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Featured Application: The paper provides an analysis of several aging indexes, derived from
rheological data, to compare the effect of aging in different formulations of bituminous binders.
Using more than one index allows a better evaluation of the complex phenomenon of structural
modifications induced by aging.

Abstract: Rheology is the most widely used technique to evaluate the performance and aging of
bituminous binders. Since there are many available rheological tests, there is also a wide range of
aging indexes and it is not easy to choose the most appropriate one, because a single value may hardly
be adequate for different properties or operating conditions. In order to generalize the usefulness
of an index, a good starting point is deriving it from a set of data, such as the master curves of
linear viscoelastic functions. Then, the problem is the quantification of aging in a single numerical
value from continuous curves, covering a wide range of frequencies/temperatures. In this work, a
summary of the aging indexes derived from the master curves is reported and discussed. The indexes
are applied to a bituminous binder either with or without the addition of an organo-modified layered
silicate. The apparent molecular weight distributions and relaxation spectra were also calculated
from the master curves and used to characterize the effect of aging on the binder properties and
structure. In this way, an interesting parallelism was observed between the SARA fractions and the
populations derived from a deconvolution analysis of the apparent molecular weight distributions.

Keywords: bitumen; rheology; layered silicates; aging; master curves; δ-method; relaxation spectrum;
apparent molecular weight distribution; crossover modulus

1. Introduction

Aging mainly consists of a hardening process, which comes from the physical–
chemical transformations due to the loss of volatiles and partial oxidation of the bitumen
component. The related research is focused on different aspects, such as (i) the mechanism
and chemistry of the involved reactions; (ii) the effect on performance; and (iii) the strate-
gies to enhance the binder resistance to aging. The first one has been the subject of a huge
amount of work and the interested reader may find comprehensive review papers on the
topic in the literature, such as those by Petersen [1] and Tauste et al. [2]. With regard to
performance, rheology is nowadays the prevalent technique to characterize bituminous
binders. It is used to evaluate the performance grade and many other properties, such as
the workability or the fatigue and rutting resistance. A comparison of these properties
before and after a period of mechanical/oxidative stress, either artificially induced or
due to service life, allows quantifying the effects of aging. Due to the high number of
available rheological tests, the choice of the aging index is quite subjective and basically
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any rheological function and/or operating condition can be used to compare the unaged
and aged performances [3]. Morian et al., underlined that even if some rheological indexes
have good correlation with specific properties, the preferable choice is the development
and analysis of full master curves [4]. According to this suggestion, and in order to better
clarify the possible choices, we will discuss the available aging indexes that can be directly
or indirectly derived from the master curves of the linear viscoelastic functions, such as the
phase angle and the magnitude of the complex modulus. Therefore, the analysis starts from
the development of viscoelastic master curves, and then continues with the application of
the δ-method [5] to obtain the apparent molecular weight distributions (AMWD) and the
derivation of the relaxation spectra H(τ̃) [6]. The use of these three different representations,
derived from the same experimental data, allows evaluating aging under several points of
view. This permits comparing aging indexes with different physical meaning and also to
qualitatively evaluate the changes in the colloidal structure of the binder.

Experimental data were derived for a bituminous binder subjected to several degrees
of artificial aging both with and without the loading of an organo-modified layered silicate
(LS) as anti-ageing additive. Organo-modified LS were first introduced in the field of
polymeric materials [7] and the term “organo-modified” indicates that the native clay has
been subjected to an ionic exchange reaction, to introduce organic cations into the interlayer
spacing. This reduces the hydrophilicity of the clay, thus enhancing its compatibility with
bitumens, whose molecules may be driven into the clay galleries. At a high compatibility
level, a complete delamination of the clay platelets can be obtained, thus resulting in a
dispersion of bi-dimensional platelets with a dimension of a few hundred nanometres and
thickness in the order of one nanometre. The high aspect ratio guarantees an extraordinary
interfacial interaction between the silicate and bitumen, even at low clay loadings. One of
the main consequences related to such interactions is a beneficial effect for the bituminous
binders in terms of aging resistance. This has been confirmed by a consistent number
of papers and reviews published in the last years [8,9]. Therefore, the use of an organo-
modified LS as additive has two advantages in the scope of this work. First, it allows
evaluating the sensitivity of the indexes to describe its anti-aging effect with respect to
the unmodified binder. Second, the high degree of LS/bitumen interactions may affect
the bitumen structure, and this is another aspect that can be evidenced by using the same
rheological data and indexes.

2. Materials and Methods

The blends were prepared by using a base bitumen 35/50 penetration grade, referred
as B and kindly furnished by Total. The base bitumen derives from a vacuum refinery
process and has a Penetration of 38 dmm (UNI EN 1426) and softening point at 56 ◦C (UNI
EN 1427). The organo-modified layered silicate, referred as LS, was supplied by Laviosa.
The native clay was a purified montmorillonite, having a dry particle size between 7 and
9 µm, specific weight of 2.2 g/cm3, and a cation exchange capacity, CEC, of 92.5 meq/100 g.
The organo modifier was a quaternary ammonium salt.

The LS-B blends were prepared in 350 mL aluminium cans. The cans were partially
filled with bitumen and heated to 150 ◦C and then the LS was added gradually in a few
minutes while keeping the system under gentle stirring by using a Silverson L4R. The
mixing temperature was selected at 150 ◦C because it is high enough to guarantee a good
fluidity of the binder without risks of degradation of the organic part of the layered silicate.
After addition of the clay, the system was maintained under high shear stirring (3600 rpm)
for about 30 min. Wide angle X-ray scattering showed that the LS-B nanocomposites
structure was predominantly intercalated.

2.1. Artificial Aging

Artificial aging consists of heating the binder in the presence of oxidative agents and
this can be done with different setups, often approved and described in standards as ASTM
or UNI-EN [10]. In our study, the binders were long-term aged by using the Pressure
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Aging Vessel (PAV). The conventional Rolling Thin Film Oven (RTFO) followed by 20 h of
PAV was substituted by a 25 h PAV, as suggested by Lesueur [11]. Then, additional PAV
exposures until 40, 65, and 90 h were conducted in analogue operating conditions (100 ◦C
and air pressure of 2.1 ± 0.1 MPa). In what follows the samples are indicated as B or LS-B
followed by hours of PAV aging. As an example, LS-B25 indicates the LS-B blend after 25 h
of PAV.

2.2. Rheology

Frequency sweep tests were conducted using a Malvern Kinexus PRO Dynamic
Shear Rheometer (DSR). Data were collected under isothermal condition within the linear
viscoelastic region. The investigated temperature range varied from −10 to 70 ◦C, being
the lower and higher temperature based on the binder aging (the higher the aging level, the
higher the temperatures). The loading frequency varied according to a logarithmic ramping
scale from 0.1 to 10 Hz (0.63 to 6.3 rad/s). Depending on the aging degree and temperature,
parallel plates of 8 and 25 mm were used. While shifting from one geometry to another,
data collected at two overlapping temperatures with both geometries were compared to
evaluate their reliability. The temperature range was selected to gather the broader range of
phase-angle values. The isotherms were then used to build master curves by applying the
time–temperature superposition principle (TTSP), which was valid for both binders at all
aging levels [6]. The horizontal shift factors (aT) were used to build the phase-angle master
curves. Then the same shifting was applied to the isotherms of the complex modulus. In
some cases, like for many polymeric materials, this is enough to obtain continuous and
smooth curves for all dynamic functions. However, for bituminous materials, it is often
necessary to add a vertical shifting (which does not affect the phase-angle curves), which
is related to the variation in density with temperature. It is worth underlining that at the
end of the procedure, for each binder, the final horizontal and vertical shift are the same
irrespective of the dynamic function.

The reference temperature for all master curves was fixed at 0 ◦C. The master curves
of the phase-angle and complex modulus were used to calculate the apparent molecular
weight distributions and the relaxation spectra respectively. 0 ◦C was chosen because this
is the reference temperature for Equation (2), described in the following subsection and
used in the application of the δ-method.

2.3. Apparent Molecular Weight Distributions

For several years rheologists have been trying to link the molecular weight distribu-
tions (MWD) with the rheological data. The first papers were dedicated to polymers [12,13]
and then the same approach was extended to bituminous binders [14,15]. One of the
suggested procedures is the so-called δ-method, recently developed by Themeli and co-
workers [5]. The method is described in detail in the original paper and is based on the
idea that relaxation frequencies of the molecules are directly correlated with their molec-
ular weight. In inhomogeneous systems, such as polymers or bituminous binders, this
corresponds to a distribution of the relaxation frequencies (ω) that is directly correlated
with the phase-angle (δ) master curve. At a given frequency, the higher the number of
molecules with a lower relaxation frequency, the higher the phase angle. This leads to the
assumption that the cumulative molecular weight distribution (CMWD) is proportional to
δ(ω). In other words, the master curve of the phase angle is directly converted into CMWD
by applying the simple normalization:

CMWD =
1

90
δ(MW) (1)

where δ (MW) is the phase angle expressed as a function of the molecular weight.
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Therefore, all that is needed to convert the phase-angle master curve into an MWD is
a correlation betweenω and the molecular weight (MW). The chosen correlation is the one
developed by Zanzotto et al. [14] through vapour pressure osmometry.

log (MW) = 2.88 − 0.06768log (ωc) (2)

where ωc is the crossover frequency (at which the phase angle is equal to 45◦) at 0 ◦C.
The last step to convert the cumulative distribution into the more commonly used weight
fraction (w) is the differentiation of the CMWD with respect to log(MW):

w(MW) =
d(CMWD)

d(log(MW))
(3)

It is worth underlining that a complete MWD may be obtained only if a master curve
covering the whole range of phase angles (from 0 to 90◦) is available. Moreover, the
smoothness of the curve is important for the derivation of the MWD by differentiating
the CMWD [16]. For these two reasons, it may be useful to fit the experimental data with
a rheological model. This allows both extrapolating the curve where experimental data
are missing (phase-angle values close to 0◦) and an easier data manipulation. Among the
long list of available models (see the review by Yusoff et al. [17]), we chose 2S2P1D [18–21],
consisting of a combination of two springs, two parabolic elements, and one dashpot
(Equation (4), Figure 1).

G∗ = Go +
(|G∞| − |Go|)

1 + α(iωτ)−k + (iωτ)−h + (iωβτ)−1 (4)

where G* is the complex modulus; |G∞| and |G0| are the magnitudes of the complex
modulus at angular frequency ω approaching infinite and zero, respectively; α, β, τ, k, and
h are the model parameters; and i is the imaginary unit. It is worth nothing that in the
literature, |G∞| is often indicated as |Gg| and referred as the “Glassy modulus”. The
expression for the phase angle can be derived from Equation (4) by applying the properties
of complex numbers as follows. G* can be expressed in terms of real and imaginary parts:

G∗ = G′ + iG′′ (5)

If we introduce the complex number A* defined as

A∗ = 1 + α(iωτ)−k + (iωτ)−h + (iωβτ)−1 = A′ − iA′′ (6)

where A′ and A” are the real and imaginary parts of A*; then we obtain

A′ = 1 +
αcos(kπ/2)

(ωτ)k +
cos(hπ/2)

(ωτ)h (7)

A′′ = 1 +
αsin(kπ/2)

(ωτ)k +
sin(hπ/2)

(ωτ)h +
1

ωβτ
(8)

Combining Equations (5)–(8) gives

G′ = |G0|+
(|G∞| − |Go|)A′

|A∗|2
(9)

G′′ =
(|G∞| − |Go|)A′′

|A∗|2
(10)
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where |A*| is the magnitude of A*. Finally, the phase angle is obtained as

δ = arctan
(

G′′

G′

)
(11)

The above-listed model parameters were calculated by minimizing the following error
function (E):

E(dG0e, dG∞e, α, β, τ, k, h) =
N

∑
j=1

([
δj,exp(ω)− δj,2S2P1D(ω)

]
δj,exp(ω)

)2

(12)

where N is the total number of experimental data in the phase-angle master curve; δj,exp
(ω) are the experimental data of the phase angle; and δj,2S2P1D (ω) the corresponding
values calculated with the model. Microsoft Excel Solver® was used for the computation of
Equation (12).

Figure 1. Schematic representation of the 2S2P1D rheological model.

Distributions derived from rheological data are referred to as “apparent” molecular
weight distributions, to underline the indirect determination from bulk measurements. In
bulk, the mobility of the molecules depends on their dimension and on their interactions
with the surrounding molecules. Therefore, the relaxation frequencies of the molecules
depend on both their molecular weight (dimension) and polarity (interactions). In other
words, the AMWD detects the appearance of new functional groups, due to oxidation,
even if they do not alter significantly the molecular weight of the molecules, because they
alter the interactions with other molecules. While evaluating the effects of aging, this is an
advantage with respect to a technique such as gel permeation chromatography (GPC) or
osmometry, which imply the use of a solvent. Indeed, GPC detects the distribution in a
diluted media, where bitumen molecules are supposedly isolated one from each other and
their interactions with other bitumen molecules are substituted by interactions with solvent
molecules. For this reason, GPC gives a picture of the real molecular weight distribution,
which is less affected by oxidative aging that has the abovementioned scarce influence on
the molecular weight of the bitumen molecules. Both approaches, in bulk or in dilute con-
ditions, have advantages and disadvantages as well as experimental uncertainties [22,23].
Therefore, they do not give a reliable absolute value of the molecular weight, but they give
a useful tool to compare distributions of materials with similar origin and chemical com-
position. Since an absolute value of the molecular weight remains affected by numerous
uncertainties, the approach of using the techniques based on solvents to calibrate those
based on bulk measurements appears justified, thus obtaining comparable values of the
distributions [5,14,24].

2.4. Relaxation Spectrum

The relaxation spectrum H(τ̃) gives another important picture of the material be-
haviour, especially when dealing with aging. To help visualise the physical meaning of
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the relaxation spectrum, the reader may refer to the well-known generalised Maxwell
model, composed of a virtually infinite number of springs and dashpots connected in
parallel [6,24]. Each element is characterized by its elastic constant and relaxation time.
At a fixed temperature, the rheological behaviour of any material can be described by
this model when using a large-enough number of elements. Then, the discrete relaxation
spectrum is given by the plot of the elastic constants as a function of the corresponding
relaxation times. If the number of elements goes to infinite, the result is a continuous
spectrum. The interested reader may find an accurate mathematical description of this
rheological function in Reference [6].

Oxidative aging affects the relaxation spectra for the same reasons it affects the AMWD.
This is why H(τ̃) can be directly linked to the AMWD and used as an aging indicator.
A direct measurement of H(τ̃) is not easy from an experimental point of view and the
preferred way is usually an approximate calculation from other rheological data. Among
the long list of available procedures [25–27], we used the following approximation, easily
applicable to the abovementioned 2S2P1D model:

H(τ̃) = ± 1
π

Im
[

G∗
(

1
τ̃

e±iπ
)]

(13)

where Im indicates the imaginary part of the quantity written in square brackets, which is
the complex modulus obtained by replacing iω by τ̃−1exp(±iπ) in Equation (4). In other
words, the relaxation spectrum can be determined from any analytic expression of G*(iω)
by substituting iω with 1/τ̃ exp (±iπ) and then dividing the imaginary part of G* by π.
A detailed description of how Equation (13) can be obtained by applying the theory of
integral transforms to correlate the relaxation spectrum and a linear viscoelastic functions
as G* is reported in the paper by Liu et al. [28].

2.5. High-Performance Thin-Layer Chromatography (HPTLC)

Due to bitumen’s extreme molecular complexity, chromatography techniques [29]
have been frequently used over the decades to determine its constitution. Based on its
polarity, bitumen can be separated into four generic fractions called SARA (saturates,
aromatics, resins, and asphaltenes) by using chromatography devices such as Iatroscan
Thin-Layer Chromatography (TLC) coupled with a flame ionization detector (FID) or
automated High-Performance Layer Chromatography (HPLC) SAR-AD®. To perform
this separation, a specific method has been used by TOTAL based on an HPTLC ap-
paratus (High-Performance Thin Layer Chromatography). Analysis was performed on
10 cm × 20 cm pre-coated (silica gel 60F254; Merck, New York, NY, USA) HPTLC plates.
The deposit bandwidth was 4 mm× 0.2 mm. A combination of solvents was used to ensure
the migration and separation of each fraction (THF, DCM and/or heptane). The plates
were subjected to scanning at 280 nm for aromatics, resins, and asphaltene fractions and
365 nm (with induced fluorescence by berberine) for the saturates fraction by means of
a TLC scanner 3 (Camag) in absorbance/reflection mode and subsequently processed by
CATS software (CAMAG).2.6 [30].

The organization of the research is summarized in Scheme 1, which gives a picture of
how the paper is organized from the experimental point of view.
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Scheme 1. Experimental design.

3. Results and Discussion
3.1. Master Curves

Figure 2 shows the phase-angle master curves derived for the base binder by appli-
cation of the TTSP. The master curves at all levels of aging have the typical behaviour
of bitumen, which in a relatively short frequency range changes from a low-viscosity
Newtonian liquid to a glassy, brittle solid. In the intermediate frequency range, bitumen
has viscoelastic properties directly related to its colloidal structure, determined by the com-
position and relative amount of maltenes and asphaltenes [3,4]. It is in this range that even
small variations in the composition caused by the oxidative aging may have a significant
effect on the rheological behaviour. This is clearly visible by observing the changes induced
by multiple PAV cycles. From a qualitative point of view, the increase in bitumen stiffness
is reflected by a reduction in the values of the phase angle (at a fixed reduced frequency)
that determines a shift of the whole curve toward lower reduced frequencies.

Figure 2. Phase-angle master curves for neat binder B before and after different levels of aging.
Reference temperature 0 ◦C.

A qualitatively similar behaviour can be observed for the master curves of the LS-B
binders and it is interesting to compare the master curves with and without clay, reported
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in Figure 3 for some of the aging levels. Undoubtedly, LS has a remarkable impact on the
aging behaviour. The unaged binders have similar values of the phase angle, the LS-B
binder being a little bit stiffer due to the presence of the solid modifier. The relative position
of the curves reverses after 25 h of PAV aging and the distance between the curves increases
significantly at very high levels of aging. Considering the logarithmic scale of the x-axis,
it is clear that for intermediate values of δ, the reduced frequency may vary even by one
order of magnitude while comparing the two binders. This is the first indication of an
anti-aging effect of the clay.

Figure 3. Phase-angle master curves for binders B and LS-B before and after different levels of aging.
Reference temperature 0 ◦C.

The master curves of the magnitude of complex modulus (Figure 4) confirm the
described trend. The |G*| value increases with aging and its variation is much higher
without clay. Before aging, the curve of B has a lower magnitude of the modulus with
respect to LS-B; after 25 h of PAV the curves are almost superposed, while an inversion is
observed after further PAV treatments.

Figure 4. Magnitude of complex modulus for the same samples reported in Figure 3. Reference
temperature 0 ◦C.
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A quantitative evaluation of the aging can be performed in several ways, depending
on the used aging index. Usually, the aging indexes are calculated as the ratio between
a property before and after aging. This property can be chosen among the classical ones
for bituminous binders (e.g., softening point, Brookfield viscosity, or penetration) or can
be related to the chemical composition by evaluating the degree of oxidation (i.e., C=O
groups quantified by infra-red spectra) [31]. Otherwise, it can derive from rheological
data and this opens the debated question about the most representative indexes [3,4]. One
reason why the choice is not easy, is that rheological data usually derive from frequency,
temperature, stress, or strain sweeps, and thus cover a wide range of operating conditions.
Evaluating the aging index on a single point of a long curve, such as the master curves
of Figures 2–4, may not be fully representative. In contrast, deriving an “aging master
curve” by considering all experimental data may be as much useless or dispersive and
difficult to interpret. A possible solution is the use of parameters that somehow describe
the curve shape, such as those derived from the Christensen–Andersen model [32]. This
model describes the complex modulus of bituminous binders and asphalt mixtures by the
following expression:

|G∗(ω)| = |G∞|
[

1 +
(ωc

ω

) log2
R

] −R
log2

(14)

which contains only three parameters: |G∞|, the crossover frequency ωc, and the so-called
rheological index R. The latter is a “shape parameter” and represents the difference between
the logarithmic values of |G∞| and |Gc| (crossover modulus = complex modulus at the
crossover frequency). Generally, the master curve of |G*| becomes flatter as a consequence
of aging and thus the increase in R can be used to estimate the level of aging. Ling et al.,
suggested a power law for the dependence of R from the aging time [33]. Moreover,
the above-described shift to the left of the curve can be identified through the crossover
frequency and thus two out of the three parameters of the CA model are directly connected
with aging. The third parameter is the glassy modulus and often is not directly available
since it may require recording data at low temperatures by means of torsion bars. In
some cases, this value is simply treated as a fitting parameter and thus extrapolated
from the intermediate temperatures. Alternatively, a constant value (1 GPa) is arbitrarily
assumed as valid irrespective of the aging degree and in this case the CA model has only
two parameters, with R = R(|Gc|) [34]. Both solutions are questionable, but probably the
assumption of a fixed glassy modulus has a better chance to fit with reality. It is important to
underline that thanks to their physical meaning, the parameters can be directly extrapolated
from the |G*| master curves without applying the CA model to fit the curve and this is
what we did. In other words, here Equation (14) is reported only to introduce the physical
meaning of these parameters and not used to fit the master curves, and the values of R and
ωc were taken directly from the experimental data reported in Figure 4. The numerical
values for these parameters are reported in Table 1, together with the corresponding aging
indexes AIR and AIω defined as follows:

AIR =
(Ra − Ru)

Ru
AIω =

(log ωc,a − log ωc,u)

log ωc,u
(15)

where the subscript a and u indicate aged and unaged, respectively, and ωc is expressed in
rad/s. For the calculation of R in Table 1, |G∞| was assumed equal to 1 GPa. The variation
in R indicates that the crossover moduli varies 1.4 orders of magnitude without clay and
less than one order of magnitude with the clay. Even more pronounced is the shift of the
crossover frequency, which varies of about five orders of magnitude for B and only three
with clay (LS-B binder). The aging indexes clearly reflect these differences, AIω being the
one that has the higher sensitivity in this case. Moreover, it is interesting to observe that
between 65 and 90 h of PAV the properties of LS-B remain almost constant, while those of
B are still subjected to significant changes.
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Table 1. Values of R, ωc, and log(|Gc|) from the experimental master curves and the corresponding aging indexes defined
in Equation (15).

B LS-B

PAV R ωc (rad/s) AIR AIω Log (|Gc|) R ωc (rad/s) AIR AIω Log (|Gc|)

0 1.80 5.36 · 10−1 0 0 7.2 1.86 2.57 · 10−1 0 0 7.14
25 2.42 4.94 · 10−3 0.35 7.53 6.58 2.16 1.19 · 10−2 0.16 2.26 6.84
40 2.56 2.19 · 10−3 0.42 8.83 6.44 2.44 5.51 · 10−3 0.31 2.83 6.56
65 2.97 5.74 · 10−5 0.66 14.7 6.03 2.85 4.28 · 10−4 0.54 4.71 6.15
90 3.20 9.87 · 10−6 0.78 17.5 5.8 2.72 3.02 · 10−4 0.47 4.97 6.28

As already underlined, even if useful and widely accepted, the disadvantage of R is its
dependence on |G∞|, which can be uncertain. Therefore, as an alternative with a higher
chance of being included in the experimental master curve, the evolution of the crossover
modulus |Gc| can be considered. Indeed, due to the assumption of |G∞| being constant
and equal to 109 Pa, the logarithm of the crossover moduli is given by 9-R, also reported in
Table 1. Oldham et al. [35] underline that log |Gc| can be linked to the dispersion index
(DI, ratio between the weight and number average molecular weights), which, in turn, has
a direct link with the material composition and thus with aging. The crossover modulus
decreases and DI increases due to the chemical oxidation that favours the aggregations
between molecules. Analogously, Farrar et al. [34] correlate the inverse of log |Gc| with
the total oxygen content. Of course, the trend is the same observed for R and thus we can
read these data as an indication of a lower DI and lower oxygen uptake while dealing with
LS-modified binders. This point will be further discussed in Section 3.3.

Another possible way to quantitatively correlate the master curves and aging is
through the variation of the shift factors used in the TTSP. Although there are many
possibilities in the analytical description of the horizontal shift factors [36], in bitumen
practice the most widely used ones are the William–Landel–Ferry (WLF) equation,

log aT(T, Tr) =
−C1(T − Tr)

C2 + (T − Tr)
, (16)

and Arrhenius equation,

log aT =
0.4347Ea

R

(
1
T
− 1

Tr

)
, (17)

where C1 and C2 are the WLF parameters, Tr is the reference temperature (K), R is the ideal
gas constant, and Ea is the activation energy for flow. The variation of the shift factors, or
alternatively of the parameters of Equations (16) and (17), can be monitored as a function of
aging. As an example, Morian et al., showed that variations of parameters C1 and C2 with
aging correlates with the growth of carbonyl groups [4]. Analogously, the same parameters
showed a relationship with the asphaltenes content [37] and thus with aging, C1 being the
most reliable indicator [38]. In our case, the shift factors showed a better correlation with
Equation (17) and the obtained values of the activation energies are reported in Table 2
together with the corresponding aging index, defined as the ratio between the activation
energies in the aged (Ea,a) and unaged (Ea,u) samples.

The trend in the aging indexes confirms the previous findings, but the numerical
values seems to be slightly sensitive to aging and no significant variation in the activation
energies is observed for the longest aging.

With regard to the vertical shift, all the samples showed a similar behaviour that does
not correlate with aging. The variation in the vertical shift factors with temperature is
reported in Figure 5, where all the data corresponding to the B and LS-B at 0, 25, 40, 65, and
90 h of PAV are represented with the same symbol, in order to visualize the common trend.
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Table 2. Activation energies (kJ/mol).

B LS-B

PAV Ea (kJ/mol) AI (Ea,a/Ea,u) Ea (kJ/mol) AI (Ea,a/Ea,u)

0 165 1.00 162 1.00
25 184 1.12 182 1.12
40 190 1.15 185 1.14
65 198 1.20 188 1.16
90 197 1.19 185 1.14

Figure 5. Vertical shift factors as a function of temperature for the 10 binders.

3.2. Apparent Molecular Weight Distributions

As described in the previous section, from the rheological data, the AMWD were
determined by applying the so-called “δ-method” [5,39], also used to evaluate the binder
aging based on the evolution of such a distribution [40]. Figures 6 and 7 show the distribu-
tions at all levels of aging for binders B and LS-B, respectively. All curves were obtained
by applying the δ-method, after fitting the master curves with the 2S2P1D model (model
parameters are listed in Table 3).

Figure 6. AMWD at different aging times for the base binder.
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Figure 7. AMWD at different aging times for the LS-B binder.

Table 3. The 2S2P1D model’s parameters.

Sample G0 (Pa) G∞ (Pa) α β τ k h

B 1.0 · 10−8 5.82 · 108 0.0350 1.07 · 104 1.19 · 10−4 0.666 0.312
B25 1.0 · 10−8 5.82 · 108 0.0180 1.58 · 105 3.48 · 10−4 0.633 0.305
B40 1.0 · 10−8 5.82 · 108 0.0191 1.35 · 105 1.03 · 10−3 0.639 0.323
B65 1.0 · 10−8 5.82 · 108 0.0105 2.32 · 106 7.50 · 10−4 0.595 0.292
B90 1.0 · 10−8 5.82 · 108 0.0084 5.50 · 106 1.15 · 10−3 0.590 0.287
LS-B 1.0 · 10−8 5.82 · 108 4.68 6.05 · 101 5.53 · 10−2 0.338 0.680

LS-B25 1.0 · 10−8 1.83 · 108 6.13 2.05 · 102 2.03 · 10−1 0.319 0.648
LS-B40 1.0 · 10−8 5.82 · 108 0.0253 5.53 · 104 1.25 · 10−3 0.649 0.334
LS-B65 1.0 · 10−8 5.82 · 108 0.0153 4.14 · 105 8.44 · 10−4 0.615 0.304
LS-B90 1.0 · 10−8 3.70 · 108 0.0114 6.88 · 105 7.78 · 10−4 0.615 0.290

In both cases, there is an evident shift of the right part of the distributions toward
higher molecular weights; this being an immediate confirmation that the dispersion index
increases with aging, as suggested by the |Gc| values. Moreover, the shape of the AMWD
shows two other important changes related to aging. First, the low MW peaks decrease
in intensity, while the high MW peaks increase; second, the overlapping of the peaks
diminishes, introducing a shape shift from a unimodal to a multi-modal curve, according
to aging time. The latter is a direct consequence of the increase in DI, which means a wider
distribution. Again, a graph comparing the two binders helps understanding the effect of
the clay (Figure 8).
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Figure 8. AMWD comparison of the unaged, 25, and 90 h PAV aged samples.

The AMWD is affected by both the molecular weight and the interactions that deter-
mine the aggregation of the molecules. In the unaged conditions, the B and LS-B curves are
similar but not completely superposed, thus confirming the already observed influence of
layered silicate on the bitumen structure [41,42]. Nevertheless, the binders B and LS-B start
from similar apparent distributions, which progressively diverge with increasing aging. At
25PAV, the LS-B binder already shows a reduced dependence on aging with respect to the
B binder. Then, at higher levels of aging, the B distribution clearly includes molecules or
aggregates of higher dimensions.

The shift toward higher Mw can be quantified by calculating the number (Mn) and
weight (Mw) average molecular weights, and the dispersion index, which has a direct link
with the square value of the variance (σ2) of the distribution:

DI =
Mw

Mn
=

σ2

M2
n
+ 1 (18)

Based on these quantities, we can define the following aging indexes:

AIn =
Mn,a

Mn,u
AIw =

Mw,a

Mw,u
AIDI =

DIa

DIu
(19)

The numerical values for the two binders are reported in Table 4.

Table 4. Average molecular weights, dispersion, and aging indexes for B and LS-B.

B LS-B

PAV Mn (g/mol) Mw (g/mol) DI AIn AIw AIDI Mn (g/mol) Mw (g/mol) DI AIn AIw AIDI

0 743 784 1.06 1.00 1.00 1.00 794 836 1.05 1.00 1.00 1.00
25 942 1013 1.08 1.27 1.29 1.02 923 986 1.07 1.16 1.18 1.02
40 1002 1079 1.08 1.35 1.38 1.02 962 1029 1.07 1.21 1.23 1.02
65 1167 1279 1.10 1.57 1.63 1.04 1050 1135 1.08 1.32 1.36 1.03
90 1265 1394 1.10 1.70 1.78 1.04 1090 1180 1.08 1.37 1.41 1.03
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All indexes confirm the anti-aging effect of the clay and the most sensitive index seems
to be AIw.

One of the disadvantages of the indexes defined in Equation (19) is that they refer
to a single data point. The first and second give an idea of the shift of the curve toward
higher MW. The third one is related to the variance of the curve, but it has not a clear
physical meaning when the curve has a complex shape, such as the AMWD, after aging.
As it was for the master curves, we need something that may take into account the changes
in the whole curve. One parameter that may help is the Aging Molecular Distribution Shift
(AMDS) proposed by Themeli et al. [39]:

AMDS =
∫ ∞

0
| fa − fu|dlogMW (20)

where fa and fu are the weight fractions in the AMWD. In other words, the AMDS gives
the area of the absolute value of the difference between the distributions obtained before
and after aging. Both horizontal and vertical shifts as well as variations in shape affect
this parameter. Figure 9 shows that AMDS is always higher for B and the difference with
respect to LS-B increases with aging.

Figure 9. AMDS for the B and LS-B binders at different levels of aging.

Another interesting aspect of the AMWD is that with increasing aging, the main peaks
of the distribution separate one from each other. This suggests analysing the peaks individ-
ually, by means of a simple deconvolution procedure. As proposed by Krolkral et al. [40],
the AMWD were fitted with four Gaussian functions associated with populations with
different molecular weights. As an example, Figure 10 shows the four populations (named
P1 to P4) for the B25 binder.
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Figure 10. Deconvolution in four Gaussian peaks of the AMWD for B25 binder.

Table 5 summarises the molecular weight (g/mol) corresponding to the peak and
the relative quantities of the four populations, calculated as the integral of the relative
Gaussian peak.

Table 5. Percentage area of the P1–P4 populations and related aging index for the B and LS-B binders.

Sample
P1 P2 P3 P4

(P3+P5)
(P1+P2) AIPMW

(g/mol) Area (%) MW
(g/mol) Area (%) MW

(g/mol) Area (%) MW
(g/mol) Area (%)

B 418 7.6 752 26.1 1257 42.4 1937 24.0 1.97 1.00
B25 451 6.8 933 18.7 1811 54.7 2742 19.9 2.93 1.49
B40 490 7.7 1003 16.8 1947 54.6 2965 20.8 3.08 1.56
B65 485 5.8 1183 17.0 2466 57.3 3529 19.9 3.37 1.71
B90 501 5.4 1312 17.9 2772 55.7 3889 21.1 3.29 1.67

LS-B 462 9.0 791 24.0 1330 41.3 2054 25.7 2.03 1.00
LS-B25 471 7.4 910 20.0 1757 50.5 2663 22.1 2.65 1.31
LS-B40 496 8.5 952 16.8 1797 52.0 2742 22.7 2.95 1.46
LS-B65 484 6.8 1049 16.9 2086 56.8 3067 19.5 3.22 1.59
LS-B90 479 6.0 1102 18.4 2175 56.3 3219 19.3 3.09 1.52

All peaks shift toward higher molecular weights, this being more accentuated for the
P3 and P4 peaks. With respect to the relative quantities, only P3 registers an increase due to
aging while the other ones diminish more or less evidently. Moreover, the most significant
variations usually appear in the first aging step. However, due to peaks overlapping, it is
difficult to evaluate aging from the analysis of the individual populations. Therefore, the
populations were grouped in light (P1 + P2) and heavy (P3 + P4) weight fractions and the
following aging index (included in Table 5) was defined:

AIP =

[
(P3+P4)
(P1+P2)

]
a[

(P3+P4)
(P1+P2)

]
u

(21)

AIP takes into account the relative quantities of the high and low MW populations
and gives a further confirmation of the positive effect of clay as an anti-aging additive.
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3.3. High-Performance Thin-Layer Chromatography

It is obvious that the four populations obtained with the deconvolution differ from
the well-known SARA fractions that derive from a fractionation with solvents of different
polarity [29]. Nevertheless, since there is an increase in molecular weight and state of
aggregation that parallels the increase in polarity, it is interesting to investigate if the four
populations and SARA fractions somehow correlate. For this reason, we can here introduce
the only “not-rheological” data, which are the results of the HPTLC analysis (Table 5). The
evolution of the composition clearly individuates the fractions most affected by aging.
Saturates and asphaltenes do not change significantly, at least from a quantitative point
of view. In contrast, a consistent number of aromatic molecules move toward the resin
family due to oxidation. It is worth nothing that for aromatics and resins, the variation
in composition is higher in the presence of clay. This seems to be in contrast with the
anti-aging effect of clay observed until now through rheological data. However, if we
define an aging index (AISARA) similar to AIP, the result is consistent with the previous
ones, thus indicating that the aging indexes must take into account the whole composition.

This is clarified in the last three columns of Table 6 that report the following aging indexes:

AIar =
(ar%)a
(ar%)u

AIres =
(res%)a
(res%)u

AISARA =

[
(res%+asph%)
(sat%+ar%)

]
a[

(res%+asph%)
(sat%+ar%)

]
u

(22)

where sat, ar, res, and asph indicates saturates, aromatics, resins, and asphaltenes, respec-
tively. The indexes that refer to a single population may give misleading information with
regard to the global evolution with aging.

Table 6. SARA fractions from HPTLC.

Sample Saturates
(%)

Aromatics
(%)

Resins
(%)

Asphaltenes
(%) AIar AIres AISARA

B 10.7 50.1 25.0 14.2 1.00 1.00 1.00
B25 9.8 46.0 31.8 12.4 0.72 1.29 1.48
B40 10.9 43.5 33.4 12.2 0.65 1.35 1.72
B65 10.6 39.9 37.4 12.1 0.64 1.29 1.56
B90 9.2 40.0 38.5 12.3 0.69 1.31 1.67

LS-B 10.1 54.2 22.1 13.6 1.00 1.00 1.00
LS-B25 10.1 50.4 27.6 11.9 0.83 1.22 1.31
LS-B40 10.3 49.4 29.1 11.2 0.70 1.26 1.45
LS-B65 10.5 44.3 34.3 10.8 0.70 1.38 1.59
LS-B90 10.4 40.9 38.1 10.6 0.77 1.36 1.53

Finally, in order to better visualize the affinity between the two kinds of populations,
Figure 11 gives a picture of the above-supposed correlation by reporting the data of Table 6
without distinction between the B and LS-B binder. The x-axis is the relative percentage
obtained with HPTLC and the y-axis is the percentage calculated with the δ-method. The
image confirms the parallelism between the δ-method and HPTLC families. Saturates-
P1 and asphaltenes-P4 do not change significantly, while the P2-aromatics and P3-resins
populations have a higher sensitivity to aging. This is interesting food for thought. The
prefix “A” in AMWD stands for apparent and is introduced to distinguish between data
collected in solution (for example with gel permeation chromatography) and in bulk
(rheology). Following the same reasoning, the four populations can be named A-MGD,
which stands for apparent molecule groups dynamics and motions, which give an idea
of how the composition/aggregation of the molecules’ dynamic and motion changes
with aging.
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Figure 11. Comparison of the relative amounts (% by weight) of the four populations obtained by
deconvolution and HPTLC. The red dotted lines represent the linear regressions for P2-aromatics
and P3-resins.

3.4. Relaxation Spectrum

The relaxation spectrum, usually indicated as H(τ̃), is one of the most important
rheological functions, since once it is known, it allows calculating any other viscoelastic
function and vice versa [11]. For this purpose, a number of algorithms has been proposed to
obtain H(τ̃) from the master curve of a viscoelastic function [25,38,43–45]. Moreover, since it
describes a distribution of relaxation times, H(τ̃) can be viewed as an indirect measurement
of the MWD [46] and specific relationships have been proposed for polymers [38,47,48]
and bituminous binders, thus providing an alternative to the δ-method [38]. For all these
reasons, H(τ̃) can be used to characterize the aging of the binders [38,49]. Naderi et al.,
observed a horizontal shift of the relaxation spectra towards higher relaxation times and
suggest the use of the mean value, variance, and skewness of the spectra to characterize
its evolution with time [50]. Zhao et al., derived an indicator to evaluate the effect of
rejuvenators directly from H(τ̃) [51].

As described in the materials and method section, the relaxation spectra were derived
from the 2S2P1D model and in what follows, they are reported on a logarithmic scale, where
the range of the x-axis corresponds to experimental data. In other words, the 2S2P1D model
in this case is used only in the frequency range covered by the experimental master curve
and there is no extrapolation of the data outside that range. Therefore, the reported spectra
represent only a portion of the usual asymmetric bell shape corresponding to a full range
of relaxation times. This portion is located after the bell peak, and thus the curves decrease
monotonically with the relaxation time. For this reason, the variance and skewness are
not very useful parameters. Nevertheless, the shift of the spectra toward higher relaxation
times is clearly visible as well as how the clay reduces this shift. Figures 12 and 13 show
the relaxation spectra for the B binder at different levels of aging and the usual comparison
with the LS-B binder, respectively. For both binders, the relaxation spectra converge to
similar values at low relaxation times and show the main differences in the right-hand
side of the spectra. This is consistent with the already observed variations in MWD. The
low MW molecules (lower relaxation times) are less affected by the oxidation, while the
other molecules change their composition, favouring a higher degree of aggregation. This
determines the shift to the right of both the AMWD and H(τ̃) curves.
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Figure 12. Relaxation spectra for binder B at all investigated levels of aging.

Figure 13. Comparison of the unaged, 25, and 90 h PAV aged B and LS-B binders.

Since in a logarithmic plot all the relaxation spectra appear parallel at high relaxation
times, an aging index could be defined in order to take into account this horizontal shift of
the right-hand side of the curves:

AIH =
(log τ̃)a
(log τ̃)u

(23)

where τ̃ indicates the numerical value of time expressed in seconds and the index is
evaluated at any H(τ̃) in the range were the behaviour is linear in the logarithmic plot,
which means below approximately 100 Pa. As an example, the vertical arrows in Figure 12
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indicate the values of τ for B and B25 corresponding to H(τ̃) = 1 Pa. The obtained values
are reported in Table 7.

Table 7. Aging indexes from the relaxation spectra.

B B25 B40 B65 B90 LS-B LS-B25 LS-B40 LS-B65 LS-B90

AIH 1.00 1.29 1.32 1.48 1.60 1.00 1.18 1.19 1.28 1.32

Eventually, it is interesting to correlate the data obtained from the master curves,
AMWD, and relaxation spectra. Given the abovementioned connection between the
crossover modulus and the dispersion index, their values are represented in a log(|Gc|)-DI
space (Figure 14, left y-axis), which clearly confirms the correlation and suggests a linear
dependence between the two quantities. Even better is the linear correlation for the data
indicated by squares, which refer to the right y-axis and represent the AIH index.

Figure 14. Correlations between the logarithm of |Gc| expressed in Pa and DI for B (•) and LS-B (#)
and between AIH and DI for B (�) and LS-B (�).

A simple linear regression, including both B and LS-B data, gives a coefficient of
determination R2 = 0.94 and 0.98 for |Gc| and AIH, respectively.

4. Conclusions

In the characterization of bituminous binders, rheology is the leading way because it
is related to many properties, such as rutting, elastic recovery, fatigue cracking, and so on.
In particular, it is common practice to construct master curves of the linear viscoelastic func-
tions by applying the time–temperature superposition principle to frequency sweep data
obtained in the isothermal tests. In this way, a single picture representing the behaviour of
the binder from the glassy to the liquid state can be obtained. Such curves contain much
information that may be linked to the molecular structure of the material and used to
compare the aged and unaged states. The master curves can be used as they are or after
transformation into other viscoelastic functions, such as the relaxation spectrum, or into an
apparent molecular weight distribution. In all these cases, transforming the information
contained in a curve into an aging index or into a structural model is not an easy task and
several procedures may be adopted. In this work, a list of many aging indexes, either new
or previously suggested in the dedicated literature, is presented in order to compare their
sensitivity to ageing and to underline their physical meaning. Moreover, an analysis of
the evolution with aging of the three representations (master curves, apparent molecular
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weight distribution, and relaxation spectrum) allowed underlining some interesting inter-
connections. The first one is between |Gc| and H(τ̃) with the dispersion index calculated
from the AMWD. Moreover, an interesting link between the four populations derived with
the deconvolution procedure applied to the AMWD and the four SARA fractions obtained
with HPTLC was observed. If the AMWD is fitted with four Gaussian peaks, there is a qual-
itative similarity in the evolution with aging of the four couples P1-saturates, P2-aromatics,
P3-resins, and P4-asphaltenes. This suggested the use of a new acronym A-MGD (apparent
molecules groups dynamics and motions). As a final consideration, we can affirm that the
apparent molecular weight distribution is probably the most useful representation, because
with aging it undergoes considerable shifts and variation in shape and may give both good
aging indexes and insight into the binder composition. As expected, all the collected data
and aging indexes confirm that clay has an anti-aging effect that remains appreciable even
after severe artificial aging, as well as a direct effect on the aggregation dynamics of the
binder molecules.
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