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Abstract: Tick species are considered the second leading vector of human diseases. Different ticks can
transmit a variety of pathogens that cause various tick-borne diseases (TBD), such as Lyme disease.
Currently, it remains a challenge to diagnose Lyme disease because of its non-specific symptoms.
Rapid and accurate identification of tick species plays an important role in predicting potential
disease risk for tick-bitten patients, and ensuring timely and effective treatment. Here, we developed,
optimized, and tested a smartphone-based deep learning algorithm (termed “TickPhone app”) for
tick identification. The deep learning model was trained by more than 2000 tick images and optimized
by different parameters, including normal sizes of images, deep learning architectures, image styles,
and training–testing dataset distributions. The optimized deep learning model achieved a training
accuracy of ~90% and a validation accuracy of ~85%. The TickPhone app was used to identify
31 independent tick species and achieved an accuracy of 95.69%. Such a simple and easy-to-use
TickPhone app showed great potential to estimate epidemiology and risk of tick-borne disease, help
health care providers better predict potential disease risk for tick-bitten patients, and ultimately
enable timely and effective medical treatment for patients.

Keywords: tick identification; smartphone application; deep learning; Lyme disease

1. Introduction

Tick-borne diseases have become more prevalent in the United States in recent years,
posing a growing threat to public health [1–3]. Various ticks can carry and transmit
different pathogens that can cause more than 20 diseases in humans, including Lyme
disease, granulocytic anaplasmosis, babesiosis, and Borrelia mayonii infection [4–6]. Among
these, Lyme disease represents the most frequent tick-borne disease in the United States,
with at least 30,000 cases reported each year according to the Centers for Disease Control
and Prevention [7]. Treatment of Lyme disease accounts for direct medical costs ranging
between USD 712 million and USD 1.3 billion annually in the United States [8]. Most
cases of Lyme disease are caused by Borrelia burgdorferi (B. burgdorferi) and, rarely, Borrelia
mayonii, which can be transmitted by infected Ixodes scapularis ticks, commonly known as
deer ticks [9]. Unfortunately, it remains a challenge to accurately diagnose Lyme disease
because patients often present with non-specific symptoms [10,11]. Therefore, rapid and
accurate tick identification plays an important role in: (i) estimating epidemiology and risk
of tick-borne diseases [12,13], and (ii) helping health care providers better predict potential
disease risk for tick-bitten patients, thus reducing unnecessary prescription of prophylactic
antibiotics [9,14,15].

Tick species can be morphologically identified using standard taxonomic keys. In
recent years, various materials and resources have been used to aid public health practition-
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ers, clinicians, and the public in identifying ticks [14,15]. For instance, a Tick ID chart was
used to help identify tick species that are specific to the US regions [14,15]. Some web pages
also provided a free resource to aid in tick identification [14,15]. However, the effectiveness
of these resources is still unknown. Usually, accurate tick identification typically requires
experienced individuals in entomology and expensive equipment (e.g., a microscope). Even
for health care providers in Lyme disease-endemic areas, the identification accuracy for tick
species is still very low [16–18]. In a previous study [16], primary care providers from areas
where Lyme disease is endemic, as the participants, conducted experiments to identify the
common name or genus of retained ticks found in their area. Only 10.5% of the participants
could identify the female black-legged tick, which is the carrier of Lyme disease, before
specific training with a manual, and the percentage of identification only increased to
48.7% after the training [16]. In addition, there are some institutes and companies that offer
fee-based tick identification and testing services. However, it usually takes several days to
receive the test results because tick samples need to be sent to their laboratories. Therefore,
there is an unmet need to develop a simple, accurate, and cost-effective approach that can
be used to rapidly identify tick species by untrained individuals in the field or at the point
of care.

Rapid advances in consumer electronics and mobile communication devices have
revolutionized our daily lives. Ubiquitous smartphones, with their advanced computing
capability and built-in functional modules (e.g., Global Positioning System, smartphone
camera), provide unprecedented opportunities in remote disease diagnostics, mobile health,
and public health surveillance, particularly in resource-limited settings where well-trained
personnel and laboratory facilities are limited [19,20]. In recent years, deep learning has
emerged as a powerful technology in various research fields, such as natural language
processing, speech recognition, and especially image recognition [21–25]. The application
of image recognition technology can be widely used in daily life and various research areas.
For instance, mobile bank applications use handwritten character recognition systems to
identify bank checks. In the agriculture field, Grinblat et al. used the vein morphological
pattern to develop a deep learning model to identify plants [26], and Atila et al. used the
EfficientNet deep learning model to classify plant leaf diseases [27]. In the medical field,
Khare et al. developed a deep learning method to detect brain tumors in MRI [28], and Dai
et al. developed a machine learning-based mobile application for skin cancer detection [29].
Fingerprint recognition and face recognition systems developed based on deep learning
are embedded in smartphones to authenticate the user’s identity, thereby enhancing con-
venience [30]. The integration of deep-learning based image-recognition models with
ubiquitous smartphones will lead to the development of a mobile diagnostic/detection
platform, which could create a paradigm shift towards affordable and personalized health
monitoring in the field or at home.

Here, for the first time, we validated and optimized a deep learning model, and devel-
oped a smartphone-based deep learning algorithm (termed “TickPhone app”) for rapid and
accurate tick identification. The TickPhone app can be used by minimally trained individu-
als by simply taking a photograph of a tick, without the need for entomology expertise and
expensive equipment. To improve the performance of the app, we enlarged the original
dataset by data augmentation and optimized the deep learning model by several major
parameters, such as the normal size of images, deep learning network architectures, image
styles, and training–testing dataset distributions. The app was evaluated and validated for
rapid and accurate tick identification by testing tick samples.

2. Methods
2.1. Development Process of TickPhone App

Figure 1 describes the framework of our TickPhone app’s development process, which
primarily consists of: (i) data pool establishment, (ii) convolutional neural network de-
velopment, (iii) deep learning model validation and optimization, and (iv) smartphone
app development. The architecture of the convolutional neural network includes a con-



Appl. Sci. 2021, 11, 7355 3 of 11

volution layer, a pooling layer, a flattening layer, a fully connected layer, and a softmax
layer (Supplementary Materials, Figure S1). First, a data pool was created by collecting
different tick photos (Figure 1i). Next, an optimized deep learning model was developed
using Python Code (Version 3.7, the Python Software Foundation) in a computer platform
(Processor: Intel (R) Core (TM) i7-8700K CPU @ 3.70 GHz, 3696 MHz, 6 Core(s), 12 Logical
Processors, Chip Type: Intel (R) UHD Graphics Family and Total Available Graphics Mem-
ory: 16,430 MB) (Figure 1ii,iii). Then, the smartphone app was designed and developed by
transferring the optimized deep learning model to the TensorFlow lite model (Figure 1iv).
The graphical user interface (Figure S2A) of the app was implemented in Java using the
standard Android Software Development Kit (SDK) (Version 9 API level 28). The test result
can be uploaded to a remote server or website, enabling spatiotemporal mapping of tick
species (Figure S2B).

Figure 1. Development process of our TickPhone app using the deep learning technique. It includes four major steps: (i)
establishment of a data pool, (ii) development of a convolutional neural network, (iii) development and optimization of a
deep learning model, and (iv) development a smartphone app.

2.2. Dataset Description

Various tick species can carry different pathogens that cause a variety of human
diseases. For instance, deer ticks can transmit pathogens that can cause Lyme disease, one
of the most dangerous tick-borne diseases [31]. As an application demonstration of our
TickPhone app, we mainly focused on identifying three types of common ticks (Figure S3)
in this study, which are: (i) deer tick (blacklegged tick, Ixodes scapularis), (ii) lone star
tick (Amblyomma americanum), and (iii) dog tick (Dermacentor variabilis). The training and
testing dataset used in this study mainly consists of: (i) photos provided by the Connecticut
Veterinary Medical Diagnostic Laboratory (CVMDL) at the University of Connecticut, (ii)
photos manually taken by smartphones, and (iii) images obtained from a Google image
search. To further enlarge the dataset and reduce underfitting in the model training process,
data augmentation technologies, such as rotation, height shift, width shift, shear, zoom, and
horizontal flip (Figure S4), were applied to construct a dataset of more than 2000 images.

2.3. Deep Learning Model Optimization

The LeNet network was used as our deep learning architecture in this study. To
develop a deep learning model for accurate tick identification, we optimized the following
parameters: (i) normal size of the images, (ii) deep learning architectures, (iii) image styles,
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and (iv) training and testing dataset distributions (Figure 2). First, all of the images were
normalized to the same size before importing into the LeNet architecture. Second, different
numbers of the convolution and pool layers were set for the LeNet network architecture.
The deeper the architecture, the more complicated its fit classification problem. Third,
different image styles were tested and compared in our study. Usually, RGB (red, green,
and blue) images provide more image details (e.g., red, green, and blue channels), whereas
gray-scaled images block the color information of the background noise. The testing data
was used to evaluate and validate the performance of the model. The model was evaluated
by different training and testing data distributions: (i) 90–10%, (ii) 80–20%, (iii) 70–30%,
and (iv) 60–40% (Figure 2).

Figure 2. Optimization of the deep learning model by different parameters: (i) normal size of images, (ii) deep learning
network architectures, (iii) image styles, and (iv) training–testing data set distributions.

In this study, we generated a total of 96 experimental configurations (3 normal sizes ×
4 deep learning network architectures × 2 image styles × 4 types of training and testing
dataset distributions), which varied in terms of the following parameters (Figure 2): normal
sizes (32 × 32, 64 × 64, and 128 × 128); deep learning network architectures (1–4 sets
of convolution and pool layers of LeNet); image styles (color scale and grayscale); and
training–testing dataset distributions (90–10%, 80–20%, 70–30%, and 60–40%). In this study,
the notation of “Image Normal Size: Deep Learning Network Architecture (number of sets
of LeNet convolution and pool layers): Image Style: Training–Testing Dataset Distribution
(percentage)” was used to represent particular experiments. For example, to refer to the
experiment using color pictures with a size of 64 × 64 trained by two convolution and
pool layers on a training–testing dataset distribution of 90–10%, we described it with the
notation “64: 2: Color: 90–10”. In addition, a support vector machine (SVM) based on
Sklearn was developed for image classification. The image classification method based on
Sklearn’s SVM was applied to the same dataset for comparison purposes. The method was
developed using the optimized parameters selected by the CNN and the final accuracy
was also compared with the accuracy of the CNN method.

2.4. Deep Learning Model Evaluation

The optimized deep learning model was chosen from the 96 deep learning models
created by the Keras Python library. All of the experiments were replicated three times.
The final training and testing accuracy of each replicate for 60 epochs were recorded and
analyzed. The gap between the final training–testing accuracies of each replicate indicates
the fitting performance of the deep learning algorithms. The larger the gap, the higher the
overfitting of the deep learning algorithms. In this study, a harmonic mean of six accuracies
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(training/testing accuracies × 3 replicates) was used as a score to evaluate the algorithm’s
performance. The harmonic mean has been used to mitigate the impacts of large outliers
and aggravate the impacts of small ones [32]. Thus, a higher score indicates that the model
has higher accuracy and better stability.

2.5. TickPhone App Design

The optimized deep learning model was transferred to a TensorFlow Lite model to
develop a smartphone app. Figure 3A showed the design process of our smartphone-based
deep learning algorithm for tick identification. It mainly contains three layers: (i) a data
layer (tick photos), (ii) a decision layer (deep learning model), and (iii) a user layer (user
interface). The optimized deep learning model-based application was developed using the
Android studio software (Google Inc.) with the programming language Java (Figure 3B).
The app consists of three major modules: (i) an imaging module, which allows one to
take tick photos and save them in a smartphone; (ii) a function module, which provides a
command structure and graphical user interface to allow one to choose different functions
(e.g., camera imaging, tick identification, and mapping); and (iii) a result display module,
which reports test results and provides tick photos as references (Figure 3B). In this study,
the optimized deep learning model was first trained from pre-prepared images and then
transferred into a model that can be used by smartphones. To evaluate the performance
of our TickPhone app, 31 independent adult tick species provided by the CVMDL of the
University of Connecticut were tested by different smartphone modules (e.g., Samsung
Galaxy S6, Huawei P20 Pro).

Figure 3. Design and development of our TickPhone app using a deep learning model. (A) The design scheme of the
TickPhone app for tick identification. It includes: (i) a data layer (tick photos), (ii) a user layer (user interface), and (iii) a
decision layer (deep learning model). (B) A photograph of the smartphone with our TickPhone app that includes three
modules: (i) an imaging module, (ii) a result display module, and (iii) a function module.

3. Results and Discussion
3.1. Deep Learning Network

In this study, we used a convolutional neural network to classify tick images because
of its superior performance in image classification [33,34]. There are different convolutional
neural network architectures widely used in previous research [21–23,35], such as LeNet,
AlexNet, VGG Net, GoogleNet, and ResNet. Here, the LeNet network was used as our
deep learning architecture due to its simplicity and ease of implementation [34,36]. The



Appl. Sci. 2021, 11, 7355 6 of 11

overall network architecture design of this study is shown in Figure S1. The back view of
the ticks was used as the main identification information to distinguish ticks in our study.
Figure 4A shows a photograph of a female deer tick taken using our smartphone. Figure 4B
illustrates the filtered output images of the deer tick (Figure 4A) in 20 activations of the
first convolutional layer (64: 2: Color: 80–20), which demonstrates that our deep learning
model can efficiently activate against the morphologic characters of the tick samples.

Figure 4. Tick photo and its visualization of activations. (A) A photograph of a female tick that was taken using our
smartphone. (B) Visualization of activation in the first convolution layer of 64: 2: Color: 80–20, demonstrating that the
model has learned to efficiently activate against the morphologic characters of the female tick (A).

3.2. Parameter Optimization of Deep Learning Model

We used ternary phase diagrams to optimize four major parameters of our deep
learning algorithms, such as the normal size of images, deep learning network architectures,
image styles, and training–testing dataset distributions. In the ternary phase diagram of
color pictures (Figure 5A), the 128: 2: Color: 80–20 and 64: 3: Color: 80–20 showed the
lowest performance score (~0.2) and the highest performance score (~0.9), respectively.
For the normal size of the pictures, the performance score at the normal size of 128 was
much lower than that at the normal size of 64 or 32, which may be attributed to reduced
image quality due to enlargement. For the deep learning network architecture, the best
performance score was obtained at around three sets of convolution and max-pooling
layers. Generally, deep learning models can build better features than shallow models
because of intermediate hidden layers. As shown in Figure 5A, the performance score of
the shallow model with one set of convolutional and max-pooling layers was lower than
that of deeper models with several sets of convolutional and max-pooling layers.

In the ternary phase diagram of the grayscale pictures (Figure 5B), the 128: 2: Grayscale:
80–20 (128 × 128 sizes of grayscale pictures trained by two convolution and pool layers
on a training–testing dataset distribution of 80–20%) had the lowest performance score
(<0.2), whereas the 64: 2: Grayscale: 70–30 (64 × 64 size grayscale pictures trained by two
convolution and pool layers on a training–testing dataset distribution of 70–30%) had the
highest (~0.7). Compared with the color pictures, the performance score trained by the
grayscale images was much lower, which may be attributed to information loss of images
during the transfer from color to grayscale images. As shown in Figure 5B, the grayscale
pictures cannot improve the accuracy due to the loss of some important tick information.
Therefore, we chose the 64: 3: Color: 80–20 as our optimized deep learning model in
our study.
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Figure 5. Ternary phase diagram of performance scores with various network layers, training–test distributions, and picture
normal sizes: (A) color pictures and (B) grayscale pictures.

3.3. Training and Validation Accuracy

In deep learning algorithms, both overfitting and underfitting can result in poor
performance. As shown in Figure 6, both training and validation accuracies improve with
the increase in the number of epochs, which showed that no underfitting occurred in our
optimized deep learning algorithm. In addition, there was no significant difference between
the training and validation accuracies, which demonstrates that there was no overfitting for
our optimized deep learning model. In our study, we chose the 60th epoch to optimize our
deep learning algorithm because the increase in both training and validation accuracies was
not significant and tended to remain relatively stable. With our optimized deep learning
model, 64: 3: Color: 80–20, at the 60th epoch, we achieved a validation accuracy of ~90%
and a training accuracy of ~85% (Figure 6). In this study, the validation accuracy of the
SVM method developed with the same image set and the same parameters, i.e., colored
tick images, 80% training dataset, and 20% validation dataset, only reached 46.94%. This
demonstrates that the deep learning model with optimized parameters in this study has
a significant advantage in tick identification compared to the SVM method. As shown in
Figure 6, although the training accuracy and validation accuracy were close throughout
the training process, the validation accuracy was slightly higher than the training accuracy
at the end, which is because the dropouts applied to the model to increase the model’s
robustness led to a slightly higher validation accuracy than training accuracy. In the future,
with the increase in tick numbers in the database, the bias of the training data and validation
data will decrease, leading to higher accuracies.

3.4. Tick Identification with TickPhone App

To evaluate and validate the performance of our TickPhone app, we tested 31 adult
tick specimens as independent samples. Each tick was photographed three times using a
smartphone. For comparison, all of these ticks were also identified by trained professionals
at the CVMDL, a fully accredited diagnostic laboratory at the University of Connecticut.
Table S1 summarizes the test results of both our TickPhone app and trained professionals.
The test results show that our TickPhone app achieved recognition accuracies of 95.69%
and 96.77% using the Samsung Galaxy S6 and Huawei P20 Pro, respectively. In a previous
study [16], primary care providers were only able to achieve identification accuracies of
10.5%, 46.1%, and 57.9% for adult female blacklegged tick (engorged), dog tick, and lone
star tick, respectively. Thus, our TickPhone app shows a much better identification accuracy
compared to the previous method. As shown in Figure S5, misidentification of ticks was
mainly due to the poor quality of the tick photos, caused by glare or lack of focus. Therefore,
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it is crucial to take high-quality tick photos with the smartphone to achieve highly accurate
tick identification.

Figure 6. Accuracy curves for training and validation of our optimized deep learning model. Error
bars represent the standard deviations of three replicate experiments using the same parameters, 64:
3: Color: 80–20.

Further, we used receiver-operating characteristics (ROC) curve analysis to evaluate
the detection sensitivity and specificity of our approach [37,38]. As shown in Figure 7, we
achieved an average area under the curve (AUC) of ~93% for all three types of tick species.
In particular, our TickPhone app can identify adult female deer ticks and adult male deer
ticks with an AUC of 98% and 96%, respectively. In our testing, there were relatively low
AUCs (86% for males and 89% for females) for lone star tick identification, which can be
attributed to the limited number of lone star tick photos available to train our deep learning
model. The identification accuracy can be further improved in the future with the addition
of more lone star tick photos. Therefore, all of these results showed that our TickPhone app
is a simple, reliable, and accurate approach for rapidly identifying tick species without the
need for well-trained personnel and expensive equipment.



Appl. Sci. 2021, 11, 7355 9 of 11

Figure 7. Receiver-operating characteristic curve analysis of identification of three common tick
species, including female deer ticks, male deer ticks, female lone star ticks, male lone star ticks, female
American dog ticks, and male American dog ticks.

4. Conclusions

In this study, we optimized and validated a deep learning algorithm, and developed
a smartphone app, to rapidly identify tick species. The optimized deep learning model
was developed using a convolutional neural network and converted to a TensorFlow Lite
model for app development. The app allows an untrained individual to perform rapid
and accurate tick identification by simply taking a photo of the tick using a smartphone,
thus eliminating the need for entomological knowledge and expensive equipment. Our
study showed that the optimized deep learning model can achieve a training accuracy of
~90% and a validation accuracy of ~85%. In the independent test with 31 tick specimens,
our TickPhone app achieved an identification accuracy of 95.69%. In the receiver-operating
characteristics curve analysis, we identified adult female deer ticks and adult male deer
ticks with an AUC of 98% and 96%, respectively. Such a simple, rapid, and reliable approach
has the potential to be used for tick identification in the field, at home, or at the point of
need. In future work, deeper and new deep learning models (MobileNet, Efficient-B0,
SqueezeNet) [39–41] will be used to improve the accuracy of the models, and backdoor or
data poisoning methods will be adapted to improve the models’ security [42].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app11167355/s1, Figure S1. The architecture of the conventional neutral network developed
for tick identification; Figure S2. Interfaces of our TickPhone app. (A) Tick identification, and (B)
spatiotemporal mapping of tick identification results; Figure S3. Three types of common ticks (e.g.,
deer tick, dog tick, and lone star tick) and their transmitting tick-borne diseases; Figure S4. Data
augmentation from original pictures through different methods: (i) rotation with 30% range, (ii)
height shift with 30% range, (iii) width shift with 30% range, (iv) shear with 30% range, (v) zoom
with 30% range, and (vi) horizontal flip; Figure S5. Examples of the poor-quality tick photos caused
by glare (A) or being out of focus (B); Table S1. Comparison of tick identification results obtained by
our TickPhone app and provided by the Connecticut Veterinary Medical Diagnostic Laboratory.

https://www.mdpi.com/article/10.3390/app11167355/s1
https://www.mdpi.com/article/10.3390/app11167355/s1
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