By manipulating the number of features for the predictors and different
combinations of features, the accuracy of the machine can be improved.

The number of predictors and combination of predictors along with their respective
RMSE and correlation coefficients are tabulated in Tables 2–4. Different combinations
of predictors are considered for 109Ag (α, 2n) 111In, 111Cd (p, n) 111In and 111Cd (p, n)
111In, respectively, in Tables 2–4. The forward selection step was taken whereby we added
features into empty feature space, with the total number of features increasing from 1 to
8, from 1 to 5 and from 1 to 4 for 109Ag (α, 2n) 111In, 111Cd (p, n) 111In and 111Cd (p, n)
111In, respectively. The range of correlation coefficient values, R2, for all of our predictions
is between 0.94 to 0.99, which indicates a good agreement between the prediction and
the original data. In Tables 2–4, the optimized number of features (with high R2 and low
RMSE) is highlighted.

Table 2. Forward selection of features and the performance of machine learning algorithms for 109Ag (α, 2n) 111In [2,11,12,14–
17,25]. The feature combination that have the lowest RMSE and highest R2 is highlighted in yellow.

Feature Combination Number of Features RMSE R2

Tarkanyi et al. [2] 1 30.432 0.99

Tarkanyi et al. + Patel et al. [2,11] 2 29.138 0.99
Tarkanyi et al. + Chuvilskaya et al. + Patel et al. [2,11,12] 3 28.418 0.99
Tarkanyi et al. + Chuvilskaya et al. + Peng et al. + Patel et al. [2,11,12,14] 4 28.555 0.99

Tarkanyi et al. + Chuvilskaya et al. + Peng et al. + Patel et al. + Fuqing et al.
[2,11,12,14,25] 5 29.088 0.99

Tarkanyi et al. + Chuvilskaya et al. + Peng et al. + Patel et al. + Fuqing et al. +
Chaubey et al. [2,11,12,14,16,25] 6 30.554 0.99

Tarkanyi et al. + Chuvilskaya et al. + Peng et al. + Patel et al. + Fuqing et al. +
Guin et al. + Chaubey et al. [2,11,12,14–16,25] 7 32.055 0.99

Tarkanyi et al. + Chuvilskaya et al. + Peng et al. + Patel et al. + Fuqing et al. +
Guin et al. + Mukhrjee et al. + Chaubey et al. [2,11,12,14–17,25] 8 30.987 0.99

Table 3. Forward selection of features and the performance of machine learning algorithms for 111Cd (p, n) 111In [2,18–20].
The feature combination that have the lowest RMSE and highest R2 is highlighted in yellow.

Feature Combination Number of Features RMSE R2

Skakun et al. [18] 1 28.782 0.98
Skakun et al. + Otozai et al. [18,20] 2 31.947 0.98
Skakun et al. + Otozai et al. + Marten et al. [18–20] 3 33.948 0.98
Skakun et al. + Otozai et al. + Marten et al. + Tarkanyi et al. [2,18–20] 4 45.742 0.96
Skakun et al. + Otozai et al. + Marten et al. + Tarkanyi et al. [2,18–20] 5 56.327 0.94
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Table 4. Forward selection of features and the performance of machine learning algorithms for 112Cd (p, 2n) 111In [2,18,20,22].
The feature combination that have the lowest RMSE and highest R2 is highlighted in yellow.

Feature Combination Number of Features RMSE R2

Otozai et al. [20] 1 27.328 0.99
Otozai et al. + Skakun et al. [18,20] 2 25.418 0.99
Otozai et al. + Skakun et al. + Tarkanyi et al. [2,18,20] 3 30.326 0.99
Otozai et al. + Skakun et al. + Hermanne et al. + Tarkanyi et al. [2,18,20,22] 4 33.432 0.99

Figure 2 shows the trends of the number of predictors versus the RMSE. Intuitively,
we may think that the higher the number of features used as predictors is, the higher
the correlation coefficient will be and the lower the RMSE of our models will be, since
using more datasets to build the models may enhance the prediction. However, these
three cases demonstrate that a low RMSE value could be obtained with the use of between
one and three features for the machine learning models. This means that only a small
number of features are needed to build machine learning models that can generate nuclear
cross-section data with good accuracy. Thus, better prediction can be achieved with a small
dataset as the input.

Figure 2. Graph of the number of features versus root mean square error (RMSE) of (a) 109Ag (α, 2n)
111In, (b) 111Cd (p, n) 111In and (c) 112Cd (p, 2n) 111In nuclear reactions.

After the forward selection step, Bayesian optimization was also performed to opti-
mize the hyperparameters of the random forest algorithm of the optimized model. The
number of iterations was set to 100 steps. Here, the hyperparameters of the random forest
consisted of the number of leaves, number of learners and number of predictors for the
random forest, which were set between 1 and 34, between 10 and 500 and between 1 and 4,
respectively.

In Table 5, the optimized hyperparameters of our machine learning model are tabu-
lated. A single regression tree always suffers from high variance, meaning that the results
can be very different if we randomly split the dataset into two sets at random and fit the
regression tree to both of them. Thus, the ensemble method of bagged tree was introduced
into the random forest algorithm, which is a procedure to reduce the variance. The bagged
tree method is a bootstrap aggregation method that reduces the variance and increases the
prediction accuracy by taking repeated N random samples from the training datasets. This
produced N regression trees using N bootstrapped training sets, and we then averaged
all of the N regression trees. Each regression tree had high variance and low bias with
averaging the prediction that reduces variance. In this study, we used the bagged tree
method to generate a regression curve with the optimized hyperparameters in Table 5.
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Table 5. Hyperparameters of Bayesian optimization.

Nuclear Reaction Optimized Number of Features Number of Leaves Number of Learners Number of Predictors

109Ag (α, 2n) 111In 3 3 27 2
111Cd (p, n) 111In 1 2 30 4
112Cd (p, 2n) 111In 2 1 28 4

In Figure 3, we plotted the generated cross-section using an RF algorithm with ex-
perimental cross-sections as the input. From Figure 3, we can observe that the regression
curve generated by our optimized model shows a good agreement with the TENDL-2019
evaluated data library and the Recommended Nuclear Data for the Production of Selected
Therapeutic Radionuclides database results for 109Ag (α, 2n) 111In, 111Cd (p, n) 111In and
112Cd (p, 2n) 111In nuclear reactions, with R2 values between 0.99 and 0.98. This indicates
the potential use of a machine learning approach in generating nuclear cross-section data.

Figure 3. Generated cross-section using RF algorithm of (a) 109Ag (α, 2n) 111In, (b) 111Cd (p, n)
111In and (c) 112Cd (p, 2n) 111In nuclear reactions. Black line is the TENDL-2019 and Recommended
Nuclear Data for the Production of Selected Therapeutic Radionuclide databases, and red line is our
prediction using RF.

However, we can observe that the peak of the nuclear cross-section of 111Cd (p, n)
111In in Figure 3b is smaller compared to that of the Recommended Nuclear Data for
the Production of Selected Therapeutic Radionuclide database. We suspect that this is
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because of the inherent error of each experimental data point used in the training. Thus, we
expect that this small deviation can be improved by assigning a weight to each data point
used in training based on its experimental error bar. Our study was limited to generating
the nuclear cross-section data and not their errors, which is much more important in
experimental design. Since we only studied well-known nuclear reactions, for future work,
we plan to generate nuclear cross-section data of rare nuclear reactions with a machine
learning approach using the combination of simulation and experimental datasets as
the input.

4. Conclusions

In conclusion, we have studied the performance of a random forest (RF) machine
learning algorithm in generating nuclear cross-section data for 109Ag (α, 2n) 111In, 111Cd (p,
n) 111In and 112Cd (p, 2n) 111In nuclear reactions. We used the experimental dataset from
the EXFOR database as the predictor and the datasets from the TENDL-2019 evaluated data
library and the Recommended Nuclear Data for the Production of Selected Therapeutic
Radionuclides database as the descriptors. A feature selection step was performed to
determine the best number of predictors and combination of predictors that give the highest
correlation coefficient and the lowest RMSE for our RF machine learning models. We found
that not many experimental datasets are needed to generate nuclear cross-section data
with good accuracy. We also found that the RF models are capable of generating nuclear
cross-section data close to the predictor dataset with a correlation coefficient between 0.98
and 0.99 and RMSE between 25.418 and 28.782. This suggests that the machine learning
approach can be applied in generating nuclear cross-section data.
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