
applied  
sciences

Article

Properties of Car-Embedded Vibrating Type Piezoelectric
Harvesting System

Bo-Gun Koo, Dong-Jin Shin, Dong-Hwan Lim, Min-Soo Kim, In-Sung Kim and Soon-Jong Jeong *

����������
�������

Citation: Koo, B.-G.; Shin, D.-J.; Lim,

D.-H.; Kim, M.-S.; Kim, I.-S.; Jeong,

S.-J. Properties of Car-Embedded

Vibrating Type Piezoelectric

Harvesting System. Appl. Sci. 2021,

11, 7449. https://doi.org/10.3390/

app11167449

Academic Editor: Alberto Corigliano

Received: 30 June 2021

Accepted: 12 August 2021

Published: 13 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Energy Conversion Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea;
bpsh9@keri.re.kr (B.-G.K.); wlsqkrtk@keri.re.kr (D.-J.S.); dhlim@keri.re.kr (D.-H.L.); minsoo@keri.re.kr (M.-S.K.);
kimis@keri.re.kr (I.-S.K.)
* Correspondence: sjjeong@keri.re.kr; Tel.: +82-55-280-1644; Fax: +82-55-280-1590

Abstract: We investigated the harvesting performance of a double piezoelectric generator, which was
embedded into the engine block of a small passenger car. The resonance frequency is approximately
between 37 and 52 Hz, where the cantilever showed maximum displacement. In reality, the cantilever
has a vibrating characteristic, which dramatically reduces displacement, even when the operating
frequency deviates slightly from the resonance frequency. To acquire a large mechanical energy-to-
electrical energy conversion, a multiple-piezoelectric generator was employed to absorb the energy
even when the vibration switched from a resonance to a non-resonance frequency. In this study, a
variable mass box was designed and installed in the engine block of a car. The variable mass box
consisted of the serial connection of two masses with different weights. The operating frequency
deviated from a resonance to a non-resonance frequency within a few hertz (3~4 Hz); the reduction
in vibration was lower, leading to a significant acquisition of the resulting power. This is due to the
variable matching of the generator, realized by the action of dual mass. This type of generator was
installed in the engine block and produced up to 0.038 and 0.357 mW when the engine was operating
at 2200 and 3200 rpm, respectively.

Keywords: energy harvesting; piezoelectric generator; automobile; resonance frequency; power

1. Introduction

In recent years, automobiles have used multiple-sensor systems to monitor service
conditions and optimize their operation [1,2]. The multiple-sensor systems require many
batteries and more than 100 km of electrical cables to connect them to the main electrical
board installed in front of the driver’s seat. The use of conventional batteries has environ-
mental downsides, and electric cables produce a large amount of waste; therefore, there is a
need to find self-powering methods for sensor systems. A self-powered system in vehicles
and cars can be provided by energy harvesting, with consideration of the fact that vehicles
generate large amounts of vibration and heat when in operation [3–5].

Piezoelectric energy harvesting is a typical method of converting external mechanical
vibration into electrical energy. Several considerations have been proposed for piezoelectric
generators [6–8] to enhance the mechanical-to-electric energy conversion. Most cases are
classified into either the mechanical impedance matching of a piezoelectric device with
an external vibration source, or the electrical impedance matching between a piezoelec-
tric device and a rectifier-storage circuit. In the electrical impedance matching between
the variable electrical signal coming from piezoelectric devices and the electrical circuit
designed by rectifying storage, actively controlled switching converters have been used
to improve the conversion efficiency. Resonant rectifiers consisting of switching resistor–
inductor–capacitor (RLC) circuits have been used to effectively transfer power from a
piezoelectric device to a diode rectifier [9–11]. Furthermore, a suitable DC–DC converter
was employed to regulate the DC output voltage and to draw the maximum possible
power from the piezoelectric device for a specific electrical load [12–15]. In mechanical
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impedance matching between an external mechanical vibration signal and the mechani-
cal characteristics of a piezoelectric device, the usable approach is to match the resonant
frequency of the piezoelectric generator with the ambient frequency of environmental
vibration [16,17]. Mechanically matching the resonance frequency of a piezoelectric gen-
erator with that of an external vibration source is the most realistic scavenging system
method based on piezoelectricity [18–20]. However, matching two frequencies is difficult
because the ambient vibration in a vehicle is in a variable state [21–23]. To overcome this
difficulty, piezoelectric system supplements can be considered. One method is the adoption
of multiple piezoelectric generators whose resonant frequencies are somewhat different.
Therefore, the resonance mode covers a frequency range that matches the variable vibration
frequency source. Another method is to make sure that the frequency of the modulated
generator is considered in response to the variations in the external vibration source. It
is also important to find the places where large vibrations in the car can be observed:
the car engine and nearby. Therefore, with these two considerations, in this study, two
piezoelectric generators were connected to the engine block of a small passenger car, and
their effectiveness and the factors needed to control the harvesting system were evaluated.
Unlike a single piezoelectric generator, multiple piezoelectric generators may interfere with
each other in terms of resonant mode and power amplitude. For an example of multiple
piezoelectric generators, in this study two piezoelectric generators were employed and
compared with a single piezoelectric generator in terms of resonant vibration frequency
and power amplitude.

In this study, two cantilever-type piezoelectric generators were employed and encap-
sulated into a harvesting system box, which was installed in the engine of a small car. The
performance of the piezo-generator was measured in the range of resonance frequency and
evaluated at ambient vibrations.

2. Materials and Methods
2.1. Design of the Generator

The structural geometry of the piezoelectric generator was designed with four piezo-
electric layers. The characteristics of the cantilever type piezoelectric generator (PG) were
examined with different payloads. A schematic diagram of the geometry is illustrated in
Figure 1. The component, thickness, length, width, and height of the total PG layers are
shown in Table 1.

Table 1. Geometry of piezoelectric generator fabricated in the present study.

Piezoelectric Layer Alumina Layer

Width
(Wp, mm)

Length
(lp, mm)

Thickness
(mm) Layer No. Width

(Wp, mm)
Length

(lp, mm)
Thickness

(mm)

5 10 0.05 4 8 43 0.1

2.2. Generator Fabrication

The piezoelectric ceramics used for this study were 0.2Pb(Mg1/3Nb2/3)O3–0.8Pb(Zr0.475
Ti0.525)O3 (PMN-PZT) [11]. Figure 1 shows the geometry of the piezoelectric cantilever
generator, which was made using the screen-printing method. A Pt electrode was coated
by a sputtering process. Alumina (thickness = 0.1 mm) was used as a substrate. Then, a
piezoelectric ceramic, PMN-PZT, was screen-printed on the Pt electrode. The printed substrate
was kept at 50 ◦C for 10 min, followed by heating at 120 ◦C for 20 min. The sample was
burned-out by remaining at 550 ◦C for 20 h, along with sintering at 1100 ◦C for 3 h. The Au
was coated on the sintered body. The size of the piezoelectric cantilever is listed in Table 1.
The resonance frequency was designed to be variable depending on the payload weight.
The piezoelectric d31 coefficient and other physical properties of the ceramic materials were
measured in a circular plate (diameter 18 mm, thickness 1 mm) using a resonance method, as
listed in Table 2. The sample was poled with 3 kV/mm at 120 ◦C.



Appl. Sci. 2021, 11, 7449 3 of 12Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 12 
 

 

 

 
(a) 

 
 

(b) 

 
(c) 

Figure 1. Geometry of piezoelectric cantilever-type generator and its arrangement. (a) Geometry; (b) Piezoelectric gener-
ator; (c) Measurement of piezoelectric generator. 

2.2. Generator Fabrication 
The piezoelectric ceramics used for this study were 0.2Pb(Mg1/3Nb2/3)O3–

0.8Pb(Zr0.475Ti0.525)O3 (PMN-PZT) [11]. Figure 1 shows the geometry of the piezoelectric 
cantilever generator, which was made using the screen-printing method. A Pt electrode 
was coated by a sputtering process. Alumina (thickness = 0.1 mm) was used as a substrate. 
Then, a piezoelectric ceramic, PMN-PZT, was screen-printed on the Pt electrode. The 
printed substrate was kept at 50 °C for 10 min, followed by heating at 120 °C for 20 min. 
The sample was burned-out by remaining at 550 °C for 20 h, along with sintering at 1100 
°C for 3 h. The Au was coated on the sintered body. The size of the piezoelectric cantilever 
is listed in Table 1. The resonance frequency was designed to be variable depending on 
the payload weight. The piezoelectric d31 coefficient and other physical properties of the 
ceramic materials were measured in a circular plate (diameter 18 mm, thickness 1 mm) 
using a resonance method, as listed in Table 2. The sample was poled with 3 kV/mm at 
120 °C. 

  

Figure 1. Geometry of piezoelectric cantilever-type generator and its arrangement. (a) Geometry; (b) Piezoelectric generator;
(c) Measurement of piezoelectric generator.

Table 2. Property of piezoelectric ceramic.

Composition Dielectric
Constant (εr)

Electromechanical
Coupling

Coefficient

Piezoelectric
d31 Coefficient

(pC/N)

Piezoelectric g31
Coefficient (10−3

Vm/N)

Quality Factor,
Qm

0.2Pb(Mg1/3Nb2/3)O3–
0.8Pb(Zr0.475Ti0.525)O3

1871 0.69 210 11 80

2.3. Measurement

The generator conversion performance was measured by a testing set-up (see Figure 1c).
An electromagnetic shaker (B&K 4810) was used to supply reliable mechanical vibrations to
the generator. The generator, consisting of a piezoelectric element and a copper sheet, was
tightly fixed to an acrylic plate support, connected to the shaker by a screw pin. The shaker was
controlled by a function waveform generator (Agilent 33220 A), incorporated with a power
amplifier (NF 200 B). An accelerator was attached to the rod of the shaker. An oscilloscope
(Tektronix TDS4014A) was used to monitor the voltage signal from the piezoelectric generator.
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The energy conversion test was performed by placing the piezoelectric power generator on
the top part of the vibrating load of the electromagnetic shaker.

To determine their resonance frequencies, a 0.25~2 g payload was employed in the
piezoelectric generators. Then, the vibration voltage from the generators was measured. To
simulate the ambient vibration source, acceleration was set as 1.0 g (g = 9.8 m/s2). The rod
of the shaker was vibrated in a sinusoidal form in a frequency range between 37 and 52 Hz.
When the vibration was in action, the voltage was produced in the piezoelectric generator.
Then, the voltage was rectified in a full-bridge circuit consisting of four germanium diodes.
The power output acquired from the generator was determined by detecting the voltage
drop obtained by the resistor connected to the generator and bridge circuit.

The power output was calculated as follows:

power = [Upeak-peak/2
√

2] R2 (1)

where Upeak–peak is the load voltage of the rectified AC peak-to-peak and R is load resistance.
Then, the output voltage was regulated with an active voltage regulator. The output

of each piezoelectric generator was rectified using full-wave bridge rectifiers. This unipolar
output was then filtered and stored with 0.01 F storage capacitors.

3. Results and Discussion

Figure 2 shows the general specifications of a piezoelectric generator, its employment
on the engine block of a small passenger car, and the acceleration frequency of the engine
block investigated in this study. A passenger car with 1000 cc capacity was chosen and the
vibration of the engine block, with respect to frequency, was measured. The piezoelectric
generators and their embedded energy harvesting system were designed according to the
specifications of the car. Vibration amplitude versus frequency in the engine block was
measured by an acceleration sensor (ReVibe Energy, Model D). The sensor was attached
to the bottom of the car’s engine block. As shown in Figure 1b, the 37 to 52 Hz range
was defined as the resonance frequency in the block. The acceleration peaks of 23~28,
34~40, and 48~54 Hz, observed in the figure, correspond with 1400~1800, 2000~2400, and
2900~3300 rpm (revolutions per minute) of the engine, respectively. To match the resonance
piezoelectric harvesting frequency to that of the block, the two piezoelectric generators
were used. According to the frequency–engine rpm relation and the acceleration–frequency
relation, the largest vibration of >1 g (g = 9.8 m/s) was generated from the engine in
the rpm range of 2000~2400 and 2900~3300. Therefore, the piezoelectric-type generator
was designed to operate in resonance mode in 34~40 Hz (37 Hz in peak) and 48~54 Hz
(52 Hz in peak), because cars have an engine operation with an rpm of 2000~4000 during
normal performance.
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Figure 2. Schematic illustrations of the piezoelectric generator, its employment in the engine block of a small passenger car,
and acceleration–frequency relationship of the engine block. (a) Specifications of piezoelectric generator, energy harvesting
system, and engine blocks of the passenger car investigated in this study; (b) Schematic illustration of the passenger car
and acceleration–frequency relation of the engine block (23~28 Hz: 1400~1800 rpm, 34~40 Hz: 2000~2400 rpm, 48~54 Hz:
2900~3300 rpm).

The basic concept of energy harvesting, consisting of double piezoelectric generators
with different payloads, is shown in Figure 3. The wide frequency range was selected as the
resonance frequency range using a technique of serially connecting different masses. The
masses were connected by a spring strip. Therefore, the resonance frequency characteristics
of each mass could be observed, and a broad range of high vibration is presented. The
position of the piezoelectric cantilever generator is the same, except for differences in
mass. Figure 3 shows the output voltage and power versus payload in a piezoelectric
generator operated at 37 and 52 Hz. At 37 and 52 Hz, the optimum piezoelectric generator
was determined by a change in the payload of 0.25~2.0 g. In the case of 37 Hz, the
piezoelectric generator with a payload of 1.0 g had maximums of 5.5 V and 0.152 mW. In
the vibration at 52 Hz, a maximum voltage of 5 V and power of 0.190 mW were observed in
the generator with a payload of 0.5 g. With a single piezoelectric device, a block consisting
of a single piezoelectric generator and energy conversion circuit was designed, as shown in
Figure 4. Each generator was separately connected to an electric storage circuit, due to the
interference between generators. The circuit consists of a full diode bridge and charging
capacitor. In addition, in the case of installation in the engine of a small car, the power
was measured by connecting the LCD display with the power charging circuit. The LCD
display shows the power (mW in unit) produced by the piezoelectric generators.
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Figure 3. Output voltage and power of piezoelectric generator as a function of payload. (a) Output voltage and power
versus load at 37 and 52 Hz; (b) Output power–voltage–load resistance of PG I at 37 Hz and PG II at 52 Hz.

Figure 4 shows the system block, consisting of a single piezoelectric generator and
charging circuit, and its measurement. Figure 4a contains photos showing the attachment of
a piezoelectric generator onto the metal block, the positioning of an electric charging circuit
inside the block, encapsulation of the block with an upper cover, and the measurement of a
piezoelectric generator installed on the electromagnetic shaker. Figure 4b shows the output
voltage and generated current of piezoelectric generator I (PG I) and piezoelectric generator
II (PG II), operated at 37 and 52 Hz, respectively. Both generators have a maximum peak-
to-peak voltage of 6 V under a resistive load of 100 kΩ at vibrations of 37 and 52 Hz, along
with the creation of 0.04 mA current. From the voltage and current results, both generators
could be calculated to have a maximum power of 0.12 mW. The optimum condition and
performance of the PGI and PG II are listed in Table 3. Consequently, in order to acquire
electric power in a relatively broad vibration condition ranging from 2000 to 4000 rpm, two
generators were installed onto the metal block, along with an electric charging circuit and
LCD display. The LCD display was attached for the direct observation of power generation
without any additional connection.
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Figure 4. Fabrication and measurement of a single PG. (a) Piezo-generator, electric charging circuit, block capsulation, and 
measurement system; (b) Output voltage and power of a single PG (I and II) with payloads of 0.5 and 1.0 g. 
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Figure 4. Fabrication and measurement of a single PG. (a) Piezo-generator, electric charging circuit, block capsulation, and
measurement system; (b) Output voltage and power of a single PG (I and II) with payloads of 0.5 and 1.0 g.

Table 3. Optimum conditions and performance of two piezoelectric cantilever generators.

Sample Piezoelectric
Generator I

Piezoelectric
Generator II

Resonance Frequency (Hz) 37 52
Payload (g) 1 0.5

Load Resistance (kΩ) 100 100
Voltage (Vrms) 5.5 5
Power (mW) 0.152 0.19
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Figure 5 shows each component, consisting of a piezoelectric generator, charging circuit,
and display. The whole assembly process is shown in Figure 5a. Then, measurement of the
assembled harvesting block was observed, as shown in Figure 5b. The power of 0.181 and
0.248 mW was observed in accordance with a vibration acceleration of 1 g (2200 rpm) and
1.2 g (3200 rpm), respectively. Figure 5c shows the installation of a piezoelectric harvesting
system on the engine of a small car. Two images show the output power of 0.038 and
0.357 mW when the car runs with an engine velocity of 2200 and 4000 rpm, respectively.
Figure 5d shows the relationship between the output power and engine velocity in the car. In
a narrow range between 2200 and 3200 rpm, power generation was detected. However, no
energy was stored in the harvesting block when the car ran in the other rpm condition. The
generated power corresponds with 52% of that in the single piezoelectric generator operated
in the car engine. When the system with a double piezoelectric generator was compared to the
ones with a single piezoelectric generator, the rpm condition corresponding to the maximum
output was somewhat different. The maximum rpm of a system with double piezoelectric
generators was slightly shifted to the lower side. This may be the effective payload change in
the harvesting system. The rpm or resonance frequency of PGs is affected by the effective
stiffness and effective mass or payload.
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Piezoelectric-type power generation devices are dependent upon the vibration ampli-
tude and frequency. The cantilever-type piezoelectric device exhibited a significant power
drop due to a small deviation in frequency. A method to store considerable power is to
design a geometry structure to possess several resonant frequencies. As an example, we
designed and fabricated the two cantilever generators, which have different masses, show-
ing several resonant frequencies. The system investigated in this study can be considered
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with a simplified electrical circuit model, as presented in Figure 6 [24]. The interesting
characteristics of the piezoelectric device are that the two piezoelectric generators are
parallel-connected in the electrical equivalent model. The equivalent circuit model for the
device can be thought of as two piezoelectric elements that are assembled back-to-back,
similar to the multilayer piezoelectric transformer and other cases [24,25]. This model is
only valid in a certain range of resonances. These devices are connected to each other by an
ideal device representing the mechanical coupling between the two generators. To estimate
the simplified resonant frequency, the equation of a single piezoelectric generator was used.
The resonant frequency of the cantilever device was calculated by Equation (2) [26].

fn =
v2

n
2π

√√√√√ 0.236ωPEO (l− lm
2

)3

0.236m!Pl7+∆ml3(l− l m /2)3 (2)

with EO =
2EPt3

P
3 +EPtct2

P + EPt2
c tP

2 + t3
cEsh
12 , m = 2ρPtP+ρctc, and ∆m = ρmlmωmhm, where

l is the total length of the cantilever, lm is the length of the proof mass, m is the effective
mass of the cantilever structure with the proof mass, and ωp is the width of the cantilever.
ρp, ρc, tp, tc, Ep, and Ec are the densities, the thicknesses, and the Young’s modulus of the
piezoelectric material and the base substrate (alumina in this study), respectively. Here,
∆m is the combination of the effective mass of the piezoelectric generator in resonance
mode and the effective mass of the piezoelectric generator in non-resonance mode. That is,
in the double PG case, the effective mass ∆m is larger than that of a single PG because of
the interference between PG1 and PG2. Therefore, the resonant frequency shifted toward
the lower side, and the total energy decreased slightly. The double PG shows large power
generation in the two frequency ranges, near which a single PG has a resonant behavior, for
example 2200 and 3200 rpm. However, the power of the double PG was not detected at the
lower rpm. Meanwhile, the power of the single piezoelectric generator PG I was measured,
which might be related to the damping of the total block. In addition, the frequency band
width of the double PG widened compared to the single PGs, because the piezoelectric
elements interfere with each other.
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cantilever. ρp, ρc, t p, tc, Ep, and Ec are the densities, the thicknesses, and the Young’s mod-
ulus of the piezoelectric material and the base substrate (alumina in this study), respec-
tively. Here, Δm is the combination of the effective mass of the piezoelectric generator in 
resonance mode and the effective mass of the piezoelectric generator in non-resonance 
mode. That is, in the double PG case, the effective mass Δm is larger than that of a single 
PG because of the interference between PG1 and PG2. Therefore, the resonant frequency 
shifted toward the lower side, and the total energy decreased slightly. The double PG 
shows large power generation in the two frequency ranges, near which a single PG has a 
resonant behavior, for example 2200 and 3200 rpm. However, the power of the double PG 
was not detected at the lower rpm. Meanwhile, the power of the single piezoelectric gen-
erator PG I was measured, which might be related to the damping of the total block. In 
addition, the frequency band width of the double PG widened compared to the single 
PGs, because the piezoelectric elements interfere with each other. 

 
Figure 6. Simplified equivalent circuit model representing a double piezoelectric cantilever genera-
tor. 

The conventional car has many sensor systems, including TMPS, pressure sensors, 
and chemical sensors, where the power ranges from 0.1 mW to several watts. The mini-
mum power rate of the sensors used is approximately 0.5 mW for TPMS operation, which 
is comparable to the power acquired in this study.  

4. Conclusions 

Figure 6. Simplified equivalent circuit model representing a double piezoelectric cantilever generator.

The conventional car has many sensor systems, including TMPS, pressure sensors, and
chemical sensors, where the power ranges from 0.1 mW to several watts. The minimum
power rate of the sensors used is approximately 0.5 mW for TPMS operation, which is
comparable to the power acquired in this study.

4. Conclusions

An energy harvesting system consisting of a double piezoelectric generator was
investigated and installed on the engine block of a small passenger car. In the harvesting
system, the resonance frequency was approximately between 37 and 52 Hz, corresponding
to 2200 and 3800 rpm of the engine. The energy harvesting system was installed in the
engine block and produced up to 0.038 and 0.357 mW when the engine was operating at
2000~2500 and 2900~3300 rpm, respectively.
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