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Abstract: This study aims at the development of an artificial neural network (ANN) model to
optimize relief well design in Pohang Basin, South Korea. Relief well design in carbon capture
and geological storage (CCS) requires complex processes and excessive iterative procedures to
obtain optimal operating parameters, such as CO2 injection rate, water production rate, distance
between the wells, and pressure at the wells. To generate training and testing datasets for ANN
model development, optimization processes for a relief well with various injection scenarios were
performed. Training and testing were conducted, where the best iteration and regression were
considered based on the calculated coefficient of determination (R2) and root mean square error
(RMSE) values. According to validation with a 20-year injection scenario, which was not included
in the training datasets, the model showed great performance with R2 values of 0.96 or higher for
all the output parameters. In addition, the RMSE values for the BHP and the trapping mechanisms
were lower than 0.04. Moreover, the location of the relief well was reliably predicted with a distance
difference of only 20.1 m. The ANN model can be robust tool to optimize relief well design without a
time-consuming reservoir simulations.

Keywords: carbon capture and geological storage; relief well; artificial neural network; storage efficiency

1. Introduction

Carbon capture and geological storage (CCS) has been considered a promising method
of greenhouse gas reduction [1]. To develop cost-effective and stable CCS technology, ex-
perimental studies have been performed to identify potential rock property alterations due
to injected CO2 with experimental approaches, such as core analysis and X-ray diffraction
(XRD) [2,3]. There are related numerical studies focusing on CO2 plume migration and
stability analysis to analyze potential CO2 migration pathways and the maximum sustain-
able injection pressure during geological storage of CO2 [4,5]. In addition, a few studies
have also been performed to monitor field-scale behavior, such as seabed deformation [6,7].
In 2019, globally, there were 51 field-scale CCS facilities under operation, construction, or
under serious consideration [8].

According to the Paris Agreement in 2015, South Korea, which is the eighth largest
CO2-emitting country in the world, needs to reduce its greenhouse gas emission by 37%
of the business-as-usual (BAU) value by 2030 (850.6 MtCO2e), aiming at 536 MtCO2e [9].
In an attempt to achieve the goal, Korea’s national R&D programs have been focusing on
practical designs of CCS [10]. Although CCS is generally aimed at depleted hydrocarbon
reservoirs, saline aquifers, and salt caverns, South Korea is primarily targeting deep saline
aquifers as the country has quite restricted geological alternatives [11–13].

For the successful application of a CCS project, the first step is to find a secured geo-
logical structure with sufficient storage capacity and CO2 injectivity [14], which strongly
depend on reservoir properties, such as porosity, permeability, and geological bound-
aries [15,16]. As the injection process is performed under restricted capacity and injectivity,
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pore pressure build-up occurs, which may lead to caprock instability, fault reactivation,
and possible facility damages [14,17]. Although multiple methods have been proposed to
improve CO2 injectivity, such as acidizing, fracturing, clay fixation, and thermal treatment,
no significant enhancement has been reported yet [18–20].

Installing a “relief well” may solve problems related to pore pressure build-up by
relieving it by producing formation fluid during CO2 injection [21–23]. There are studies
using numerical approaches focusing on operating a relief well in a deep saline aquifer
to improve both the CO2 injectivity and the total storage capacity. Buscheck et al. [24]
proposed the active CO2 reservoir management (ACRM) strategy, which combines water
production with CO2 injection to mitigate pore pressure build-up and enhance the CO2
injection rate. The authors insisted that producing formation water can provide safer CO2
storage by relieving pore pressure. Buscheck et al. [25] proposed that a produced water well
can be repurposed for CO2 injection after CO2 breakthrough. Cihan et al. [26] developed the
constrained differential evolution (CDE) algorithm to solve global optimization problems
related to pressure management in geological CO2 storage, targeting a sandstone reservoir
in the Southern San Joaquin Basin in California. Hwang et al. [27] analyzed CO2 storage
capacity using a water production well from a saline aquifer. Kim et al. [28] proposed
dual-tubing, which combines a CO2 injection well and a horizontal water production well,
to improve CO2 storage capacity.

Although adopting numerical approaches may be a reliable method for a relief well
design, it requires complex processes and excessive iterative procedures to obtain the
optimal operation variables, such as CO2 injection rate, water production rate, the dis-
tance between the wells, and pressure at the relief well. Numerous case studies need to
be performed once a relief well location is taken into account for optimization. These
challenges can be solved by implementing an artificial neural network (ANN), which is one
of the most frequently used artificial intelligence methods for geo-scientific problems, by
identifying the non-linear relationship between parameters by learning patterns [29]. The
ANN has been incorporated into problems related to reservoir characterization, multiphase
fluid flow, hydrodynamic modeling, hydraulic fracturing fluid leak-off prediction, fluid
production, and injection design [30–36]. For CCS designs, Sipocz et al. [37] developed an
ANN model for a CO2 chemical absorption capture plant and Song et al. [38] constructed
an ANN-GCS model to predict the effectiveness of trap mechanisms for CO2 sequestration
in a saline aquifer. Wen et al. [39] developed a neural network model to predict CO2 plume
migration in heterogeneous reservoirs from an injection well.

Despite its strength and applicability, ANNs have not been implemented for optimal
relief well design during CO2 storage. Therefore, in this study, we propose an ANN model
for optimal relief well design, targeting the Pohang Basin in South Korea, to determine
optimum well location and operating conditions. An ANN model for relief well optimiza-
tion was developed to identify the relationship between selected parameters, including
geological properties, operating conditions, total storage capacity, and storage efficiency,
and to predict the optimal location of the relief well. In order to generate the training
and testing datasets, the optimization process for various injection scenarios using a relief
well was performed in an actual field model. The training and testing procedures were
executed using a model fitted in Python with Keras, based on the calculated coefficient of
determination (R2) and root mean squared error (RMSE) values. In addition, the validity of
the developed ANN model was investigated with the results of a certain injection scenario,
which were not included in the training datasets.

2. Study Area
2.1. Geological Settings

The target area of this study is located at the Pohang Basin on the southeastern coast of
South Korea (Figure 1). A CO2 injection well was drilled, and about 100 tons of CO2 were
injected in 2017 as a field scale pilot test [40]. The average water depth of the target area is
15.0 m, and the depth at the injection well is 15.9 m [41]. Based on geological studies, it was
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found that the target formation contains coarse-grained conglomerate and sandstone at
depths deeper than 740.0 m from the sea level. In addition, potential leakage of the injected
CO2 in the upper direction can be prevented with an overlying caprock of 700.0 m or
thicker [42] (Figure 2a). It was found that the target formation contains two aquifer layers
that were technically available for CO2 injection and storage, aquifer A and B (Figure 2b).
Aquifer A, which consists of alternating sandstone layers, has a thickness of 11.0 m, and an
average permeability of 30 md. On the other hand, aquifer B contains commingled layers
of sandstone, mudstone, and conglomerate. The thickness of aquifer B is 14.0 m with an
average permeability of 11 md.

Figure 1. Location of Pohang Basin, South Korea (left). The white rectangle indicates the target area
for geological CO2 storage.

Figure 2. (a) A schematic view of the target aquifers and (b) interpretation of lithology of the target
aquifers based on well logging data obtained from the injection well.

2.2. Three-Dimensional Geological Model Construction

A 3D geological model of the target aquifer was constructed based on seismic survey
and exploration well data obtained by the Korea Institute of Geoscience and Mineral
Resources (KIGAM) in 2005 [43,44] (Figure 3). The modeled area is 2.8 km by 2.2 km in
the east–west and the south–north direction, respectively. As shown in Figure 3, the target
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aquifers become shallower as the distance from the injection well increases to the eastern
and western boundaries. The number of grids is, respectively, 95 × 152 × 56 in the x-, y-,
and z-(vertical) directions, including the overlying caprock and the intervening intra seal
layer. The target aquifers have 24 grid-layers with a vertical length of 1 m. To improve the
simulation computing speed, 32 grid-layers for the intra seal were treated as null-blocks
with a permeability of 0.001 md.

Figure 3. A geological model of the target aquifers in the Pohang Basin. The faults EF1 and EF2 are
450.3 m and 530.2 m away from the injection well (IW).

According to the fault information interpreted from the seismic data, there are 6
normal faults in the target aquifers [45]. The faults are located west and east from the
injection well, and were named WF1 and WF2, and EF1, EF2, EF3, and EF4, respectively.
Faults WF1, EF3, and EF4 are closed boundaries that limit the crossing fluid flow. For
the southern and northern boundaries of the model, no fluid flow boundary conditions
were assumed for a conservative analysis in terms of CO2 storage capacity and injectivity.
The additional 3 normal faults (WF2, EF1, and EF2) are located closer to the injection
well, intersecting aquifers A and B, the caprock, and the intra seal layer. In the western
direction of the injection well, WF2 developed in the SE direction, and its closest point is
945.3 m away from the injection well. In the east direction, EF1 developed in the NNE-SSW
direction, and its closest point is 450.3 m from the injection well. Fault EF2 is horizontally
shorter than EF1, and is 530.2 m away from the injection well.

The porosity and permeability distributions used in this model are as shown in
Figure 4. The porosity distribution was obtained from well logs at the injection well. The
permeability distribution was obtained from the porosity distribution, determined using
the Kozeny-Carman equation, which correlates the relationship between porosity and
permeability. Consequently, the average porosity and permeability of the aquifer A were
obtained as 32% and 30 md, respectively; aquifer B had a lower porosity and permeability
of 24% and 11 md. Relative permeabilities of CO2 and water for drainage and imbibition
processes were used in the simulations with the model from [46,47], respectively.
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Figure 4. (a) Porosity and (b) permeability distributions of the top layer of aquifers A and B.

The pore pressure and temperature conditions in the target aquifer were determined
by the hydrostatic pressure (10.0 kPa/m) and local geothermal gradients (46.5 ◦C/km),
respectively [48]. As listed in Table 1, the pore pressure and temperature at the top of the
model were 7.5 MPa and 55.0 ◦C at 750.0 m, respectively. The salinity of the aquifer was
assumed as 100,000 ppm based on the reported value from the target aquifer [49].

Table 1. Properties of target layers in Pohang Basin, South Korea.

Parameter Value Parameter Value

Pore pressure at 750.0 m 7.5 MPa Temperature at 750.0 m 55.0 ◦C

Well bottomhole pressure
(BHP) 14.0 MPa Salinity 100,000 ppm

Fault reactivation pressure
(Safety factor 80%)

14.6 MPa
(11.7 MPa)

Average
permeability

aquifer A 30 md

aquifer B 11 md

Thickness
aquifer A 11.0 m Average

porosity
aquifer A 0.32

aquifer B 14.0 m aquifer B 0.24

According to a previous study, the fracture pressure at the top of the target formation
is 18.2 MPa, which is expected to generate a hydraulically induced fracture [40]. However,
14.0 MPa was chosen for the operating bottomhole pressure (BHP) during the injection
process, which was the maximum capacity of the compressor installed at the surface
treating facility [41]. The minimum operating BHP at the relief well of 7.5 MPa was
adopted, based on the hydrostatic pressure at the top of the target aquifer. In order
to investigate potential fault reactivation phenomenon, the maximum pore pressure at
the fault was constrained at 11.7 MPa, which was calculated from the estimated fault
reactivation pressure of 14.6 MPa with a safety factor of 80% [45,50]. Another constraint
implemented was injected CO2 breakthrough, i.e., both the injection and relief wells stop
operating when injected CO2 is produced at the relief well.

3. Methodology

This section introduces methods to generate datasets for training and testing an ANN
model. To develop a reliable ANN model, sufficient training datasets need to be prepared.
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Therefore, optimization processes were performed to generate training and testing datasets
using the commercial software, CMOST. For given injection periods, the location of the relief
well, and the operating conditions of both the injection and relief wells were optimized to
achieve the maximum cumulative mass of injected CO2. After the injection period, pore
pressure distributions and trapping mechanisms were monitored. The total period of both
the injection and monitoring processes was 300 years so as to investigate the long-term
storage stability and storage efficiency. Injection scenarios of 10- and 30-years were chosen
to generate the training datasets. An additional optimization process was also performed
with a 20-year injection period to validate the developed model.

3.1. Optimization Process

The geological characteristics of the Pohang Basin are represented by multi-layered
aquifers and heterogeneous reservoir properties. Moreover, the basin contains faults,
which need to be taken into account for safe injection and storage design to achieve
the maximum storage capacity. For example, the increased pore pressure during a CO2
injection process may cause pre-existing fault reactivation. In addition, induced tensile
fractures may occur in the vicinity of the injection well if the operating BHP exceeds the
fracture pressure. Therefore, the operating conditions and the relief well location should be
carefully determined, both for safe storage and storage capacity.

The relief well location and the CO2 injection rate were chosen as the optimization
parameters in an attempt to achieve maximum storage capacity. It was assumed that the
relief well produces formation fluid with a constant BHP (=7.5 MPa), determined by the
hydrostatic pressure, which implies that any increment in the pore pressure induced by
the injection process will be removed. Once the location of the relief well was properly
optimized, safe injection and storage design could be achieved with the maximum injected
CO2 mass.

The optimization process was performed with CMG CMOST and the DECE (Designed
Exploration and Controlled Evolution) optimizer for three injection scenarios, a total of
300 years, i.e., 10-, 20-, and 30-year-injection period and rest was a monitoring period. In the
DE stage, the optimizer generates simulation experiments through the experimental design
and the Tabu search techniques, as shown in Figure 5. The experiments employ a Latin
Hypercube design to generate the initial experiments, prior to the simulation run. Based
on the simulation results, the optimizer determines if the objective function is achieved.
During the simulation, the optimizer repeats the creation of additional experiment cases as
the Tabu search technique reduces the search area. Once the targeted number of simulation
jobs was reached, 500 in this study, the optimization process is completed and the optimized
case was analyzed. In the CE stage, the optimizer improves the quality of the solution with
a statistical analysis that tests all candidate values. While the process is being performed,
the DECE algorithm checks the rejected candidate values to determine if previous decisions
are still valid, and prevents the process from being trapped in a local optimal solution [51].
The steps allow the DECE to handle both continuous and discrete parameters, which is
suitable for finding the optimal location of a relief well and the CO2 injection rate in a
target aquifer. In relief well optimization, the points in the two candidate sectors, A and B,
contributed to the range of optimization parameters for the well location (Figure 6), with
the injection rates ranging from 10 tons/day to 200 tons/day.
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Figure 5. Flowchart of optimization process to maximize the CO2 storage capacity.

Figure 6. Top view of the geological model with top depth and candidate sectors A and B for the
relief well location.

3.2. Storage Efficiency

The storage efficiency in a saline aquifer depends on the CO2 trapping mecha-
nisms [12], i.e., the structural trapping, residual trapping, solubility trapping, and mineral
trapping. Figure 7 shows the CO2 trapping mechanisms and their contribution to the total
storage efficiency. Structural trapping is characterized by the existence of a geological
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structure, a geometric arrangement of impermeable sealing rocks, and reservoir rocks.
The contribution of structural trapping is the greatest as soon as the injection process is
finished. However, it decreases over time as the other trapping mechanisms take over as
the structurally trapped CO2 is mobile and, thus, less secured. The injected CO2 seques-
trated by the residual trapping, defined by the CO2 trapped by the capillary force, and the
solubility trapping, defined by the CO2 dissolved in the formation fluid, are considered
almost permanent. The mineral trapping mechanism, which is the CO2 conversion to
carbonate minerals, such as calcite, dolomite, and siderite, is the safest in terms of stable
storage of CO2 and most permanent, its contribution is insignificant for a time period
shorter than 1000 years. Therefore, in this study, residual and solubility trapping mecha-
nisms were taken into account for the storage efficiency analysis. In order to quantify the
storage efficiency, two indices—residual trapping index (RTI) and solubility trapping index
(STI)—were adopted [52]. The indices were calculated as follows,

Residual gas trapping index (RTI) =
Total mass o f CO2 trapped as residual gas (ton)

Total mass o f CO2 injected (ton)
(1)

Solubility gas trapping index (STI) =
Total mass o f CO2 soluble into brine (ton)

Total mass o f CO2 injected (ton)
(2)

Figure 7. Storage security depends on a combination of physical and geochemical trapping. Over
time, the physical process of residual CO2 trapping and geochemical process of solubility trapping
and mineral trapping increase. Source from Figure 5.9 in [1], copyright permitted.

4. ANN Modeling

This section chronologically describes how to develop the ANN model for relief well
optimization. In general, an ANN models consist of input, hidden, and output layers,
based on a perceptron algorithm, which resembles human neurons [53]. Each layer consists
of nodes, which are basic units of computation in a neural network. Each node is connected
to each other using feed forward methodology that considers links for node computation.
Figure 8 shows an example of a feed forward back propagation neural network with
one input layer, one hidden layer, and one output layer. Each node in all layers is fully
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connected with weights. When the datasets of inputs and outputs are provided to the
ANN with a supervised learning algorithm, it learns in a way that repeats the output from
the inputs by tuning the weights: this process is referred to as training [38]. In order to
train the neural network model, multi-layer feed forward back propagation methodology
was adopted with a non-linear relationship between inputs and outputs. The ANN model
for relief well optimization was developed using Keras with Tensor Flow [54], which is an
open source machine learning framework provided by Google [55]. We created a learning
neural network and developed deep learning in a sequential model as the ANN model is
defined in Python with Keras as a sequence of layers.

Figure 8. Schematic of a fully connected feed forward back propagation neural network.

For a better performance, it is very important to design the appropriate structure of the
model, i.e., input layer, optimal number of hidden layers, optimal number of nodes in each
hidden layer, appropriate activation functions, and the output layer. The ANN modeling
process used in this study is schematically described in Figure 9. The seven parameters that
have a significant effect on the optimal relief well design were determined for the input
parameter of the model. Using the determined parameters, 1000 datasets were generated
from the 10- and 30-year injection scenarios (500 datasets for each). A total of 300,000
samples with elapsed times of 300 years were extracted from the 1000 generated datasets.
The generated samples were categorized into two groups, i.e., the 240,000 training and
60,000 testing datasets, which reflect 80% and 20% of the total samples, respectively. The
training datasets were used to train the model by adjusting network weights and biases,
and the testing datasets were used to test and to evaluate the final performance of the
model. Data correlation analysis and a preprocessing process were performed to convert
the optimized data into a training dataset and then an ANN model was developed while
changing the hyperparameters (i.e., number of nodes and layers) of the ANN model. After
the performance of the ANN model was tested, the injectivity, storage stability and storage
efficiency were predicted at all points of the candidate sector of the relief well location. The
predicted values at all points were verified by comparing with the simulation results. If the
prediction was accurate, the calculated mass of cumulative CO2 injection at all points of
the candidate sector was analyzed and the relief well location with the maximum value
was selected. The selected location was determined as the optimum position for the relief
well within the candidate sector in Pohang Basin.
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Figure 9. Flowchart for optimal relief well design using the developed ANN model.

4.1. Data Correlation Analysis and Data Preprocessing

In the data correlation analysis, the dependency between the input parameters was
identified to enhance the ANN model performance. If parameters that were highly de-
pendent on each other are incorporated into input layers, the model performance would
not be effective. Thus, in this study, the Pearson correlation method was adopted for
data correlation analysis to identify the dependency between parameters. The Pearson’s
correlation coefficient, rxy, can be determined by,

rxy =

√
xiyi − n x y√(

∑ x2
i − nx2)√(∑ y2

i − ny2) (3)

where, n is the sample size, xi and yi are the individual sample points indexed with x and y are
the mean values of target parameters x and y, respectively. The range of Pearson correlation
coefficient rxy lies between −1 and 1. The coefficient value −1, 0, and 1 indicate perfectly
negative correlation, no correlation, and perfectly positive correlation, respectively.

The input parameters with negligible effects on the output parameters need to be
excluded from the analysis for enhancing the performance of the ANN model. Since
the primary purpose of this study is to determine optimal relief well design, variables
specifying the storage capacity, storage stability, and storage efficiency were chosen as
the output parameters, i.e., the CO2 injection rate, the injection well bottomhole pressure,
the RTI, and STI. The most influential input parameters on the output parameters are
chosen according to previous studies, which are the relief well x and y coordinates, distance
between the injection and relief wells, the injection period, the reservoir average porosity,
and the reservoir average permeability [25,56–58]. The range of selected input parameters
is in Table 2.
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Table 2. Input parameters and their ranges in Pohang Basin, Korea.

Parameter Minimum Maximum

Relief well x coordinate
Sector A 33 Sector A 77

Sector B 12 Sector B 91

Relief well y coordinate Sector A 42 Sector A 126

Sector B 92 Sector B 119

Distance between the injection and relief wells 100.4 m 1266.31 m

Injection period 10 years 30 years

Reservoir average porosity 0.23 0.29

Reservoir average permeability 3.63 md 18.75 md

The calculated Pearson correlation coefficients between the input parameters are
described as a heatmap in Figure 10. The correlation magnitudes between the parameters
appear to be distributed within the range from −0.74 to 0.69. It shows that the highest
correlation level (rxy = −0.74) was found between the x and y coordinates of the relief well,
while the distance between the wells and the relief well y coordinates have the smallest
dependency (rxy = 0.01). Although no perfect correlation was found, there are 3 pairs of
parameters that show relatively high dependency with the absolute Pearson’s correlation
coefficient higher than 0.7: the porosity and the relief well x coordinates (rxy = −0.70),
the injection period, and the relief well y coordinates (rxy = −0.72). Meanwhile, little
dependencies were found over 2 pairs of parameters, the distance between the wells and
the porosity (rxy = −0.07), and the permeability and the porosity (rxy = −0.07).

Figure 10. The Pearson correlation heatmap for the input parameters.

The 300,000 samples extracted from the optimization results should be normalized
to avoid numerical overflows induced by various weights due to the differences in the
units and ranges. For all the input data, the StandardScaler in the scikit-learn package was
used to normalize the mean of each parameter to zero and the variance to one. In general,
an ANN operates with an input layer, an optimal number of hidden layers, an optimal
number of nodes in each hidden layer, a suitable activation function, and an output layer.
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The rectified linear unit (ReLU) function, the most widely used activation function,
was incorporated into the ANN to allow the network to learn the complex patterns of the
datasets [59,60]. The ReLU function zeroes negative parameters and returns the original
value for positive parameters. Adopting the function accelerates the network training
speed as it decrease likelihood of gradient loss [61]. The other advantage of ReLU is
sparsity, which arises when input values are negative or zero. A larger number of nodes in
a layer results in a sparser representation [59]. The Adam optimizer was used for the ReLU
function as an efficient stochastic gradient descent algorithm, which is a general version of
gradient descent because it automatically tunes itself and provides reliable results for a
wide range of problems [62].

4.2. Optimal Number of Nodes and Hidden Layers

In an ANN, a node (neuron or perceptron) is a computational unit with weighted
input connections and a transfer function combining the inputs and an output connection.
To create a network, nodes are organized into hidden layers between the input and output
layers. Nodes on a hidden layer are directly connected to the input parameters and
contribute to the output parameters. If multiple hidden layers are adopted, the number
of layers and nodes are crucial for ANN model performance. Since it is not possible to
analytically select the optimal number of layers and nodes, the trial and error approach
was used to find the optimized multiple layer perceptron: this method is referred as to the
manual search [63].

4.3. Training and Testing Procedure

The constructed ANN model was run until the desired performance was achieved.
Two error functions, coefficient of determination (R2) and root mean squared error (RMSE),
were adopted to evaluate the model, which are frequently used in regression analyses [64].
R2 can be calculated using Equation (4).

R2 = 1− ∑n
i=1(yAct,i − ŷPred,i)

2

∑n
i=1

(
yAct,i − yPred,i

)2 (4)

where, yAct,i is the actual value, ŷPred,i is the predicted value, and yPred,i is the average of
the predicted values. R2 has a value between 0 and 1, with a value close to 1 indicating that
the predicted value trend is well-fitted with the actual value.

RMSE is the standard deviation of the predicted errors and is calculated as the square
root of the average squared differences between the training data and the testing data, as
follows,

RMSE =

[
1
n

n

∑
i=1

(yAct,i − yPred,i)
2

]0.5

(5)

where, yAct,i is the actual variable.
The RMSE determines how much the predicted values are fitted with the obtained

regression model. For example, a lower RMSE value indicates that the predicted value is
well-fitted with the model.

Every neural network was trained for 1000 epochs. A total if 80% of the total dataset
was used for training, and 20% was used to test the model using two error functions of
the R2 and RMSE. The early stopping method was adopted to avoid overfitting, which is
defined by a decrease in the loss of the training results with a simultaneous increase in that
of the testing results [65].

5. Results and ANN Model Validation

In this section, we analyze the effects of a relief well through maximum CO2 storage
capacity in Pohang Basin. We then present the results of the optimization processes to
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generate the training and testing datasets, and discuss the performance and verification of
the developed ANN model that optimizes the relief well.

5.1. Effects of a Relief Well

In order to investigated to analyze the effectiveness of a relief well, the total CO2
storage capacity and pore pressure distribution without a relief well were compared with
the results of an installed relief well. Since a CO2 injection well in the field was drilled,
completed, and operated since 2017, the actual location and operating maximum capacity of
the injection well (14.0 MPa) were implemented for the analysis. To analyze the maximum
storable amount of CO2 in the target aquifer, we primarily took the top layers of aquifers
A and B into account as the layers that had the best injectivity in the Pohang Basin [66].
It was assumed that CO2 was injected for 10 years and that this stopped when the pore
pressure at faults EF1 and EF2 reached the fault reactivation pressure of 11.7 MPa.

5.1.1. Without a Relief Well

The CO2 injection rate was optimized to maximize the mass of cumulative CO2
injection without a relief well. The pore pressure behaviors at the faults are shown in
Figure 11a. The solid and dashed curves indicate the pore pressure at the top layers of
aquifers A and B, respectively. The colors specify faults EF1 (black) and EF2 (blue). The
pore pressure values were measured at the closest points on faults EF1 and EF2 from the
injection well. Before injection (time = 0), the pore pressure in aquifer B was higher than
that of aquifer A as aquifer B is located in a deeper formation. In addition, although the
pore pressure in EF1 and EF2 of aquifers A had a difference of 0.2 MPa, the pore pressure
of each fault in aquifer B did not have a big difference because the depths of the faults at
the top layer of aquifer B were almost identical (746.5 m, 749.8 m). As the injection process
proceeded, the pore pressures in both aquifers increased. The pore pressure increase in
aquifer A was larger than that of aquifer B, and the pore pressure of aquifers A exceeded
aquifer B after 0.17 years and 0.21 years of injection at EF1 and EF2, respectively. This
is because the average permeability of aquifer A (30 md) is higher than that of aquifer B
(11 md). The injection process stopped at 6.85 years as the pore pressure of EF1 in aquifer
A reached the fault reactivation pressure of 11.7 MPa, while the pore pressures at the other
monitoring points were still lower. As shown in Figure 11b, which depicts the pressure
distribution in aquifers A and B at the end of the injection, the pore pressure of aquifer
A was distributed over a wider area than that of aquifer B due to the higher injectivity of
aquifer A. Consequently, if the pore pressure in aquifer A is well managed by a relief well,
it is possible to achieve a larger CO2 storage volume with a safe injection process in terms
of the potential fault reactivation.
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Figure 11. (a) Estimated pore pressures at fault EF1 and EF2 in each aquifer, A and B, at the top layer
and (b) pressure distribution at the end of injection of 6.85 years without a relief well.

5.1.2. With a Relief Well

In case of with a relief well, it was assumed that there was a relief well removing the
pore pressure to maximize both the injectivity and capacity. As shown in the previous
section, the pore pressure build-up in aquifer A was primarily focused on managing it so as
to not reach the fault reactivation pressure. The location of the relief well was optimized to
achieve the maximum mass of cumulative CO2 injection. The relief well was operated with
a BHP of the hydrostatic pressure, 7.5 MPa, to remove any increase in the pore pressure by
the injection process. As a result, the optimal location of the relief well was 596.6 m north–
east from the injection well (321.6 m and 502.5 m in the x- and y-direction, respectively)
(Figure 12). In addition, it was found that the depth of the perforated interval of the relief
well was optimized to be deeper (52.8 m) than that of the injection well to prevent CO2
breakthrough. Figure 13a shows the pore pressure at the top layers of each aquifer at
faults EF1 and EF2 during the injection process with a relief well. Although the initial
pore pressures (t = 0) at aquifer A were lower than those of aquifer B, the pore pressures
in aquifer A exceeded at time 0.17 years and 0.5 years in aquifer B at faults EF1 and EF2,
respectively. However, it shows that the pore pressure of fault EF1 in A reached the fault
reactivation pressure in 7.84 years. In other words, operation of the relief well extended the
injection process for 1 year (365 days). When the process is finished, the pore pressure at
EF1 of aquifer A was decreased and stabilized at 11.2 MPa. As shown in Figure 13b, which
visualizes the pressure distribution at the end of injection in the top layers of aquifers A
and B, the pore pressure at aquifer A was effectively managed by the relief well. Therefore,
it was concluded that the installment and operation of the relief well effectively manage the
pore pressure in aquifer A and that more CO2 can be injected for a longer period of time.
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Figure 12. Optimized location of the relief well for 10 years of injection.

Figure 13. (a) Estimated pore pressures at fault EF1 and EF2 and (b) pressure distribution at the end of injection of 7.84 years
in aquifers A and B at top layer with a relief well.

5.1.3. Comparison without and with a Relief Well

Based on the simulation studies focusing on the existence of the relief well, it was
found that the pressure build-up can be effectively managed by a relief well and that a safe
injection process can be achieved, although there are potentially reactivatable faults. With
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the same operating BHP of 14.0 MPa, the injection rates, total storage capacity, and pore
pressure distribution were taken into account to analyze the efficiency of the relief well.

The injection rates of both cases are illustrated in Figure 14. The injection rates without
and with the relief well are, respectively, shown with solid and dashed curves. As soon
as the injection process initiates, the injection rates in both cases increased sharply. When
there is a relief well installed and operated, the maximum rate of 80 tons/day was achieved
in 0.92 years, while it took 1.1 years without a relief well to reach the maximum rate. In
addition, this shows that the rate with a relief well after the peak maintains longer than that
of the ‘without a relief well’ case. This is because the relief well provides more injection
capability. Therefore, the average injection rate with the relief well was 75 tons/day, which
is 3 tons/day higher than that of the no-relief well case. Thus, the total CO2 storage capacity
with a relief well (215 kton) was 19.44% higher compared to the “without a relief well”
case. Consequently, operating a relief well can provide more injection capability, which
may lead to the larger total mass of injected CO2.

Figure 14. CO2 injection rates for cases with (solid) and without a relief well (dashed). The maximum
rates of 80 tons/day are achieved at 0.92 years when the relief well is operated. The injection rate
with a relief well is maintained for a longer period (7.84 years) than without a relief well.

Effects of the relief well can be found from the pore pressure distribution after the
injection process in Figure 15. Note that the distribution of top of aquifer A is only shown for
comparison. Before the injection, the pore pressure, determined by the hydrostatic pressure
gradient, is in the range between 6.5 and 8.5 MPa (Figure 15a). When the injection process
without a relief well is finished at 6.85 years, the pore pressure of aquifer A was increased,
with the maximum concentrated location found at the injection well (Figure 15b). Moreover,
a high pore pressure concentration was observed at fault EF1, which was expected to be
reactivated and caused the termination of the injection. However, as shown in Figure 15c,
it was found that the pore pressure build-up in aquifer A was effectively managed with the
relief well as the injection period was extended to 7.84 years. Therefore, it was concluded
that installing of a relief well to relieve the pore pressure may be an effective solution to
manage pore pressure for a safe injection design and to maximize the cumulative mass of
injected CO2.
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Figure 15. Pore pressure distributions in the top layer of aquifer A (a) before the injection process, (b) at the end of injection
(6.85 years) without a relief well and (c) at the end of injection (7.84 years) with a relief well.

5.2. Optimization for Vairous Scenarios

In order to generate sufficient training and testing datasets, optimization processes
were performed. For given injection periods, the location of the relief well and the operating
conditions of both the injection and relief wells were optimized to achieve the maximum
cumulative mass of injected CO2. After the injection period, the pore pressure distributions
and trapping mechanisms were monitored. A total of 300 years of injection and monitoring
periods were selected to investigate the long-term storage stability and storage efficiency.
The injection scenarios of 10 years and 30 years were chosen to generate the training
datasets. Additional optimization process was also performed with a 20-year injection
period to validate the developed ANN model.

Figure 16 shows the optimized location of the relief well for each injection period.
When the CO2 was injected for 10 years, the optimum location of the relief well was located
596.6 m north–east from the injection well (321.6 m and 502.5 m in the x- and y-direction,
respectively) for the maximum mass of cumulative CO2 injection. The reason for this was
that the injection period was relatively short, and the injection rate was highly optimized
and then pressure build-up occurred rapidly during the injection period. Thus, in order to
manage the pore pressure due to CO2 injection, the location of the relief well was optimized
near the injection well. In addition, it was found that the relief well was located deeper
(52.8 m) than the position of the injection well to prevent CO2 breakthrough. For the cases
of 20- and 30-year injection, the location of the relief well was located at 800.5 m and
767.5 m away from the injection well, 623.1 m and 502.5 m in the x- direction and 502.5 m
and 542.7 m in the y- direction, respectively. The reason for this was that the location of the
relief well was optimized for areas with high permeability to facilitate water production.
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In general, a higher permeability resulted in a higher water production efficiency, which
means that pressure control through the water production is easier [67].

Figure 16. The top view of the geological model with the property of vertically averaged permeability
and the optimized location of a relief well for the injection periods of 10, 20, and 30 years.

The injection rates during the injection periods are shown in Figure 17a. The solid,
dashed and dotted curves indicate the rates for 10-, 20- and 30-year injection periods,
respectively. The optimized injection rate for the 10-year injection scenario is 60 tons/day,
while an injection rate of 40 tons/day is expected to be optimum for the 20- and 30-year
injection periods. It was found that the CO2 was injected as planned for the 10- and
20-year injection scenarios. When the 30-year injection scenario was adopted, the injection
was unexpectedly terminated at 22 years (red arrow in Figure 17a). In order to identify
what caused the unexpected termination, occurrence of the fault reactivation and the
CO2 breakthrough phenomenon were closely investigated. Figure 17b indicates the pore
pressure at fault EF1 (black curves) and the CO2 production rate at the relief well (blue
curve). Since the pore pressure build-up is most severe at the top layer of aquifer A, that
particular location was taken into account for the analysis. According to the pore pressure
behaviors, it appears that the pressure did not reach the fault reactivation pressure for
all the injection scenarios. However, it was found that the injected CO2 started to be
produced at the relief well at 22 years when the 30-year injection scenario was chosen (blue
dotted curve in Figure 17b). The cumulative mass of injected CO2 for the 10-, 20-, and
30-year injection periods ere 218, 292, and 332 kton. As the injection period extended, the
cumulative injection mass increased. In addition, the increment of the cumulative mass
was 33.94% (74 kton), when the injection period was increased from 10 years to 20 years,
while it was increased only 13.7% (40 kton) if the period was extended from 20 years to
30 years. This is because the injection process was unexpectedly terminated at 22 years by
the CO2 breakthrough phenomenon and was not performed for the designed period of time.
Therefore, it was concluded that a safe injection process is crucial for total storage capacity.
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Figure 17. (a) Injection rates for the injection periods of 10, 20, and 30 years, (b) the pore pressure in aquifer A (top layer) at
fault EF1 for the injection periods of 10, 20, and 30 years. The injection stops at 22 years when the 30 years injection period is
chosen due to the CO2 breakthrough.

Moreover, the storage efficiency for the monitoring phase was investigated with the
trapping mechanisms. As shown in Figure 18, the residual and solubility trapping indices
(RTI and STI) were decreased during the injection period because the injected CO2 diffuses
via the pressure gradient. However, after the end of the injection, not only was the injected
CO2 trapped through pore spaces by gravitational, viscous, and capillary effects, but it
also dissolved in brine, which eventually increased the residual and solubility trapping
indices [49,68].

Figure 18. (a) RTI and (b) STI for the injection periods of 10 (solid), 20 (dashed), and 30 years (dotted curve).

5.3. Architecture and Validation of the ANN Model
5.3.1. ANN Model Performance

To determine the optimal number of layers and nodes, nodes and hidden layers were
respectively incremented seven and one at a round until we obtained the best performance
with the network structure. As shown in Figure 19a, overfitting was detected at 63 nodes
when the loss (RMSE) is the smallest and then rises afterwards. In the same manner, the
optimal number of hidden layers was determined as seven, where it showed the best
learning performance (Figure 19b). Consequently, it was concluded that the final optimized
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architecture of the ANN model contained 63 nodes with seven hidden layers, as shown in
Figure 20.

Figure 19. Optimization of (a) the number of nodes in each layer and (b) the number of hidden layers.

Figure 20. The optimized architecture of the ANN model.

Figure 21 shows the R2 and RMSE trends during the training and testing of the
constructed ANN model. Blue and red dots represent the R2 and RMSE at each epoch,
respectively. As shown in Figure 21, using the R2 in the training and testing of the model,
we obtained performances of 0.8523 and 0.8442, respectively, at epoch 209 when the model
was stopped early. In addition, the RMSE in the training and testing of the model converged
on 0.1803 and 0.1834, respectively, at the 209th iteration.
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Figure 21. Results of the ANN model in (a) training and (b) testing with the optimal iteration number of R2 and RMSE.

5.3.2. ANN Model Validation

In this section, the optimization data for the 20-year injection scenario was used to
validate the ANN model using two error functions, R2 and RMSE. Figure 22 shows the
CO2 injection rate for 300 years, determined by the predicted model (ANN; red) and the
validation model (simulation; blue). Although the two models initially yield a gap and
at 20 years, it was found that the rate was well-predicted as it showed an R2 and RMSE
of 0.9982 and 0.6681, respectively. In addition, R2 and RMSE values calculated from the
injection well BHP show great acceptance with 0.9828 and 0.0497, respectively. Especially
for the monitoring phase, the ANN accurately predicted BHP during the monitoring phase.
When the analysis was extended to the trap mechanisms, an R2 of 0.9927 and an RMSE
of 0.0136 for RTI, as well as an R2 of 0.9607 and RMSE of 0.0085 for STI were achieved,
which implies that the developed ANN model has great accuracy in the prediction of trap
mechanisms. On the other hand, the difference in the total CO2 storage capacity was only
0.68% (2 kton), as the ANN and the simulation predicted 294 kton and 292 kton of CO2
could be injected for 20 years, respectively. The predicted location of the relief well only
had a distance of 20.1 m based on the ANN and simulation models (Figure 23).

Figure 22. Comparison the (a) injection rate, (b) injection well BHP, and (c) RTI and (d) STI results
between simulation and the ANN model.
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Figure 23. Optimized location of the relief well determined by the ANN (red) and the simula-
tion (blue).

6. Discussion

Geological storage of CO2 is one of the most promising methods for greenhouse gas
reduction. Due to the Paris Agreement, which specifies national goals for the reduction of
CO2 emissions, to maximize injectivity and capacity should be the primary objectives for
CCS design. Therefore, operating a relief well is an effective method to relieve reservoir
pressure to enhance the injection capacity and allow safe injection design. Although
this study primarily focuses on the maximum CO2 storage capacity, the cost of drilling
and operating a relief well can be incorporated into a detailed analysis. Unless there is
an available well to be repurposed as the relief well, i.e., when a depleted hydrocarbon
reservoir with multiple wells is available, the cost of drilling needs to be taken into account.
If implemented with a certified emission reduction, economic analysis can provide for more
reliable analyses. In the future, economic analysis with the cost of the relief well installation
and operation will be incorporated into further investigations. In addition, this goes
beyond the on-site pilot test conducted in this study and conducts an economic analysis
that is applicable in an actual commercial field. Through this research, we will evaluate
the most economically profitable operating mechanism in an actual commercial field, and
proceed with research to find the optimal relief well design through economic analysis.

Based on the results, the location of the relief well is a very crucial parameter for both
CO2 storage capacity and the safe injection process. It was found that the relief well was
located in a high permeability area, which implies that the effect of the relief well should
be transmitted fast enough to effectively relieve the pore pressure. The results present that
a CO2 breakthrough phenomenon may occur when the relief well is operating during the
injection process and appropriate design needs to be performed accordingly in advance.

A more sophisticated adjustment of the injection scheme may enhance the injectivity
and capacity. Instead of adopting constant injection and production rates, fine adjustment
of the rates and schedule can be implemented. For example, seasonal rate changes can be an
option. Especially in winter, if the target aquifer is located offshore, the possibility of subsea
hydrate formation in the tubing needs to be investigated with the seasonal change in the
tidal currents. Switching an injection well with a relief well may provide flexibility to the
operational strategy, which would also be very helpful to overcome unpredictable hazards.

Since the ANN model of the present study was developed using the optimization
results from the actual field, the training datasets and the model represent unique values
from the field. Thus, it is not suitable to compare the model outcome with other published
data. Meanwhile, optimal relief well design is reliably applicable for the studied area,
Pohang Basin.

The performance of an ANN model has a major role in the speed, accuracy and appli-
cability for analyses of geological CO2 storage. Recently, more advanced hyperparameters
optimization methods to enhance the performance of ANN models have been developed,
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such as genetic algorithms (GA), particle swarm optimization (PSO), and Bayesian opti-
mization. Although the current status is very preliminary, more compact and time-efficient
investigations will be available in the near future. Future work of this study aims at this
target, to achieve better reliability and precision over less time and computing power.

7. Conclusions

An artificial neural network (ANN) model has been developed for an optimal relief
well design, using information such as the location and operating conditions, which
maximize CO2 storage capacity in Pohang Basin, South Korea. Based on the observations,
the following conclusions have been drawn:

1. Based on the comparisons made for with or without relief well cases, the average
injection rate was 3 tons/day higher if a relief well is operated. In addition, it was
found that the relief well extended the injection period by 0.99 years and increased
the CO2 storage capacity by 19.44% (215 kton).

2. To generate training datasets for the input and output nodes in the ANN model, the
operating conditions of both wells and the location of the relief well were optimized
to achieve the maximum cumulative mass of the injected CO2. It was found that the
cumulative mass for the 10-, 20-, and 30-year injection periods were 218, 292, and
332 kton, respectively. Therefore, the cumulative injection mass increased by 33.94%
(74 kton) and 13.7% (40 kton) as the injection period was extended from 10 to 20 years
and from 20 to 30 years, respectively. Consequently, it was concluded that 20 years of
injection with the relief well would be the best scenario in terms of safe and effective
storage in Pohang Basin.

3. The ANN model was developed with datasets of 10- and 30-year injection scenarios
and validated with that of the 20-year scenario. The optimal architecture of the model
consisted of 63 nodes and seven hidden layers at 209 iterations. When the predicted
data were compared to the validation data, the ANN model reliably predicted the
result with an R2 of 0.9982 and RMSE of 0.6681 for the CO2 injection rate, and an R2

of 0.9828 and RMSE of 0.0497 for the injection well BHP. In addition, the developed
ANN model had great accuracy in the prediction of the trapping indices, with an R2

of 0.9927 and RMSE of 0.0136 for the RTI, and an R2 of 0.9607 and RMSE of 0.0085
for the STI, respectively. The total CO2 storage capacity and the relief well location
were also accurately predicted with only a 0.68% difference (2 kton) and a distance of
20.1 m, respectively.

Consequently, it was concluded that the developed ANN model can accurately opti-
mize relief well design and evaluate storage efficiency in Pohang Basin, South Korea. In
addition, the ANN model can be a robust tool to optimize relief well design and to evaluate
storage efficiency for successful CO2 sequestration without a time-consuming reservoir
simulation at the early stages of a CCS project.
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