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Abstract: In this study, a low complexity tabu search (TS) algorithm for multiple-input multiple-
output (MIMO) systems is proposed. To reduce the computational complexity of the TS algorithm,
early neighbor rejection (ENR) and layer ordering schemes are employed. In the proposed ENR-
aided TS (ENR-TS) algorithm, the least promising k neighbors are excluded from the neighbor set
in each layer, which reduces the computational complexity of neighbor examination in each TS
iteration. For efficient computation of the neighbors’ metrics, the ENR scheme can be incorporated
into QR decomposition-aided TS (ENR-QR-TS). To further reduce the complexity and improve the
performance of the ENR-QR-TS scheme, a layer ordering scheme is employed. The layer ordering
scheme determines the order in which layers are detected based on their expected metrics, which
reduces the risk of excluding likely neighbors in early layers. The simulation results show that the
ENR-TS achieves nearly the same performance as the conventional TS while providing up to 82%
complexity reduction.

Keywords: multiple-input multiple-output (MIMO); tabu search (TS); neighbor examination

1. Introduction

Multiple-input multiple-output (MIMO) systems have been widely employed in
wireless communication systems, including long-term evolution (LTE), LTE-advanced,
and 5G new radio (NR) systems. In these systems, MIMO techniques are leveraged to
provide improved link reliability and enhanced channel capacity. The successful use of
MIMO techniques to enhance the performance of mobile networks has driven the research
community to achieve further benefits using large MIMO systems, which employ a large
number of antennas for signal transmission and reception at base stations [1].

However, the use of a large number of antennas results in excessively high com-
putational complexity for optimal signal detection schemes at the receiver. For large
MIMO systems, we can consider various signal detection schemes, such as successive
interference cancellation (SIC) [2], sphere decoder (SD) [3], K-best SD (KSD) [4], adaptive
threshold-aided KSD (AKSD) [5] and parallel interference cancellation (PIC) [6,7]. The
SD and K-best SD algorithms begin their search over the noiseless received signals that
lie within a hypersphere radius R around the received signal [8]. In a PIC-based MIMO
decoder, all symbols are detected simultaneously. The computational cost of SIC is not
high, but its performance is sub-optimal. By contrast, the SD scheme achieves near-optimal
bit error-rate (BER) performance, whereas its complexity is typically impractically high in
large MIMO systems.

Tabu search (TS) is considered to be a near-optimal detection scheme for MIMO
systems; it has been shown that in a large MIMO system, TS requires remarkably lower
complexity than SD schemes [9–11]. To reduce the complexity of TS, previous studies have
applied several modifications to its basic form. In [9], a restart diversification scheme is
employed, which restarts the TS procedure a number of times from randomly generated
initial solutions. The authors of [10] considered a layered approach in which the TS
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algorithm is applied to each layer by increasing the search space. In [11], groupwise
neighbor examination for TS is employed, resulting in complexity reduction with almost
no performance loss. In [12], QR decomposition-aided TS (QR-TS) was introduced for large
MIMO systems in which the QR-decomposed channel matrix is employed for the neighbor
examination of TS, achieving nearly the same performance as the conventional TS while
providing significantly reduced computational complexity.

In the TS algorithm, we need to compute the maximum likelihood (ML) metric for
neighbors in each layer. The number of neighbors increases with the number of antennas,
so the complexity of computing the ML metrics of neighbors can be excessively high in
large MIMO systems. To resolve this problem, we propose in this work a novel early
neighbor rejection (ENR)-aided TS (ENR-TS) scheme that sequentially rejects neighbors in
each layer. The main contributions of this study can be summarized as follows:

1. We develop a novel early neighbor rejection ENR-TS scheme. The TS algorithm
computes the cumulative ML metrics of all the neighbors in each layer and rejects k
neighbors whose cumulative metrics are larger than the others. The rejected neigh-
bors are excluded from the computation of ML metrics in further layers, which
reduces complexity.

2. To mitigate the risk of excluding the best neighbor in early layers, we apply a layer
ordering scheme, which sorts the layers of each neighbor in descending order of their
expected metrics.

3. To evaluate the performance and complexity of the proposed scheme, we perform
numerical analysis. The simulation results show that when the ERN scheme is incor-
porated into QR-TS (ENR-QR-TS), it reduces complexity by approximately 74% com-
pared to the original TS scheme, while attaining almost the same BER performance.

The rest of this paper is organized as follows: in Section 2, the system model, conven-
tional TS and QR-TS algorithms are described. In Section 3, the proposed ENR with QR-TS
and ordering schemes are developed. In Section 4, the simulation results are presented.
Finally, the conclusions of the study are presented in Section 5.

Notations: A boldface capital X is used to denote a matrix, and a boldface lowercase
x represents a column vector. The entry in the ith row and jth column of X is denoted
by xi,j, whereas the ith entry of vector x is denoted by xi. The jth column vector of X is
denoted by xj. The transpose operation is denoted by (·)T , and the norm of a vector is
denoted by ‖·‖. Finally, <(·) and =(·) indicate the real and imaginary parts of a matrix or
vector, respectively.

2. Background
2.1. MIMO System Description

In a MIMO system with Nt transmit and Nr receive antennas, the received signal
vector ỹ = [ỹ1, ỹ2, . . . , ỹNr ]

T is given by

ỹ = H̃s̃t + ñ, (1)

where s̃t = [s̃t,1, s̃t,2, . . . , s̃t,Nt ]
T is the transmitted signal vector with each component inde-

pendently drawn from a complex constellation, such as quadrature amplitude modulation
(QAM), and H̃ denotes an Nr×Nt channel matrix, where h̃i,j is the complex channel gain be-

tween the jth transmit antenna and ith receive antenna. Furthermore, ñ =
[
ñ1, ñ2, . . . ñNr

]T

is a noise vector consisting of independent and identically distributed additive white
Gaussian noise (AWGN) samples with zero mean and unit variance. We assume that the
channel matrix is perfectly known at the receiver.

The complex system model (1) can be transformed to its equivalent real signal model
y = Hst + n, i.e.,[

<(ỹ)
=(ỹ)

]
=

[
<(H̃) −=(H̃)
=(H̃) <(H̃)

][
<(s̃t)
=(s̃t)

]
+

[
<(ñ)
=(ñ)

]
. (2)
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In (2), the dimension of the matrices and vectors doubles compared to (1), i.e., st contains
N = 2Nt elements, and the (M× 1)-received signal vector y, (M× N)-channel matrix H,
and (M× 1)-noise signal vector n also double their dimensions, such that M = 2Nr.

Based on the signal model (2), the optimal solution ŝML can be determined as

ŝML = arg min
s∈ΩN

‖y − Hs‖2, (3)

where ‖y−Hs‖2 is the ML metric value for s, and Ω denotes the set of real entries in the
constellation, e.g., Ω = {−3,−1, 1, 3} in the case of 16-QAM.

2.2. System Model

This paper considers a MIMO system with Nt transmit and Nr receive antennas. Let
H̃ ∈ CNr×Nt denote the channel matrix, where h̃i,j is the complex channel gain between
the jth transmit antenna and the ith receive antenna. Let s̃ ∈ CNt×1 be a transmit signal
vector whose elements take values from a complex constellation Ã of QAM modulation.
An Nr × 1 received signal vector ỹ is given by the complex signal model

ỹ = H̃s̃ + ñ, (4)

where ñ ∈ CNr×1 is a noise vector consisting of independent and identically distributed
(i.i.d.) complex additive white Gaussian noise (AWGN) samples with zero mean and unit
variance σ2

n .
The complex signal model (4) can be converted to its equivalent real signal model

y = Hs + n, i.e., [
<(ỹ)
=(ỹ)

]
=

[
<(H̃) −=(H̃)
=(H̃) <(H̃)

][
<(s̃)
=(s̃)

]
+

[
<(ñ)
=(ñ)

]
, (5)

where there are N = 2Nt = 2Nr layers, y, x, and n are the (N × 1)-equivalent real
received, transmitted, and AWGN noise signal vectors, respectively, and H represents
the (N × N)-equivalent real channel matrix. Finally, A = {±1,±3 . . . ,

√
Ω − 1} is the

equivalent real-valued constellation set of Ã, where Ω indicates the modulation order of
Ω-QAM signaling.

Based on the signal model in (5), the maximum likelihood (ML) solution can be
expressed as

sML = arg min
s∈AN

φ(s), (6)

where AN is the set of all possible transmitted signal vectors and φ(s) = ‖y −Hs‖2 is
the ML metric of s. The computational complexity of the ML detection in (6) grows
exponentially with N, which makes it computationally prohibitive for large MIMO systems
in which N is large.

2.3. Conventional TS Algorithm

We will now briefly explain the basic concepts of a conventional TS algorithm [13,14],
which are necessary for an understanding of the proposed algorithm. The TS algorithm
starts the search process from a current solution x(c), which is often set to the zero-forcing
solution xZF = H†y, where H† denotes the left Moore–Penrose pseudo-inverse of H. Neigh-
boring signal vectors around x(c) are determined based on neighboring criteria [14,15]. In
an iteration of the search process in TS, the neighborhood of x(c) is defined as a subset of
vectors in AN that differ from x(c) in only one element. Specifically, the set of neighboring
vectors x of x(c) can be expressed as

N(x(c)) = {x ∈ AN \L, |x− x(c)| = dmin}, (7)
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where L denotes a tabu list, which is a set of previously visited neighbors, and AN \ L
denotes the set of candidate neighboring vectors, excluding the vectors which are in L.
Finally, dmin is the minimum distance between two constellation points. In each iteration,
TS examines the neighbors of the current solution N(x(c)) and moves to the best neighbor
x(b), which has the smallest ML metric among the vectors neighboring N(x(c)) (even if
the best neighboring vector is worse in terms of ML cost ‖y − Hx‖2 than the x(c)) [9].
Specifically, the best neighbor is given by

x(b) = arg min
x∈N(x(c))

φ(x). (8)

Hence, in each iteration, the best neighbor x(b) is inserted into L to avoid cycling in
the search process. If L is full, the element that was first inserted into L is released to make
room for the new best neighbor.

In each iteration, the ML metric of x(b), i.e., φ(x(b)), is compared with that of the
best solution found so far, which is denoted by φ(xTS). Initially, φ(xTS) is set to φ(xZF).
If φ(x(b)) is smaller than φ(xTS), we then update φ(xTS) to φ(x(b)). The TS algorithm
generally terminates after a preset maximum number of iterations M, but we can employ
early termination to reduce the overall complexity. In particular, we keep track of how
many iterations have proceeded without any improvement, denoted by p, in the xTS. When
p reaches its maximum pmax, the TS algorithm is terminated and the final solution is
determined to be the best found solution xTS [15,16].

It is worth noting that the ML metric of x can be computed in a more computationally
efficient form as

φ(x) = ‖y−Hx‖2 = ‖u + H∆x‖2 = ‖u + hdδd‖2, (9)

where u = y−Hx(c), ∆x = x(c) − x = [0, . . . , 0, δd, 0, . . . , 0]T has only one nonzero element,
which is δd = x(c)d − xd, and hd is the dth column of H. Here, d is the index of the unique
nonzero element in ∆x .

2.4. QR-TS

The main complexity load of the conventional TS algorithm comes from computing
the metrics of the neighbors to find x(b) in each iteration. The ML metric in (9) can be
rewritten as

φ(x) =
N

∑
i=1
|ui + hi,dδd|2. (10)

In (10), it is prohibitive to compute N terms, i.e., |ui + hi,dδd|2, i = 1, . . . , N, in each
iteration when N is large.

By applying QR decomposition to the channel matrix H, where Q and R are unitary
and upper triangular matrices, respectively, computational complexity can be reduced.
Specifically, the ML metric of φ(x) can be expressed as

φ(x) = ‖y−Hx‖2 =
∥∥∥QTy− Rx

∥∥∥2

=
∥∥∥QTy− R(x(c) − ∆x)

∥∥∥2
.

(11)

By defining z = QTy− Rx(c), ML metric (8) can be rewritten, as in [12],

φ(x) = ‖z + R∆x‖2 = ‖z + rdδd‖2 (12)

=
d

∑
i=1
|zi + ri,dδd|2︸ ︷︷ ︸

,φA

+
N

∑
i=d+1

|zi|2︸ ︷︷ ︸
,φB

, (13)
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where rd is the dth column of R. By accounting for the fact that in each iteration of (11),
x(c) is the same for all neighboring vectors, φB, in (13) needs to be computed only once
and can be reused for all neighbors, which reduces the computational complexity of the
search process [11]. However, the number of neighbors increases with N. Thus, the
number of iterations to achieve near-optimal performance in TS also increases. This implies
that the QR-TS scheme may be still computationally expensive in large MIMO systems,
which motivates us to find a technique for the early rejection of unpromising neighbors
from examination. In the next section, we propose early neighbor rejection (ENR) for this
purpose. A layer ordering scheme is also applied to further reduce the complexity of the
TS algorithm.

3. Proposed Low Complexity TS Algorithms
3.1. ENR with QR-TS

In each iteration of the conventional TS algorithm, the best neighbor x(b) is determined
after all neighbors are examined. One drawback of this approach is that the ML metric
in (13) must be computed even for unpromising neighbors. To exclude unlikely neighbors
as early as possible, we propose an ENR-QR-TS, which performs a layer-by-layer search
and excludes unpromising neighbor vectors from examination.

In the ENR-QR-TS, the neighbor examination starts from the Nth layer and proceeds
to the final layer. At the Nth layer, each neighbor’s cumulative metric φN(x), which
considers only the Nth layer, is computed. We then sort L neighbors, where L denotes
the number of neighbors, in ascending order of their cumulative metrics and exclude k
neighbors associated with the k largest cumulative metrics. Hence, in the (N − 1)th layer,
we consider only (L− k) retained neighbors. Similarly to the Nth layer, the cumulative
metrics of the retained (L− k) neighbors are updated for the (N − 1)th layer to determine
which k neighbors will be excluded from the remaining procedure. The process to update
the cumulative metric and exclude k neighbors is iterative. Specifically, at layer i, the
cumulative metric φi(x) is calculated as

φi(x) =
{

φi+1(x) + |zi + ri,dδd|2, i ≤ d
φi+1(x) + |zi|2, i > d

. (14)

We sort the cumulative metrics φi(x) in ascending order and exclude the k neighbors
corresponding to the k largest cumulative metrics. Thus, a larger k leads to lower com-
plexity but also poor BER performance because it increases the risk of excluding the best
neighbor. This means that the value of k determines the trade-off between complexity and
performance.

Figure 1 illustrates the operation of the proposed ENR scheme for k = 1 when there
are eight neighbors (l1, . . . , l8) and eight layers (1, . . . , 8). To more easily illustrate the
operation, it is assumed that the neighbors are excluded in the order of (l8, . . . , l1). Figure 1
shows that at layer 8, all the neighbors are examined, i.e., all their cumulative metrics are
computed. Assuming that neighbor l8 has the largest cumulative metric, it is excluded from
the rest of the process. At layer 7, the remaining seven neighbors’ metrics are computed,
and neighbor l7 is chosen for exclusion. This process continues to layer 1 until only one
neighbor is left to be determined the best neighbor. In Figure 1, it can be observed that
the complexity of this process is approximately half the complexity of the conventional
TS because, on average, the cumulative metrics are computed for only half the neighbors
in an iteration. However, this means there is a risk of excluding the best neighbor. This
can happen in early layers when the cumulative metric of the best neighbor is larger than
those of other neighbors even though its complete metric φ(x(b)) is the smallest among
all neighbors. To mitigate this risk, we propose applying a layer ordering scheme to the
ENR-QR-TS.
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Figure 1. The ENR operation for k = 1 and L = 8.

3.2. ENR-QR-TS with Layer Ordering

In the proposed ENR-QR-TS scheme, we exclude k neighbors associated with the
largest cumulative metrics in each layer. If in the first layer, the cumulative metric of
the best neighbor is larger than those of the other neighbors, it is excluded early by the
ENR scheme, which leads to the selection of the wrong best neighbor. To avoid this
undesired consequence, we should minimize the mismatch between the complete metric
and cumulative metrics in early layers.

The expected metric of the ith layer can be rewritten as in [12], as

E
{
|zi + ri,dδd|2

}
≈ σ2

n + |ri,d|2δ2, (15)

where σ2
n is a constant and δ2 = |δd|2. In (15), it can be seen that the expected metric at

layer i depends only on |ri,d|2. Furthermore, as |ri,d|2 is larger, the expected metric of the ith
layer is larger, which contributes more significantly to the complete metric. Therefore, to
minimize the mismatch between the complete metric and the cumulative metrics in early
layers, layers with a larger |ri,d|2 need to be considered earlier.

Therefore, we rearrange the computation order in (14) such that the computations
corresponding to a larger |ri,d|2 are performed earlier. Layers with larger expected metrics
are considered earlier in the computation of (14) to mitigate the chance of an early exclusion
of the best neighbor.

In Algorithm 1, steps 1–6 correspond to layer ordering. Specifically, rd in step 3
denotes the dth column of the R that is sorted by its expected metric in descending order.
When layer ordering is not applied, rd is set to the original rd in step 8. Steps 10–11 are for
initializing the current solution with xZF. Steps 12–32 represent the search process, which
is incorporated with the ENR-QR-TS. Steps 27–29 correspond to checking the tabu list L;
if the tabu list if full, the first element is released to make a space for the current solution.
Finally, steps 30–31 checks for the stopping criteria, such as p.
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Algorithm 1 ENR-QR-TS with layer ordering.

INPUT: H, y, M
1: Output: xTS
2: if layer ordering is used then
3: for i = 1 to L do
4: for d = 1 to N do
5: Find rd by sorting the elements in rd in descending order of |ri,d|2 .
6: end for
7: end for
8: else
9: rd = rd

10: end if
11: xZF = H†y
12: Initialize xTS = xZF and x(c) = xZF.
13: for m = 1 to M do
14: Find the neighbor set N(x(c)) and the set of different positions D.
15: L = N(x(c))
16: for i = 1 to N do
17: for l = 1 to L do
18: Compute the φi(x) in (14) for each neighbor x ∈ N(x(c))
19: end for
20: Exclude the neighbors with the k largest φi(x) from N(x(c))
21: Update the number of neighbors: L = L− k.
22: end for
23: Determine the best neighbor x(b) with the minimum metric.
24: Update the current solution as x(c) = x(b), φ(x(c)) = φ(x(b))
25: if φ(x(c)) < φ(xTS) then
26: Update the best solution as xTS = x(c), φ(xTS) = φ(x(c)).
27: end if
28: if Tabu list L is full then
29: Release the first element in L.
30: end if
31: Update the tabu list L with x(c), p = p + 1
32: Check for the stopping criteria [15].
33: end for

3.3. Complexity Analysis

In this section, we analyse the overall computational complexity of the proposed
ENR-QRT-TS algorithms and the conventional TS.

(1) Initialization: To obtain the Q and R matrix, we used the QR Householder method,
which costs 2

3 N3 additions and 2
3 N3 multiplications [17]. The computation of the initial

solution xZF = H†y = R−1QTy requires N2 + 1
2 N2 + 1

2 N multiplications and N2 − N +
1
2 N2 − 1

2 N additions. Computing the ML metric of the initial solution φ(x(c)) = ‖QTy−
Rx(c)‖2 required 1

2 N2 + 1
2 N additions and 1

2 N2 + 3
2 N multiplications. Therefore, the total

computation cost of the initial solution is 2
3 N3 + 2N2 − N additions and 2

3 N3 + 2N2 + 2N
multiplications.

(2) Neighbor search: The computation of z in (9) is only computed once in each iteration
because z is the same for all neighbors. Therefore, the computational complexity of comput-
ing z is negligible and ignored in the following analysis. To find the best neighbor in (10)
requires ∑L

i=1(2N − 1)L additions and 2NL multiplications an average for a conventional
TS. In addition, the ENR algorithm requires an average of L(N + 1) comparisons in each
iteration. The fairness of our complexity assessment used the same contribution in the TS
iteration for all variants of TS. It is worth noting that the computational load of the iterative
searching process is significantly higher than that of the initial computation and dominates
the overall complexity.
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(3) Layer ordering: The layer ordering scheme is performed in steps 1–6. In layer order-
ing, computing |ri,d|2, i = 1, 2, . . . , d requires 1

2 d log2 d comparisons and d multiplications
on average using the quick-sort algorithm in [18]. Therefore, the total complexity of the
layer ordering is ∑N

d=1(d + 1
2 dlog2d) = 1

2 (N2 + N + log2H(N)) flops, where H(·) denotes
the hyperfactorial function of H [19]. The complexity cost of ENR-QR-TS is increases by
employing the layer ordering method; however, the complexity reduction achieved by
layer ordering is significant, as shown in Figures 4 and 5. The overall complexity of the
conventional TS and QR-TS comes by only adding the initialization phase and iterative
searching phase. In contrast, to compute the total complexty cost of the proposed ENR-TS
algorithms are considered all three phases.

4. Simulation Results

In our experiments, the BER performance and computational complexity of the pro-
posed ENR-TS with a layer ordering scheme were evaluated for various MIMO config-
urations. Although Section 3.1 describes the proposed ENR-QR-TS scheme, it can also
be applied to the original TS without QR decomposition. In the simulation results, ENR-
QR-TS represents the former and ENR-TS the latter. The ENR-QR-TS scheme can be
incorporated with a layer ordering scheme, as explained in Section 3.2. The complexities of
the proposed ENR-TS algorithms are compared with that of the conventional TS algorithm.
The total computational complexity was measured by summing the average number of
real multiplications, additions, comparisons, and sorting operations. In the simulations, we
used two MIMO configurations: (Nr, Nt, Ω) = (16, 16, 4) and (32, 32, 4), where the number
of iterations M are 400 and 800, respectively. The number of excluded neighbors in each
layer is k = 1 and 2.

Figure 2 shows the BER comparison results for a MIMO system with Nr = 16, Nt = 16
and 4-QAM. We can observe that the performance of the proposed ENR-TS algorithms is
almost the same as that of the conventional TS. Figure 3 compares the BER performance
for Nr = 32, Nt = 32, and 4-QAM. Similarly to Figure 2, this figure demonstrates that the
ENR-TS and ENR-QR-TS schemes achieve a BER performance nearly identical to that of
conventional TS scheme. It is worth noting that the ENR-QR-TS algorithm with the layer
ordering scheme also performs nearly as well as the conventional QR-TS. Moreover, the
ENR-QR-TS scheme with k = 2 achieves comparable BER performance with respect to the
conventional TS.

0 2 4 6 8 10 12

SNR (dB)

10-4

10-3

10-2

10-1

B
E

R

TS

QR-TS

ENR-TS

ENR-QR-TS

ENR-QR-TS with ordering (k = 1)

ENR-QR-TS with ordering (k = 2)

Figure 2. Comparison of the BER performance of TS algorithms for a 16× 16 MIMO system with
4-QAM.
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ENR-TS

ENR-QR-TS
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Figure 3. Comparison of the BER performance of TS algorithms for a 32× 32 MIMO system with
4-QAM.

Figure 4 shows the complexity comparison for a MIMO system with Nr = 16, Nt = 16,
and 4-QAM. Figure 4 shows that the ENR-QR-TS with layer ordering requires the lowest
complexity of the compared schemes. Specifically, compared with the conventional TS, the
ENR-QR-TS with layer ordering at SNR = 12 dB reduces complexity by approximately
73%, while achieving almost the same BER performance. The QR-ENR-TS scheme provides
a 33% reduction in complexity compared with the conventional QR-TS.

1 2 3 4 5 6 7 8 9 10 11

SNR (dB)
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14

C
o
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p
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tio
n
a
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m

p
le

xi
ty

105

TS

QR-TS

ENR-TS

ENR-QR-TS

ENR-QR-TS with ordering (k =  1)

ENR-QR-TS with ordering (k = 2)

Figure 4. Comparison of the computational complexity of TS algorithms for a 16× 16 MIMO system
with 4-QAM.

Figure 5 illustrates the comparison of the complexity of a MIMO system with Nr = 32,
Nt = 32, and 4-QAM. Similarly to Figure 4, this figure shows that the proposed ENR-QR-
TS scheme reduces complexity significantly compared to the conventional TS and QR-TS
algorithms. With layer ordering at SNR = 12 dB, the ENR-QR-TS with k = 2 reduces the
complexity of the conventional TS by about 82%. At SNR = 12 dB, the ENR-QR-TS scheme
with k = 2 achieves a complexity reduction of approximately 70% compared to the QR-TS.
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Figure 5. Comparison of the computational complexity of TS algorithms for a 32× 32 MIMO system
with 4-QAM.

5. Conclusions

In this study, a novel ENR-TS algorithm was proposed to reduce the computational
complexity of TS for large MIMO systems. The proposed ENR-QR-TS scheme rejects the
most unreliable neighbors in terms of their ML metric sequentially in each layer, which
reduces the burden of complexity in the best neighbor search of TS. To further reduce the
complexity of the ENR-QR-TS algorithm, an ordering scheme was also proposed. Specifi-
cally, the expected metrics of layers are sorted in descending order, so more unpromising
neighbors are likely to be rejected earlier. The simulation results show that the proposed
ENR-QR-TS algorithms achieved nearly the same BER performance as the conventional
TS while substantially reducing complexity. ENR-QR-TS with layer ordering when k = 2
achieves a complexity reduction approximately 82%, with respect to conventional TS.
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