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Abstract: Neural machine translation (NMT) methods based on various artificial neural network
models have shown remarkable performance in diverse tasks and have become mainstream for ma-
chine translation currently. Despite the recent successes of NMT applications, a predefined vocabulary
is still required, meaning that it cannot cope with out-of-vocabulary (OOV) or rarely occurring words.
In this paper, we propose a postprocessing method for correcting machine translation outputs using
a named entity recognition (NER) model to overcome the problem of OOV words in NMT tasks. We
use attention alignment mapping (AAM) between the named entities of input and output sentences,
and mistranslated named entities are corrected using word look-up tables. The proposed method
corrects named entities only, so it does not require retraining of existing NMT models. We carried out
translation experiments on a Chinese-to-Korean translation task for Korean historical documents, and
the evaluation results demonstrated that the proposed method improved the bilingual evaluation
understudy (BLEU) score by 3.70 from the baseline.

Keywords: neural networks; recurrent neural networks; natural language processing; neural machine
translation; named entity recognition

1. Introduction

Neural machine translation (NMT) models based on artificial neural networks have
shown successful results in comparison to traditional machine translation methods [1–5].
Traditional methods usually consist of sequential steps, such as morphological, syntactic,
and semantic analyses. On the contrary, NMT aims to construct a single neural network
and jointly train the entire system. Therefore, NMT requires less prior knowledge than
traditional methods if a sufficient amount of training data is provided. Early NMT models,
called sequence-to-sequence [6–9], are based on encoder–decoder architectures imple-
mented with recurrent neural networks (RNNs) [10], such as long short-term memory
(LSTM) [11] and the gated recurrent unit (GRU) [12]. The attention mechanism is usually
used in RNN-based machine translation systems with variable lengths. The network gen-
erates an output vector, as well as its importance, called attention, to allow the decoder
focus on the important part of the output [13–15]. Recently, a new NMT model called the
transformer [16] has been proposed based on an attention mechanism with feedforward
networks and without RNNs. Using the transformer, the learning time is reduced greatly
with the help of non-RNN-type networks.

One of the problems in machine translation is the lack of training data. This problem
was reported by Seljan [17] and Dund̄er [18,19] for the problem of the automatic translation
of poetry with a low-resource language pair. It was reported that the fluency and adequacy
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of the translation results were skewed to higher scores. Especially for old literature trans-
lation where the machine translation is of great importance, obtaining reliable training
data is much more difficult. The types of errors in the machine translation were extensively
analyzed by Brkić [20]. They were wrong word mapping, omitted or surplus words, mor-
phological and lexical errors, and syntactic errors such as word order and punctuation
errors. There have been several methods to successfully solve these problems using transfer
learning [21], contrastive learning [22], and open vocabularies [23].

Another major problem in NMT are out-of-vocabulary (OOV) words [24,25]. This
is often called the rare word problem as well [26,27]. The words in the training dataset
are converted into indices to the word dictionary or a predefined set of vectors, and a
sequence of the converted numbers or vectors is used as an input to NMT systems. When a
new word that is not in the dictionary is observed, the behavior of the trained network is
unpredictable because there are no training sentences with the OOV words. It is almost
impossible to include all of them in the dictionary because of the complexity limit for
efficient translation. One of the solutions to this problem is subword tokenization using
byte pair encoding (BPE) [27]. In this work, the unknown words are broken into reasonable
subunits. Another solution is the unsupervised learning of the OOVs [28]. However, most
of the OOV words are for named entities: human names, city names, and newly coined
academic terms, and subword tokenization [27] and unsupervised learning [28] are not
able to handle the named entities because they do not contain any meaningful information
in them. As a solution, conventional systems use special labels for such OOV words (often
as “UNK”) and include them in the training data [24–26], so that the NMT model would
distinguish them from ordinary words. Table 1 shows examples of translation outputs with
an “UNK” symbol. The first named entity in the first example, “李周鎭,” is mistranslated
into “이진,” although the expected output is “이주진.” The second named entity, “元景淳,”
is not translated, but replaced with an “UNK” symbol because the true translation “원경순”
is an OOV or rarely occurring word for the trained NMT model. Moreover, there are many
similar cases in the subsequent named entities.

There have been several attempts to build open-vocabulary NMT models to deal
with OOV words. Ling et al. [29] used a sub-LSTM layer that takes a sequence of char-
acters to produce a word embedding vector. In the decoding process, another LSTM cell
also generates words character-by-character. Luong and Manning [25] proposed a hybrid
word–character model. This model adopts a sub-LSTM layer to use the information at the
character level when it finds unknown words both in the encoding and decoding steps.
Although character-based models show a translation quality comparable to word-based
models and achieve open-vocabulary NMT, they require a huge amount of training time
when compared with word-based models. This is because, if words are split into characters,
their sequence lengths are increased to the number of characters, so the model complexity
grows significantly. There are other approaches to use character-based models such as
using convolutional neural networks [30,31]. However, it is hard to directly apply fully
character-based models to Korean, because a Korean character is made by combining conso-
nants and a vowel. Luong et al. [26] augmented a parallel corpus to allow NMT models to
learn the alignments of “UNK” symbols between the input and output sentences. However,
this method is difficult to apply to language pairs with extremely different structures, such
as English–Chinese, English–Korean, and Chinese-to-Korean. Luong [26] and Jean [24]
effectively addressed “UNK” symbols in translated sentence. However, mistranslated
words, which often appear for rare input words, still were not considered.

In this work, we propose a postprocessing method that corrects mistranslated named
entities in the target language using a named entity recognition (NER) model and an
attention alignment mapping (AAM) between an input and an output sentence by using the
attention mechanism (to the best of our knowledge, first proposed by Bahdanau et al. [13]).
The proposed method can be directly applied to pretrained NMT models that use an
attention mechanism by appending the postprocessing step to its output, without retraining
the existing NMT models or modifying the parallel corpus. Our experiments on the Chinese-
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to-Korean translation task of historical documents, the Annals of the Joseon Dynasty (http:
//sillok.history.go.kr/main/main.do, last access date: 1 July 2021) demonstrate that the
proposed method is effective. In a numerical evaluation, the proposed method shows that
the bilingual evaluation understudy (BLEU) score [32] was improved up to 3.70 compared
to the baseline when the proposed method was not applied. Our work is available in a
Git repository https://bitbucket.org/saraitne76/chn_nmt/src/master/, last access date:
1 July 2021).

Table 1. Examples of Chinese-to-Korean translation results with OOV words. Input and Truth: raw sentence pairs from
the Chinese-to-Korean parallel corpus. English translation: translation of the Korean sentence to an English expression.
NMT output: Korean translation results of a typical NMT model, with OOV words represented by the “UNK” symbol. The
underlined words are named entities. Among those words, red-colored ones are human names; blue-colored ones are place
names; green-colored ones are book names.

Input 以李周鎭爲平安監司,元景淳爲副校理,尹敬周爲正言 ◦
Truth 이주진을평안감사로,원경순을부교리로,윤경주를정언으로삼았다.

English Translation
Lee Joo Jin is assigned as the Pyeongan inspector,
Won Kyung Soon as the vice dictator, Yun Gyeong Joo as the dictator.

NMT output 이진을평안감사로, UNK을부교리로,윤주를정언으로삼았다.

Input 分遣暗行御史李允明,金夢臣,李宇謙等,廉察諸道 ◦

Truth
암행어사이윤명 · 김몽신 · 이우겸등을
나누어파견하여여러도를검찰하게하였다.

English Translation
The secret royal inspectors Lee Yun Myeong, Kim Mong Shin,
and Lee Woo Gyeom were dispatched to investigate various provinces.

NMT output
암행어사 UNK · UNK · UNK등을
나누어보내어두루제도를살피게하였다.

Input 江原道楊口縣民家九十九戶,一時燒燼 ◦道臣以聞,上命行恤典 ◦

Truth
강원도양구현의민가 99호가한꺼번에불타없어졌는데,
도신이계문하니,임금이휼전을시행하라고명하였다.

English Translation
99 civil houses in Yanggu Gangwon province were burnt down all at once,
Do Shin requested the king to distribute food tickets to civilians.

NMT output
강원도 UNK민가 99호가한꺼번에불에타버렸다.
도주가아뢰니,상이휼전을행하라고명하였다.

Input 上詣永禧殿展謁,仍詣儲慶宮,毓祥宮,延祜宮,宣禧宮展拜 ◦

Truth
임금이영희전에나아가전알하고,이어서
저경궁 ·육상궁 ·연호궁 ·선희궁에나아가전배하였다.

English Translation
The king went to Yeonghuijeon and perform a rites, and then to Jeogyeonggung,
Sokseonggung, Yeonhogung, and Seonhuigung and performed rites.

NMT output
임금이영모전에나아가서전알하고,
이어서경복궁 · UNK · UNK ·경희전에나아가참배하였다.

Input 行召對,講�名臣奏議� ◦
Truth 소대를행하고�명신주의�를강론하였다.

English Translation Conducted a So Dae and lectured on�Myungshinism�.
NMT output 소대를행하고�UNK�를강하였다.

The remainder of the paper is organized as follows: Section 2 provides a review of
the conventional machine translation and NER methods that are related to the proposed
method. The named entity matching using the attention alignment map that forms the core
of the current study is introduced in Section 3, along with the implementation details of the
transformer and the proposed NER algorithm. Section 4 describes a series of experiments

http://sillok.history.go.kr/main/main.do
http://sillok.history.go.kr/main/main.do
https://bitbucket.org/saraitne76/chn_nmt/src/master/


Appl. Sci. 2021, 11, 7026 4 of 21

that were carried out to evaluate the performance of the proposed NER method. In Section 5,
the output of the NER results is further analyzed, and Section 6 concludes the paper.

2. Machine Translation
2.1. Neural Machine Translation

NMT maps a source sentence to a target sentence with neural networks. In a prob-
abilistic representation, the NMT model is required to map a given source sentence
X = [x1 x2 · · · xn] ∈ Bvs×n to a target sentence Y = [y1 y2 · · · ym] ∈ Bvt×m, where
B = {0, 1}, a binary domain space, vs and vt are the source (input) and target (output)
vocabulary size, and n and m represent the sequence lengths of the input and output
sentences, respectively. A vocabulary is usually defined by a set of tokens, which is a
minimum processing unit for natural language processing (NLP) models. From a linguistic
point of view, words or characters are the most popular mapping units for the tokens, de-
pending on the grammar of the source and target languages. Each element of the encoding
vector is assigned a positive integer index that uniquely identifies a single token in the
corresponding vocabulary, so we can construct source vectors xk ∈ Bvs by the following
one-hot representation:

xk,i =

{
1 if i = index of kth token
0 otherwise

, (1)

where xk,i is the ith element of xk. We can also construct a one-hot representation for the
target vector yk in a similar manner as well. The one-hot representation is extremely sparse,
and the dimensions of input and target vector, n and m, may become too large to handle for
the large vocabulary sizes. The embedding method, a general approach in natural language
processing, is introduced to produce dense vector representations for the one-hot encoding
vectors [33–36]. For given dimensions of the source and target, ds and dt with ds � vs and
dt � vt, linear embeddings from a higher dimensional binary space to a lower dimensions
real domain are defined as follows:

Es ∈ Rds×vs , Et ∈ Rdt×vt ,

x̃i = Esxi ∈ Rds , ỹj = Etyi ∈ Rdt , (2)

where R is the real number space and Es and Et are the source and target embedding
matrices, respectively. Applying the linear embedding in (2), dense representation for the
source and the target sentences are obtained by multiplying Es and Et to X and Y,

X̃ = [x̃1 x̃2 · · · x̃n] = EsX ∈ Rds×n (3)

Ỹ = [ỹ1 ỹ2 · · · ỹn] = EtY ∈ Rdt×n . (4)

This linear transformation is one of the Word2Vec methods [33]. In our paper, we use
this embedding for all the input and target one-hot vectors.

The target of machine translation is finding a mapping that maximizes the condi-
tional probability p(Y|X). The direct approximation of p(Y|X) is intractable due to the
high dimensionality, so most of recent NMT models are based on an encoder–decoder
architecture [34]. The encoder reads an input sentence X̃ in a dense representation and
encodes it into an intermediate, contextual representation C.

C = Encoder(X̃) , (5)

where “Encoder” is a neural network model for deriving contextual representation. After
the encoding process, the decoder starts generating a translated sentence. At the first
decoding step, it takes encoded contextual representation C and the “START” symbol,
which means the start of the decoding process, and generates the first translated token.
Second, the token generated previously is fed back into the decoder. It produces the next
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token based on the tokens generated previously and contextual representation C. These
decoding processes are conducted recursively until an “EOS” symbol is generated, which
denotes the end of the sentence. The decoding process can be formulated by the following
Markovian equation,

p(yj) = g({y1, y2, . . . , yj−1}, C) , (6)

where j is the symbol index to be generated, yi is ith symbol, and g(·) is decoding step
function, which generates a conditional probability if yj given the previous outputs,
{y1, . . . , yj−1}, and the encoder output of the input sequence. Figures 1 and 2 illustrate the
framework of the “sequence-to-sequence with attention mechanism” model (seq2seq) [13]
and the framework of the “the transformer” model [16], which are NMT models used in
the proposed methods.

Figure 1. Framework of the seq2seq model.The red LSTM cell is the encoder and the blue is the decoder. The encoder
encodes a source sentence into the context vector. The decoder is initialized with the context vector and generates a
translated token, receiving a previous token and an attention vector. The translation results in this figure are given just to
show that the input and output are Chinese text and Korean text, respectively. The Korean and the Chinese text do not have
one-to-one correspondence.
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Figure 2. Framework of the transformer model. The red box is the encoder, and the blue one is the decoder. The outputs of
the encoder are fed into the encoder–decoder attention layers. All residual connections and normalization layers are omitted.

2.2. Conventional Named Entity Recognition

There have been many studies for named entity recognition (NER) based on recurrent
neural networks (RNNs) [37,38]. Similar to neural machine translation, the input is a
sequence of tokens, X̃ = [x̃1 x̃2 · · · x̃n] ∈ Rvs×n, and the output is a sequence of binary
labels indicating which tokens are named entities, so the length of the output is the same as
that of the input sequence: t = [t1 t2 · · · tn] ∈ Bn. The example target encoding is shown in
Table 1. Each word in the “Truth” and “NMT output” is underlined if it is a named entity.
In those cases, the target labels are assigned one. The objective of named entity recognition
is finding a sequence that maximizes the posterior probability of t given the input,

t∗ = arg max
t

p(t|X) , (7)

where t∗ is an optimal NER result. Recently, a novel model for NER based only on attention
mechanisms and feedforward networks achieved state-of-the-art performance on the
CoNLL-2003 NER task [39].

3. Proposed Method
3.1. AAM in Sequence-to-Sequence Models

In this subsection, we describe the seq2seq model [13] used in our method and explain
how to obtain an AAM from it. The seq2seq model consists of an LSTM-based [11] encoder–
decoder and an attention mechanism. The encoder encodes a sequence of input tokens
x̃ = (x̃1, x̃2, . . . , x̃n), represented as dense vectors, into a context vector c, which is a fixed-
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length vector. We used a bidirectional LSTM (BiLSTM) [40–43] as the encoder to capture
bidirectional context information of the input sentences.

−→
hi = f (x̃i,

−−→
hi−1), (8)

←−
hi = f (x̃i,

←−−
hi+1), (9)

where f are stacked unidirectional LSTM cells and
−→
hi ∈ Rd and

←−
hi ∈ Rd are the hidden

states of the top forward LSTM cell and the top backward cell, respectively. Moreover, i
indicates the encoding steps, and d is the number of hidden units of the top LSTM cell in
the encoder.

c = [
−→
hn ;
←−
h1 ] (10)

Hidden states at the last encoding step for both directions
−→
hn and

←−
h1 are concatenated

to obtain c ∈ R2d. Stacked unidirectional LSTM cells are used for the decoder. Once the
encoder produces context vector c, the bottom LSTM cell of the decoder is initialized with c.

sj=1 = c, (11)

where sj ∈ R2d are the hidden states of the bottom LSTM cell in the decoder, and subscript
j denotes the index of the decoding step. Next, the decoder starts the process of decoding:

p(yj) = g(yj−1, sj, oj) . (12)

Each decoding step computes the probability of the next token using three components.
The first is the previously generated token yj−1; the second is the current hidden state
sj; the third is an attention output vector oj. An attention output allows the decoder to

retrieve hidden states of encoder {h1, · · · , hn}, where hi = [
−→
hi ;
←−
hi ].

oj =
n

∑
i=1

aijhi , (13)

aij =
exp(eij)

∑n
k=1 exp(ekj)

, (14)

eij = vT
a tanh(Wasj−1 + Uahi + ba) . (15)

Attention scores eij indicate how related sj−1 is to hi. Here, Wa ∈ Rda×2d, Ua ∈ Rda×2d,
va ∈ Rda , and ba ∈ Rda are trainable parameters, where da is the hidden dimension of
the attention mechanism. Attention weights are computed by the softmax function across
the attention scores. The attention output oj is a weighted sum of hidden states from the
encoder {h1, · · · , hn}. It tells the decoder where to focus on the input sentence when the
decoder generates the next token.

In the seq2seq model, an attention alignment map (AAM) A ∈ Rn×m, where n and m
represent the sequence lengths of the input and output sentences, can be easily computed
by stacking up the results of (14) while the model generates the translation. Figure 1
illustrates the framework of the seq2seq model used in this paper.

3.2. Transformer

In this subsection, we describe the transformer model [16] used in our method and
explain how to obtain an AAM from it. The transformer also consists of an encoder and
a decoder. Unlike the seq2seq model, it introduces a position encoding [16,44] to add
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positional information into the model, because it does not have any recurrent units that
would model positional information automatically.

x′i = x̃i + PE(i) , (16)

y′j = ỹj + PE(j) . (17)

Here, PE(k) ∈ Rdmodel produces a position encoding vector that corresponds to position
k, dmodel is the dimensionality of the model, and i and j are the positional indices of the
input and output sentence, respectively. The positional encoding vectors are added to a
sequence of input tokens x̃ = (x̃1, x̃2, . . . , x̃n) represented as dense vectors as in (2). The
sum of embedding vectors and positional encoding x′ = (x′1, x′2, . . . , x′n) ∈ Rdmodel×n are fed
into the bottom encoding layer.

The encoder is a stack of encoding layers, where each encoding layer is composed of a
self-attention layer and a feedforward layer. The self-attention layer of the bottom encoding
layer takes x′, and the others receive the outputs of the encoding layer right below them.
Self-attention layers allow the model to refer to other tokens in the input sequence.

Aenc
h = softmax

(
QhKT

h√
dk

)
(18)

Attention(Qh, Kh, Vh) = Aenc
h Vh (19)

headh = Attention(Qh, Kh, Vh) (20)

MultiHead(Q, K, V) =

Concat(head1, · · · , headhn)W
O .

(21)

The “multihead scaled dot-product attention” is computed by the above equations
and was proposed by Vaswani et al. [16]. Here, Qh, Kh, and Vh are linear transformations of
its input. Qh = zT

e •WQ
h , Kh = zT

e •WK
h , and Vh = zT

e •WV
h , where ze ∈ Rdmodel×n is the input

of each attention layer in the encoder. Aenc
h denotes an AAM of the encoder self-attention

layer on the hth head. Moreover, WQ
h ∈ Rdmodel×dk , WK

h ∈ Rdmodel×dk , WV
h ∈ Rdmodel×dv ,

and WO ∈ Rhndv×dmodel are trainable parameters, and dk = dv = dmodel/hn, where hn is the
number of heads.

FFN(x) = max(0, xW1 + b1)W2 + b2 . (22)

The outputs of the self-attention layers pass through the feedforward network. Each
position is processed independently and identically. Here, W1 ∈ Rdmodel×d f f , W2 ∈ Rd f f×dmodel ,
b1 ∈ Rd f f , and b2 ∈ Rdmodel are learnable parameters, where d f f is the dimensionality of the
inner linear transformation.

The final output of the encoder is considered as contextual representation c =
(c1, c2, . . . , cn) ∈ Rdmodel×n as in (5). It is fed into the encoder–decoder attention layers
of the decoder. The decoder has a stack of decoding layers, where each decoding layer
consists of a self-attention layer, encoder–decoder attention, and a feedforward network.
By analogy to the encoder, the bottom decoding layer takes the sum of embedding vectors
and positional encoding y′ = (y′1, y′2, . . . , y′m) ∈ Rdmodel×m, as in (17), and the others receive
the outputs of the decoding layer right below them. Self-attention layers in the decoder are
similar to those in the encoder. However, the model can only retrieve the earlier positions
at the current step. Hence, the model cannot attend to tokens not yet generated in the
prediction phase. An encoder–decoder attention layer receives contextual representation
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c and the output of self-attention layers located below in the decoder zT
d ∈ Rdmodel×m as

in Figure 2.

Qh = zT
dWQ

h (23)

Kh = cTWK
h (24)

Vh = cTWV
h (25)

Aenc−dec
h = softmax

(
QhKT

h√
dk

)
(26)

Attention(Qh, Kh, Vh) = Aenc−dec
h Vh . (27)

This layer helps the decoder concentrate on the proper context in an input sequence
when the decoder generates the next token. For every sublayer, residual connection [45]
and layer normalization [46] are applied. Although we did not annotate layer indices for
the trainable parameters, each layer does not share them. There are hn encoder–decoder
AAMs Aenc−dec

h for each decoding layer. To obtain A ∈ Rn×m, we reduced the mean across
layers l and attention heads h.

A = mean
l

(mean
h

(Aenc−dec
hl )) (28)

Figure 2 illustrates the framework of the transformer model in our study. The input
Chinese characters, “以李”, if directly translated, can be mapped to Korean “이을”. How-
ever, due to the embedding in the decoder with the context information, the output of the
transformer becomes “이진을”.

3.3. NER Model

The detection of named entities of the input Chinese sentence is required to improve
the quality of the translation. The NER model used in our study was based on stacked
BiLSTM [40–42] and the conditional random field (CRF) [47,48]. We considered each Chi-
nese character as a token and assigned a tag to each token. The tagging scheme was the
IOB format [47]. As shown in Figure 3, to each of the input characters, it was given a
label that was composed of one or two tags according to the membership of the input
character to the named entities. The first tag is one of I, O, or B, for the inside, outside,
or beginning of named entity words, respectively. The I-tag denotes the inside part of the
named entity, but not the first character. The B-tag is the beginning character of the named
entity. The O-tag means that a corresponding character is not inside a named entity. In our
implementation, there were 4 types of named entities: Person, Location, Book, and Era. This
type of information corresponds to B-tag and I-tag. Therefore, the NER model is asked to
assign one of the nine tags to each token.

ti ∈ {BP, BL, BB, BE, IP, IL, IB, IE, O} , (29)

where BP, BL, BB, and BE are B-tags for Person, Location, Book and Era, respectively, and IP,
IL, IB, and IE are I-tags for the same 4 named entity types. Table 2 shows an example of the
input and output of the NER model. The NER model receives n Chinese tokens (characters)
and predicts n named entity tags. A named entity “楊口縣” can be extracted by taking
characters from the Chinese input from the index of B-Location to the index of the last
I-Location. To separate the consecutive named entities, we used B-tag and I-tag together.
If we only classify whether a character is within a named entity or not, it is impossible to
separate “江原道楊口縣” into “江原道” and “楊口縣.”
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n a m e d e n t i t y

O O O O B I I I I I I I I I I O O O O

outside begin inside outside

+P: Person
+L: Location
+B: Book
+E: Era
Target_Label: {BP, BL, BB, BE, IP, IL, IB, IE, O}

Input character sequence

Figure 3. Target labeling of the NER model. All the individual input characters are assigned a target label of one or two tags.
Characters not belonging to named entities are labeled by a single tag “O”, meaning “outside” of the named entities. The
first character of a named entity word is assigned the “B”-tag, whose meaning is “beginning” of the named entity. All the
other characters of the named entity word are assigned the “I”-tag (“inside”). To each of the first tags of the the named
entities, “B” and “I”, an extra tag from {P, L, B, E} is concatenated according to the types of the named entities, {Place,
Location, Book, Era}, respectively.

Table 2. Example of an input and an output of the NER model. Input: Chinese sentences that are fed
into the NER model. The underlined words are named entities. Among those, human names are red;
place names are blue. Output: named entity tags for each Chinese character that should be predicted
by the model. BL and IL are the B-tag and I-tag for the Location named entity occurrence, and BP and
IP are for the Person named entities, while O is for Outside.

Input 江原道楊口縣民家九十九戶,一時燒燼 ◦
Output BL IL IL BL IL IL O O O O O O O O O O O O

Input 道臣以聞,上命行恤典 ◦
Output BP IP O O O O O O O O O

As in the NMT model, a Chinese sentence x = (x1, x2, . . . , xn) ∈ Rvs×n represented as
one-hot encoding vectors is converted into dense vector representations x̃ = (x̃1, x̃2, . . . , x̃n) ∈
Rds×n by using the embedding method [33–36] as in (2). Next, x are fed into the BiLSTM
sequentially, and the BiLSTM captures bidirectional contextual information from input
sequence x, as in (8) and (9).

hi = [
−→
hi ;
←−
hi ]

p(ti|xi) = CRF(WNhi + bN) . (30)

Hidden state hi ∈ R2d, which is the output of BiLSTM, is a concatenation of both
directional LSTM hidden states

−→
hi ∈ Rd and

←−
hi ∈ Rd. A linear transformation layer and

a CRF [47,48] layer are applied to h = (h1, h2, . . . , hn), and the CRF layer predicts named
entity tags for each input token xi, where i is the time step of tokens and d is the number of
hidden units of a top LSTM cell. Here, WN ∈ R2d×dt and bN ∈ Rdt are trainable parameters,
where dt = 9 is the number of tag classes.

Finally, we can extract a list of named entities from the combination between the input
sentence and the predicted tags. Figure 4 illustrates the NER framework used in our study.
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Figure 4. Framework of the NER model. The model predicts tags for each Chinese character. fi and
bi represent the forward and backward LSTM cells, and i indicates the time steps. BP and IP are the
B-tag and I-tag for the Person named entity occurrence, and O is for Outside.

3.4. Named Entity Correction with AAM

In Table 1, we can see that mistranslated words in the output of the NMT model
correspond to named entities in the input sentences. The reason for this is that these named
entities are OOV words or rarely occur in the training corpus. The NMT system cannot
model these named entities well. In this section, we describe the proposed method that
corrects mistranslated words in the output sentences through an example.

First, the NMT model translates a given Chinese sentence to a Korean sentence.
In Table 3, it cannot accurately predict named entities that are names of persons.

Table 3. Neural machine translation. English translation is to explain the meaning of the text.

Input 以李周鎭爲平安監司,元景淳爲副校理,尹敬周爲正言 ◦

Output
이진을평안감사로, UNK을부교리로,

윤주를정언으로삼았다.

English

Lee Joo Jin is assigned as the Pyeongan inspector,
Won Kyung Soon as the vice dictator,

Yun Gyeong Joo as the dictator.
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Second, the NER model finds named entities in the given Chinese sentence. In Table 4,
red-colored words denote the named entities found by the NER model.

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

 (31)

Third, we computed AAM A ∈ Rn×m from the NMT model, using (14) and (28). Here,
n and m are the sequence length of the input and output sentence, respectively. Figure 5
shows examples of the attention alignment map. Each element aij of A is the amount of
related information between input token xi and output token yj.

Table 4. Named entity recognition. The detected named entities of human names are underlined
colored red.

Input 以李周鎭爲平安監司,元景淳爲副校理,尹敬周爲正言 ◦
Output 以李周鎭爲平安監司,元景淳爲副校理,尹敬周爲正言 ◦

(a) Attention alignment map from the seq2seq model. (b) Attention alignment map from the transformer
model.

Figure 5. Attention alignment maps. Labels of columns and rows correspond to the tokens in the input sentences (Chinese)
and the output sentences (Korean), respectively. The postprocessing has not yet been applied to the output. Colored tokens
on the input side are the named entities predicted by the NER model. Colored tokens on the output side are aligned with
equally colored named entities on the input side by AAM.

Fourth, we took the row vectors of AAM corresponding to indices of the Chinese
named entities. Figure 6 illustrates a part of the AAM. In this example, the indices of the
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Chinese named entities “李周鎭” are 2, 3, 4, so we took row vectors a2, a3 and a4, where
a2 = (a21, a22, . . . , a2m).

ĵ = arg max
j

∑
i∈{2,3,4}

ai (32)

Fifth, summation across the columns of a2, a3 and a4 was implemented to obtain the
vector form. The index of the Korean token aligned with the Chinese named entity was
found by the arg max function, where ĵ is the index of Korean token “이진” aligned with
Chinese named entity “李周鎭.” The NER matching results are shown in Table 5.

Repeating the above process, we can align all Chinese named entities found by the
NER model with the Korean tokens in the sentence translated by the NMT model.

Figure 6. Korean tokens aligned with the Chinese named entities.

Table 5. Korean tokens aligned with the Chinese named entities. The underlined words are named
entities. Among those words, red-colored ones are human names; blue-colored ones are place
names; green-colored ones are book names.

Input 以李周鎭(1)爲平安監司,元景淳(2)爲副校理,尹敬周(3)爲正言 ◦

Output
이진(1)을평안감사로, UNK(2)을부교리로,

윤주(3)를정언으로삼았다.

We assumed that Korean token y ĵ was mistranslated. Finally, the aligned Korean
tokens were replaced with a direct translation of the corresponding Chinese named entities
from the look-up table. If the look-up table does not have the named entity, an identity
copy of the Chinese named entity is an appropriate alternative. Figure 7 shows correction
of the named entities in the translation results using look-up table. The corrections are:
“이진(Lee Jin)”⇒ “이주진(Lee Joo Jin)”, “UNK”⇒ “원경순(Won Kyung Soon)”, and “윤주
(Yoon Joo)”⇒ “윤경주(Yoon Kyung Joo)”. The subscripted, parenthesized numbers are
found by the proposed method.
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Figure 7. Named entity correction using the look-up table. The named entity, “이진(Lee Jin)” is corrected to “이주진(Lee Joo
Jin)”, “UNK” is to “원경순(Won Kyung Soon)”, and “윤주(Yoon Joo)” to “윤경주(Yoon Kyung Joo)”. All the named entities
in this example are person names.

4. Experiments

We evaluated our approach on the Chinese-to-Korean translation task. The Annals of
the Joseon Dynasty were used for our experiments as a parallel corpus. We compared the
results for two cases: when the postprocessing was applied and when it was not applied.

4.1. Dataset: The Annals of the Joseon Dynasty

The Annals were written by the Joseon Dynasty of Korea in 1413–1865 and are listed in
UNESCO’s Memory of the World Registry. The Annals have been digitalized by the government
of Korea since 2006 and are available on the website (http://sillok.history.go.kr/main/main.do,
last access date: 1 July 2021) with the Korean translations and the original texts in Chinese.
We used this parallel corpus to train our NMT models. To simulate real-world situations,
we split the records according to the time they were written. Records from 1413 to 1623 were
the training corpus, and records from 1623 to 1865 were the evaluation corpus. The training
and evaluation corpus contained 230 K and 148 K parallel articles, respectively. We only
used articles with Chinese and Korean tokens less than 200 in length, because the articles
have an extremely variable length of letters. Figure 8 shows histograms for the sequence
length of the Korean–Chinese parallel corpus. The Chinese–Korean pair sequences with
the top 5% length were ignored in histogram Figure 8. For all Chinese sentences, the mean
sequence length was 112.87 and the median was 54. For all Korean sentences, the mean was
124.56 and the median was 56. In Chinese (input), no tokenization was used. We simply
split each Chinese sentence into a sequence of characters, because each Chinese character
has its own meaning. In Korean (output), meanwhile, we used an explicit segmentation
method [49] to split each Korean sentence into a sequence of tokens. Thus, the number of
articles for training was 168 K and for evaluation was 113 K.

For the NER model, we also used the same corpus: the Annals of the Joseon Dy-
nasty. The annotation of the Chinese named entities for this corpus is publicly available
(https://www.data.go.kr/dataset/3071310/fileData.do, last access date: 1 July 2021). Addi-
tionally, Table 6 shows an analysis of the Chinese NER corpus. Approximately 7.5% of the
characters belong to named entities, and the most frequently named entity type is Person.

http://sillok.history.go.kr/main/main.do
https://www.data.go.kr/dataset/3071310/fileData.do
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Table 6. Analysis of the Chinese NER corpus.

# total characters 66M

# characters within the named entities 5M

# types of named entities 140K

Ratio of the named entity types

Person Location Book Era

73.3% 24.0% 2.4% 0.3%

Figure 8. Histograms for the sequence length of the Korean–Chinese parallel corpus.

4.2. Models

For the seq2seq model, Description in Table 7 describes the model architecture used in
our experiments. For the seq2seq model, Description means (embedding size, hidden units
of encoder cells, # stack of encoder cells, hidden units of decoder cells, # stack of decoder
cells). Embedding matrices for the source and target tokens were both pretrained by the
word2vec algorithm [50], using only the training parallel corpus. The encoder is a stacked
BiLSTM, and the decoder is a stacked unidirectional LSTM. During the learning process,
the dropout approach [51,52] was applied to the output and states of the LSTM cells. Once
training of the model was complete, beam-search decoding was used with a beam width of
four to generate a translation that maximized the sum of the conditional probabilities of
the sequence.

For the transformer model, Description in Table 7 represents (hidden size, # hidden
layers, # heads, FFN filter size). To avoid overfitting of the model, the dropout [52] method
was used among the layers in the training process. As the seq2seq model, beam-search
decoding was implemented with a beam width of four. The NER model used in this study
was the BiLSTM-CRF model. Specifically, the following model was used in our experiments.
The embedding size was 500, and the embedding matrix was pretrained by the word2vec
algorithm [50] using only the training dataset. Each cell had five-hundred twelve hidden
units, and two cells are stacked. Here, we also used the dropout approach [51,52] in the
learning phase.
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Table 7. Performance improvements in the BLEU score. Description: model details. Vocab: the number of vocabularies. Params:
the number of model parameters. Original: BLEU score without the proposed method. Modified: BLEU score for the results
corrected by the proposed method. The best scores for both “Original” and “Modified” are achieved by using the second
configuration of Seq2seq model, and those numbers are emphasized in bold face.

Model Description Vocab Params Original Modified ∆

Seq2seq (500, 512, 3, 1024, 2) 40K 58M 35.75 39.29 +3.54

Seq2seq (500, 512, 3, 1024, 2) 42K 59M 35.83 39.53 +3.70

Seq2seq (500, 512, 3, 1024, 2) 50K 63M 35.66 39.13 +3.47

Seq2seq (500, 512, 3, 1024, 2) 87K 81M 35.29 37.89 +2.60

Seq2seq-Reduced (300, 256, 3, 512, 2) 42K 22M 33.95 37.26 +3.31

Seq2seq-Reduced (300, 256, 3, 512, 2) 87K 54M 33.73 36.59 +2.86

Transformer-Big (512, 6, 8, 2048) 42K 65M 33.90 37.07 +3.17

Transformer-Big (512, 6, 8, 2048) 87K 88M 32.66 35.62 +2.96

Transformer (256, 3, 4, 1024) 42K 16M 34.68 37.79 +3.11

Transformer (256, 3, 4, 1024) 87K 27M 34.95 37.98 +3.03

Transformer-Reduced (128, 2, 2, 256) 42K 6M 30.61 33.52 +2.91

4.3. Experimental Results

To evaluate our NER models, we introduced two types of F1-score: entity form and
surface form [53]. First, the entity form is a conventional measurement calculated from the
entity level. Second, the surface form evaluates the ability of NER models to find rare entity
words. In Table 8, the lexicon used in Dictionary search was extracted only from the training
corpus. The NER model used in the experiment was a two-stack LSTM model. Table 7
shows how the performance improved in the proposed method depending on the type of
NMT model (seq2seq or transformer), the number of trainable parameters of the model,
and the output (Korean) vocabulary size. Our experiments showed that the proposed
method was effective regardless of these types, and the BLEU scores improved from 2.60
to 3.70. In Table 9, experimental results show that the proposed approach successfully
corrected mistranslated named entities in the output of the NMT model.

Table 8. NER accuracy in 2 types of F1-score. Entity Form and Surface Form mean how many entities
the model finds and how many types of entities the model finds, respectively.

Model Entity Form Surface Form

Dictionary search 4.4% 35.0%

1-layer LSTM Stack 91.1% 88.0%

2-layers LSTM Stack 91.9% 88.5%

3-layers LSTM Stack 91.8% 88.2%
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Table 9. Named entity correction using the proposed method. Baseline: outputs of the seq2seq model. Proposed: results of our
approach. Named entities are underlined. Human names are in red color; place names in blue; book names in green.

Truth 이주진을평안감사로,원경순을부교리로,윤경주를정언으로삼았다.

English Translation Lee Joo Jin is assigned as the Pyeongan inspector,
Won Kyung Soon as the vice dictator, Yun Gyeong Joo as the dictator.

Baseline 이진을평안감사로, UNK을부교리로,윤주를정언으로삼았다.
Proposed 이주진을평안감사로,원경순을부교리로,윤경주를정언으로삼았다.

Truth 암행어사이윤명 · 김몽신 · 이우겸등을나누어파견하여
여러도를검찰하게하였다.

English Translation The secret royal inspectors Lee Yun Myeong, Kim Mong Shin,
and Lee Woo Gyeom were dispatched to investigate various provinces.

Baseline 암행어사 UNK · UNK · UNK등을나누어보내어
두루제도를살피게하였다.

Proposed 암행어사이윤명 · 김몽신 · 이우겸등을나누어보내어
두루제도를살피게하였다.

Truth 강원도양구현의민가 99호가한꺼번에불타없어졌는데,
도신이계문하니,임금이휼전을시행하라고명하였다.

English Translation 99 civil houses in Yanggu Gangwon province were burnt down all at once,
Do Shin requested the king to distribute food tickets to civilians.

Baseline 강원도 UNK민가 99호가한꺼번에불에타버렸다.
도주가아뢰니,상이휼전을행하라고명하였다.

Proposed 강원도양구현민가 99호가한꺼번에불에타버렸다.
도신가아뢰니,상이휼전을행하라고명하였다.

Truth 임금이영희전에나아가전알하고,이어서
저경궁 ·육상궁 ·연호궁 ·선희궁에나아가전배하였다.

English Translation The king went to Yeonghuijeon and perform a rites, and then to Jeogyeonggung,
Sokseonggung, Yeonhogung, and Seonhuigung and performed rites.

Baseline 임금이영모전에나아가서전알하고,이어서
경복궁 · UNK · UNK ·경희전에나아가참배하였다.

Proposed 임금이영희전에나아가서전알하고,이어서
저경궁 ·육상궁 ·연호궁 ·선희궁에

나아가참배하였다.

Truth 소대를행하고�명신주의�를강론하였다.
English Translation Conducted a So Dae and lectured on�Myungshinism�.

Baseline 소대를행하고�UNK�를강하였다.
Proposed 소대를행하고�명신주의�를강하였다.

5. Discussion

We found that the proposed method had several strengths and weaknesses. As for the
strengths, the proposed method does not require retraining of the existing NMT models,
and it can be directly applied to the NMT models without modifying the model architec-
ture. It is suitable for any language pair. Moreover, it has a low computational complexity
because of the small-sized vocabulary. As for the weaknesses, the proposed method does
not work when predictions of the NER model are wrong. Additionally, tokens that should
not be changed may be corrected if the alignment is not proper. The proposed method
needs a look-up table to work properly. Table 10 shows examples of these weaknesses.
In the above example, the NER model cannot find a named entity in the source sentence, so
the UNK for “거려청” was not corrected. The UNK for “�심경�” was also not corrected,
although the NER model recognized a token “�必經�” as a named entity, because our
look-up table did not have “�必經�.” In the final example, token “하” in Baseline was
changed because the attention alignment map was not accurate.
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Table 10. Weaknesses of the proposed method. Source: input sentence. Truth: ground truth. Baseline: outputs of the NMT
models. Proposed: results of our approach. NER output: outputs of the NER model. Underlined words: named entities.
Green-colored tokens: named entities for the names of books. Blue-colored: named entities for the names of place names.

Source 上御居廬廳,召對,命儒臣,讀�必經� ◦
Truth 임금이거려청에나아가소대하였다.임금이유신들에게명하여�심경�을읽게하였다.

English Translation
The king went to Georyeocheong and conducted a So Dae.

The king ordered the subjects to read�Shim Gyung�.
Baseline 상이 UNK에나아가소대하였다.유신에게명하여�UNK�을읽게하였다.
Proposed 상이 UNK에나아가소대하였다.유신에게명하여�UNK�을읽게하였다.

NER output [�必經�, Book]

Source 進講于熙政堂 ◦
Truth 희정당에서진강하였다.

English Translation
He lectured at Huijeongdang.

Baseline UNK에서진강하였다.
Proposed UNK에서진강희정당였다.

NER output [熙政堂, Location]

6. Conclusions

Even the NMT models that show state-of-the-art performance on multiple machine
translation tasks are still limited when dealing with OOV and rarely occurring words. We
found that the problem is particularly relevant for the translation of historical documents
with multiple named entities. In this paper, we proposed a postprocessing approach to
address this limitation. The proposed method corrects the machine translation output
using the NER model and the attention map. The NER model finds named entities in the
source sentence, and the attention map aligns the located named entities with the tokens in
the translated sentence. Next, we assumed that the tokens aligned with the source named
entities were mistranslated, and we replaced them using the look-up table or an identity
copy. Experiments with various target vocabulary sizes in Section 4 demonstrated that
our method is effective in the task of translation of historical documents from Chinese
to Korean. Using the proposed NER method, the machine translation performance was
improved up to 3.70 in terms of the BLEU score (35.83 to 39.53) in seq2seq translation
models and up to 3.17 (33.90 to 37.07) in transformer models. Moreover, there was no BLEU
score degradation due to the proposed method. The proposed method can be applied to an
existing NMT model that uses the attention mechanism without retraining the model, if an
NER model exists for the source language. Our method can be successfully applied not
only to Chinese-to-Korean translation, but also to other language pairs. In our future work,
we plan to explore this direction.
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BLSTM Bi-directional long short-term memory
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