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Abstract: With the advancement of intelligent compaction technology, real-time quality control
has been widely investigated on the subgrade, while it is insufficient on asphalt pavement. This
paper aims to estimate the real-time compaction quality of hot mix asphalt (HMA) using an artificial
neural network (ANN) classifier. A field experiment of HMA compaction was designed. The
vibration patterns of the drum were identified by using the ANN classifier and classified based
on the compaction levels. The vibration signals were collected and the degree of compaction was
measured in the field experiment. The collected signals were processed and the features of vibration
patterns were extracted. The processed signals were tagged with their corresponding compaction
level to form the sample dataset to train the ANN models. Four ANN models with different hidden
layer setups were considered to investigate the effect of hidden layer structure on performance. To
test the performance of the ANN classifier, the predictions made by ANN were compared with the
measuring results from a non-nuclear density gauge (NNDG). The testing results show that the ANN
classifier has good performance and huge potential for estimating the compaction quality of HMA
in real-time.

Keywords: hot mix asphalt; compaction quality control; artificial neural networks; degree of com-
paction; vibration

1. Introduction

The compaction of hot mix asphalt (HMA) is the last and most critical process during
asphalt layer construction, which is critical for the safety and durability of an asphalt
pavement. Improper compaction can cause a negative effect on the road surface perfor-
mance of HMA [1]. The compacted layer usually has a high percentage of air voids if
under-compaction. This may cause the pavement to be more vulnerable to oxidation and
moisture infiltration [2]. Conversely, over-compaction will lead to a low percentage of
air voids, which is the main cause of asphalt bleeding in high-temperature weather [3].
Therefore, quality control during compaction is a must for long-term performance assur-
ance of asphalt pavement [4]. Currently, the most reliable method of measuring pavement
density is to evaluate air voids of the extraction gained by field cores at limited locations.
This test method is time-consuming, costly, destructive, and not indicative of the overall
pavement quality [5]. Alternative ways to obtain the density of HMA layers in the field
include nuclear density gauges and non-nuclear density gauges. However, these methods
provide only point-wise measurements of density and cannot reflect the overall quality of
the HMA layer in real time during compaction.

To solve these issues, the intelligent compaction (IC) technique has been evolved
for more than 20 years to evaluate real-time compaction quality in the process of con-
struction. So far, several IC measurement values (ICMVs) are proposed to indicate the
compaction quality, such as some harmonic-based indicators including Compaction Meter
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Value (CMV), Compaction Control Value (CCV), Vibrating Compaction Value (VCV), and
some mechanical-based indicators including vibration modulus (Evib) and soil stiffness
(Ks) [6–10]. Among them, the CMV is calculated by the first and fundamental harmonic
content, which is widely used for quality evaluation in the compaction of roadbed materials.
At present, most research and application of these IC technologies have been conducted
in highway and railway subgrades and earth dams [11–15]. However, some variability
such as operational parameters of the compactor, characteristics of subgrade materials, and
mix properties, make the above-mentioned IC measurement values difficult to accurately
predict compaction quality, and thus not yet widely recognized [16]. In particular, since
the strong nonlinear interaction between the roller drum and the pavement layer, and the
complexity and flexibility of various factors as mentioned above, few studies on IC of
asphalt layers are reported [17–19].

In recent years, a novel IC system based on the artificial neural network (ANN),
named the IC analyzer (ICA), was proposed. It provides another way to estimate the
stiffness of subgrade in real-time and forms an extension for estimating the quality of
asphalt pavement during construction [16,20–22]. To verify the validity of the neural
network-based IC method, a case study of the vibrating compaction process for the asphalt
layer was conducted in this paper. The vibration patterns of the drum were identified
and classified by using an ANN classifier. A field experiment of HMA compaction was
designed. The field experiment was performed in a construction site to collect the vibration
signals, while the degree of compaction was measured. The collected vibration signals were
processed and the frequency features of vibration patterns were extracted. The processed
signals were tagged with their corresponding compaction level to form the sample dataset
for training the ANN model. At last, the predictions made by ANN were compared with
the measuring results from a non-nuclear density gauge (NNDG) to test the performance
of the ANN classifier.

2. Experimental Program and Signal Processing

A coupled system is assumed to be composed of the vibratory roller and the pavement
underneath during the compaction. The response of the coupled system is influenced by
the varying degree of compaction, causing the different vibration patterns of the drum. A
mapping relationship should exist between vibration pattern and degree of compaction.
The vibration signals and the degree of compaction were measured in a field compaction
experiment. Then, the mapping relationship could be obtained by the ANN.

2.1. Experimental Program

In this study, a field test was performed in a construction site of Ning-Liang express-
way project located in Shandong Province, China. Table 1 shows the pavement structure
in the project, including the subgrade, one subbase layer, two semi-rigid base layers, one
flexible base layer, and three hot-mix asphalt (HMA) surface layers. The compaction test
was performed at the AC-25 layer with a thickness of 8 cm, as is shown in Figure 1. A
Bomag roller with a single drum was used in this test. The weight of the drum is 13,000 kg,
exerting a vertical force to the pavement. Other main operating parameters, such as
speed and frequency, were selected by the paving crew based on their experience. The
roller was operated at a speed of about 1 m/s, a frequency of 50 Hz, and an amplitude of
approximately 0.35 mm in the vibrating compaction process.

Two accelerometers were used to collect the vertical vibration acceleration signals:
one was carefully mounted on the drum frame and another one was mounted on the floor
of the cab, as shown in Figure 2. The compaction was performed on two test lanes. The
lengths of “test lane 1” and “test lane 2” were 50 m and 60 m, respectively. The width of the
test lane was 2.13 m. The roller pass trajectory on each test lane is shown in Figure 3. The
number of compaction passes performed for “test lane 1” and “test lane 2” were 14 and 16,
respectively. In this study, TransTech’s Pavement Quality Indicator Model 380 (PQI380) was
employed in in situ tests, as shown in Figure 4. PQI380 uses impedance spectroscopy to
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measure the electrical response of asphalt from which the density is calculated. The density
determined by the PQI380 is highly material-dependent, so it is required that the mix
information for each mix design is input accurately into the gauge. The mix information
includes stone sizes, depth, and maximum theoretical density (MTD). For one pass, the
degree of compaction was measured about every 10 m and the mean value is used to
indicate the degree of compaction of this pass.

Table 1. Pavement structure in the project.

HMA Surface Layers
4 cm SMA-13
6 cm AC-20
8 cm AC-25

Flexible base layer 12 cm LSPM-25

Semi-rigid base layer 2 × 18 cm Cement stabilized aggregate

Subbase layer 18 cm Cement stabilized gravel

Subgrade Compacted natural soil

Appl. Sci. 2021, 11, x FOR PEER REVIEW  3  of  12 
 

Table 1. Pavement structure in the project. 

HMA Surface Layers 

4 cm SMA‐13   

6 cm AC‐20   

8 cm AC‐25 

Flexible base layer  12 cm LSPM‐25 

Semi‐rigid base layer  2 × 18 cm Cement stabilized aggregate 

Subbase layer  18 cm Cement stabilized gravel 

Subgrade  Compacted natural soil 

 

Figure 1. Pavement structure cross‐section of compaction test. 

Two accelerometers were used to collect the vertical vibration acceleration signals: 

one was carefully mounted on the drum frame and another one was mounted on the floor 

of the cab, as shown in Figure 2. The compaction was performed on two test lanes. The 

lengths of “test lane 1” and “test lane 2” were 50 m and 60 m, respectively. The width of 

the test lane was 2.13 m. The roller pass trajectory on each test lane is shown in Figure 3. 

The number of compaction passes performed for “test lane 1” and “test lane 2” were 14 

and 16, respectively.  In  this study, TransTech’s Pavement Quality  Indicator Model 380 

(PQI380) was employed  in  in situ  tests, as shown  in Figure 4. PQI380 uses  impedance 

spectroscopy to measure the electrical response of asphalt from which the density is cal‐

culated. The density determined by the PQI380 is highly material‐dependent, so it is re‐

quired that the mix information for each mix design is input accurately into the gauge. 

The  mix  information  includes  stone  sizes,  depth,  and  maximum  theoretical  density 

(MTD). For one pass, the degree of compaction was measured about every 10 m and the 

mean value is used to indicate the degree of compaction of this pass. 

Figure 1. Pavement structure cross-section of compaction test.
Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 12 
 

 
Figure 2. Accelerometer setup. 

 
Figure 3. Test lanes. 

 

Figure 4. PQI380 used in in-situ test. 

 

Figure 2. Accelerometer setup.



Appl. Sci. 2021, 11, 7136 4 of 11

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 12 
 

 
Figure 2. Accelerometer setup. 

 
Figure 3. Test lanes. 

 

Figure 4. PQI380 used in in-situ test. 

 

Figure 3. Test lanes.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 12 
 

 
Figure 2. Accelerometer setup. 

 
Figure 3. Test lanes. 

 

Figure 4. PQI380 used in in-situ test. 

 

Figure 4. PQI380 used in in-situ test.

Figure 5 shows the measuring results of the degree of compaction. The open circles
denote the degree of compaction measured in the in-situ tests, the solid circles denote the
average degree of compaction for each pass. It can be seen from Figure 5 that the degree of
compaction increased with the increasing number of passes. For AC-25 asphalt mixture,
it is generally required that the degree of compaction is at least 97%. In this compaction
experiment, about 10 passes needed to be performed to satisfy the requirement.
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2.2. Signal Processing

When the vibratory roller moved on the test lanes, the vibration signals measured
by two accelerometers (in the cab and on the drum frame) were continuous. Since the
velocity of the roller was about 1 m/s, it took about 60 s for one pass. Therefore, a 60-s long
vibration signal was obtained from one accelerometer in one pass. A total of 60 long signals
were collected since a total of 30 passes were performed on two test lanes. Theoretically,
the frequency components of the vibration signals from the cab and drum frame should be
the same, even though the amplitudes may be different.

The vibration was sampled at 2 kHz. The 60-s long signal (collected in one pass) was
successively split into many 0.5-s short signals. A short signal had 1000 contiguous data
samples, the first 500 values of a short signal overlapped with the last 500 values of the
previous short signal. The short signals were converted into the frequency domain by using
a fast Fourier transform (FFT). The Nyquist frequency was 1 kHz since the vibration was
sampled at 2 kHz. The Nyquist frequency is half of the sampling rate of a discrete signal
processing system. According to the Nyquist–Shannon sampling theorem, if a system
uniformly samples an analog signal at a rate that exceeds the signal’s highest frequency by
at least a factor of two, the original analog signal can be perfectly recovered from the discrete
values produced by sampling. In other words, the Nyquist frequency should be higher
than the signal’s highest frequency to express the signal’s features accurately. The system
in this study is a low-frequency system, 1 kHz Nyquist frequency is enough. By using
the single-sided FFT, each short signal was converted to a frequency spectrum distributed
between 0 and 1 kHz, expressed as an array of 500 elements, a = (a1, a2, . . . , a500). Therefore,
the frequency features of the vibration signal were extracted by using FFT. In this study, the
amplitude was not considered as a kind of feature. To eliminate the effects of amplitudes,
array a should be normalized. The normalized array x was obtained as follows.

a = ln(a)
x = a

|a|max

(1)

In Equation (1), some inconspicuous frequency components can be amplified by the
logarithmic operation. The signal processing procedure is summarized as the following
three steps:

1. The 60-s long vibration signal collected in one pass is successively split into many
0.5-s short signals.

2. The short signals are converted into the frequency domain by using a single-sided FFT.
3. The short signals are normalized by using Equation (1).

The signal processing method is also diagrammed in Figure 6. The input arrays, x,
were the samples used to train the ANN model, the elements of x were the features of the
sample. Therefore, in this paper, 500 features were considered for a sample. Before the
training, every sample was tagged with a target class, the signal sample’s corresponding
compaction level. In this study, four compaction levels were considered and represented
by four target classes, as is shown in Table 2. Each sample was tagged according to the data
of degree of compaction measured in the in-situ tests shown in Figure 5, then the tagged
samples formed the dataset to train the ANN model.

Table 2. Target class and compaction level.

Target Class Level No. Degree of Compaction (%) Target Array

Class 1 1 <95 (1, 0, 0, 0)
Class 2 2 95~96 (0, 1, 0, 0)
Class 3 3 96~97 (0, 0, 1, 0)
Class 4 4 >97 (0, 0, 0, 1)
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3. Development of ANN Model

The multi-layer perceptron (MLP) feed-forward neural network was considered. The
network structure shown in Figure 7 consisted of an input layer, several hidden layers, and
an output layer. The input layer included 500 nodes since each sample had 500 features.
There were four nodes in the output layer, representing four classes of compaction levels.
Four networks with different hidden layer setups are considered in this paper, as is shown
in Table 3. In Table 3, Network 4 has three hidden layers, and the first, second, and third
hidden layers contain 20, 20, and 10 nodes, respectively. For convenience, the hidden layer
setup of Network 4 is signified by an array [20, 20, 10], the other three networks follow this
rule of expression.

Table 3. Four networks with different hidden layer setups.

Network 1 Network 2 Network 3 Network 4

Number of hidden
layers 1 1 2 3

Number of nodes [40] [20] [40, 20] [20, 20, 10]

The schematic of a single neuron is shown in Figure 7b. The governing equation of
each node is shown as follows,

x(l+1)
s,j = f

(
k

∑
i=1

x(l)s,i w(l)
i,j +b(l)0,j

)
(2)

In Equation (2), the subscript s denotes the sth sample, the number of nodes is k in the
lth layer. x(l)s,i denotes the ith input of the lth layer. x(l+1)

s,j denotes the jth output of the lth

layer, meanwhile, x(l+1)
s,j also denotes the jth input of the (l + 1)th layer. w(l)

i,j denotes the
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weight from the ith input to the jth output. b(l)0,j denotes the weight from the bias term of
the lth layer to the jth output. f () denotes the activation function. In this study, all the bias
terms were set as 1. A softmax function, So f

(
zj
)
= ezj / ∑4

i=1 ezi , was adopted for the output

layer, and a sigmoid function, Sig(z) =
(
1 + e−z)−1, was used in the rest of the layers.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 12 
 

The multi-layer perceptron (MLP) feed-forward neural network was considered. The 
network structure shown in Figure 7 consisted of an input layer, several hidden layers, 
and an output layer. The input layer included 500 nodes since each sample had 500 fea-
tures. There were four nodes in the output layer, representing four classes of compaction 
levels. Four networks with different hidden layer setups are considered in this paper, as 
is shown in Table 3. In Table 3, Network 4 has three hidden layers, and the first, second, 
and third hidden layers contain 20, 20, and 10 nodes, respectively. For convenience, the 
hidden layer setup of Network 4 is signified by an array [20, 20, 10], the other three net-
works follow this rule of expression. 

The schematic of a single neuron is shown in Figure 7b. The governing equation of 
each node is shown as follows, 

xs,j
ሺl+1ሻ=fቌ xs,i

ሺlሻwi,jሺlሻk

i=1

+b0,j
ሺlሻቍ (2)

In Equation (2), the subscript s denotes the sth sample, the number of nodes is k in 
the lth layer. xs,i

ሺlሻ denotes the ith input of the lth layer. xs,j
ሺl+1ሻ denotes the jth output of the 

lth layer, meanwhile, xs,j
ሺl+1ሻ also denotes the jth input of the (l + 1)th layer. wi,j

ሺlሻ denotes 
the weight from the ith input to the jth output. b0,j

ሺlሻ denotes the weight from the bias term 
of the lth layer to the jth output. f() denotes the activation function. In this study, all the 
bias terms were set as 1. A softmax function, Sof൫zj൯= ezj ∑ ezi4

i=1⁄ , was adopted for the out-
put layer, and a sigmoid function, Sigሺzሻ=ሺ1+e-zሻ-1, was used in the rest of the layers. 

 
Figure 7. Structure of the MLP feed-forward ANN: (a) Structure of the MLP feed-forward ANN.
(b) Schematic of a neuron.

4. Training of the ANN Model

A supervised learning method was adopted for the ANN training. The network
was trained for vibration pattern recognition. The targets were expressed as the four-
dimensional arrays of all 0 values except for a 1 in the cth element as shown in Table 2,
where c denoted the compaction level they were to represent.

The network’s performance was measured by the cross-entropy loss function. The
loss of the sth prediction would be

CEs= −
4

∑
c=1

ys,c ln(ŷs,c) (3)

In Equation (3), y denotes the target, ŷ denotes the output from the output layer. The
subscript c denotes the cth element of y or ŷ, and s denotes the sth sample. The entire loss
of the dataset used for training is represented by the average of all samples’ loss.

The scaled conjugate gradient (SCG) algorithm was adopted to perform training
in this study; the derivatives of the loss with respect to the weights were obtained by
backpropagation. SCG is an optimization algorithm based on the conjugate gradient



Appl. Sci. 2021, 11, 7136 8 of 11

method (CGM), it avoids the line-search per learning iteration by using a Levenberg-
Marquardt approach to scale the step size [23].

The dataset used for training was divided randomly into three subsets: training set,
validation set, and test set. The training set was used to calculate the gradient to update
the weights. The overfitting phenomenon during the training was monitored by using
the data of the validation set. Generally, the errors on the training and validation sets
decrease together during the initial phase of training. When the overfitting occurs, the
error on the validation set starts to increase. In this study, the training would be terminated
when the error on the validation set kept increasing for six iterations, and the weights
corresponding to the minimum validation error would be returned. The test set was used
to test the network’s performance after training. In this study, the training set, validation
set, and test set were set to 70%, 15%, and 15% of the original data, respectively. Moreover,
it was considered that the samples should be independent of each other, the samples were
therefore arranged in a random order in the matrix of training data.

The training performances of the four networks are shown in Figure 8. Network 3 had
the best performance 0.062. The performance of Network 3 is visualized in a confusion
matrix in Figure 9. Each column of the matrix denotes the samples in an actual class while
each row denotes the samples in a predicted class. The cells on the diagonal line denote the
correctly classified samples. The off-diagonal cells denote the incorrectly classified samples.
In each cell, the upper number denotes the number of samples and the lower number
denotes the percentage of the total number of samples. The far-right column shows the
accuracy of classification in each predicted class. The bottom row shows the accuracy of
classification in each actual class. The cell in the bottom right shows the overall accuracy.
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5. Validation of ANN Classifier

As shown in Figure 10, an ANN classifier can be gotten by integrating the signal
processing procedure and the ANN model. Once inputting a 0.5-s signal, the ANN classifier
will output an estimated compaction level. Network 3 was used as the ANN model in the
ANN classifier since Network 3 had the best training performance.
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As is mentioned in Section 2.1, the data used to train the ANN models were collected
during the compaction of two test lanes. The validation test of the ANN classifier was
performed on the other 50-m lane in the construction site of the Ning-Liang expressway
project. During the compaction of this validation lane, the degree of compaction was
measured by NNDG for each roller pass. The number of the collected signals in each
compaction level is shown in Table 4. The output accuracy of the ANN classifier is shown
in Figure 11 in the form of a confusion matrix. The overall accuracy was 91.5%, and the
ANN classifier had the worst performance on the recognition for the signals of level 3 with
an accuracy of 82.9%.



Appl. Sci. 2021, 11, 7136 10 of 11

Table 4. Number of the collected signals for the validation test.

Target Class Degree of Compaction (%) Number of Signals

class 1 <95 (Level 1) 850
class 2 95~96 (Level 2) 1000
class 3 96~97 (Level 3) 1040
class 4 >97 (Level 4) 1040
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6. Conclusions and Findings

In this study, an ANN classifier was developed for the real-time quality estimation of
HMA compaction. Some conclusions and findings are listed as follows.

(1) To investigate the effect of hidden layer structure on the performance of the ANN
model, four ANN models with different hidden layer setups were considered. The double-
hidden-layer networks showed the best performance.

(2) The compaction quality was estimated by the ANN classifier based on the vibration
signals. The results showed the validity of the ANN classifier for the real-time quality
estimation of HMA compaction.

(3) A classifier was developed in this study, but not an estimator. This is due to
the limitation of the accuracy of the non-nuclear density gauge. The range of degree of
compaction was considered in this study, this was a kind of compromise. To develop the
ANN estimator, an accurate measurement of the degree of compaction is necessary.

(4) It should be noted that although this study focused on the compaction of AC-25
asphalt mixture, it is not clear whether the ANN classifier developed in this study can be
used for other asphalt mixes, such as AC-20 and SMA-13. Different materials may lead
to different vibration patterns, thus ANNs may need to be re-designed and re-trained
for different specified materials. Furthermore, different materials and different training
dataset sizes may lead to different optimal network designs; the network in this study
(Network 3) may not be suitable if the material is not AC-25, or if the amount of training
data is very large.

In addition, the amount of training data is limited in this study. Collecting more
training data may improve the performance of the ANN model. However, ANN still shows
a huge potential for the problem of compaction quality control.
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