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Abstract: In contrast to the traditional 3D printing process, where material is deposited layer-by-layer
on horizontal flat surfaces, conformal 3D printing enables users to create structures on non-planar
surfaces for different and innovative applications. Translating a 2D pattern to any arbitrary non-
planar surface, such as a tessellated one, is challenging because the available software for printing
is limited to planar slicing. The present research outlines an easy-to-use mathematical algorithm
to project a printing trajectory as a sequence of points through a vector-defined direction on any
triangle-tessellated non-planar surface. The algorithm processes the ordered points of the 2D version
of the printing trajectory, the tessellated STL files of the target surface, and the projection direction.
It then generates the new trajectory lying on the target surface with the G-code instructions for the
printer. As a proof of concept, several examples are presented, including a Hilbert curve and lattices
printed on curved surfaces, using a conventional fused filament fabrication machine. The algorithm’s
effectiveness is further demonstrated by translating a printing trajectory to an analytical surface. The
surface is tessellated and fed to the algorithm as an input to compare the results, demonstrating that
the error depends on the resolution of the tessellated surface rather than on the algorithm itself.

Keywords: additive manufacturing; non-planar printing trajectory; conformal printing; curved layer
printing; trajectory projection; conformal fused filament; lattice materials

1. Introduction

One of the most used additive manufacturing (AM) technologies is fused filament
fabrication (FFF), which emerged as a prototyping process. During FFF, extruded material
is deposited on a flat platform, and the 3D component is built by stacking layers that
cause functional weakness. A new trend in research aims to deposit extruded material
using out-of-plane trajectories, following the shape of curved surfaces rather than planar
layer-by-layer printing. Non-planar printing has facilitated the fabrication of complex
geometries, improving their mechanical properties.

Several terms are used in the literature to refer to non-planar printing, such as curved
layer fused deposition modeling (CLFDM), curved layer fused filament fabrication (CLFFF),
and curved layer fused deposition (CLFD). Path planning concepts relevant to these
terms overlap in terms of following a non-planar trajectory and depositing fused material
onto curved surfaces. Conformal additive manufacturing usually features direct write
(DW) technologies, causing a new field related to conformal fabrication using FFF to
emerge. The literature also describes the use of conformal fabrication to add fused material
to uneven or non-planar surfaces via one or more different materials to refer to non-
planar printing.
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According to Jiang and Ma [1], the current path planning strategies for improving
3D printing are divided into three groups: (1) those that improve the printing surface’s
qualities, shape accuracy, or infill patterns; (2) those that save material and/or time; and
(3) those that achieve specific printed properties (e.g., mechanical, topological, or func-
tional). Constant-depth CLFD has made a very significant contribution to increasing stiff-
ness and strength [2]. Further, variable-depth CLFD [3,4], has improved surface finishing
by reducing/eliminating the stair-stepping effect. To improve structural and mechanical
properties while reducing material use, Tao and Leu [5] and McCaw and Cuan-Urquizo [6]
proposed manufacturing non-planar lattices or cellular structures to serve as potential
mechanical metamaterials. Depositing conductive materials on a non-planar substrate,
reducing material and assembly complexity, has made functional printed electronics a
reality [7]. Therefore, curved layer printing has confirmed its capability to achieve and
improve manufacturing properties through non-planar slicing processes, eliminating or
reducing supports, creating efficient infill pattern layouts, and depositing multi-material
for heterogeneous composites.

The path planning problem for conformal printing requires that material be deposited
on any target surface of a body digitally represented by a model. These digital models,
created with a variety of computer-aided design (CAD) file formats, are highly important, as
they contain information about raster geometry representation, density, and material. Some
representations are the exclusive file formats of a company, whereas others are open-source
and can be transferred between different CAD systems developers to achieve a flexible
product creation value chain. CAD data may contain either of the two types of model object
representation: analytic geometry or faceted geometry. Analytic geometry is produced for
CAD design systems and is the preferred method for design and manufacturing processes,
due to its unlimited resolution and flexibility. The most common analytic representation of
a continuous surface is the non-uniform rational basis spline (NURBS), which describes
curves and surfaces using mathematical functions. In contrast, faceted geometry (for a
detailed explanation, see [8]) is a discrete form of geometry and comprises non-parametric
representation consisting of points that connect to form a tessellation or groups of polygons
(often triangles) as the boundaries of a body. As Chen et al. [9] explained, faceted geometry
has limited resolution but a flexible and straightforward definition. Generating a conformal
3D printing trajectory on a tessellated surface is challenging and may be an obstacle to
innovative designs since the available software for 3D printing does not support generating
continuous curved trajectories on triangle-defined surfaces. Therefore, the current paper
presents an algorithm that can be used to project, in a given direction, a complex printing
trajectory into any surface represented by faceted geometry, such as a standard tessellation
language (STL) file. The algorithm uses mathematical point-projection fundamentals to
transfer a set of ordered points known a priori and that usually lay on a two-dimensional
plane (not mandatory) to achieve conformal printing on a non-planar surface. In this way,
patterns or lattices based on parametric curves (sinusoidal, Hilbert, hexagonal, re-entrant,
etc.) are successfully, conformally printed on aleatory non-planar surfaces. The trajectory’s
principal points can be generated using parametric equations, recursive functions, infill
patterns or a combination of these. The algorithm optimizes the number of points projected
as needed for proper curved printing, calculates the normal vector for each mapped point
to be used as a tool orientation for multi-axis manufacturing systems, and generates the
G-code for 3D printing. The main contribution of this work consists in the generation
of the G-code for continuous printing trajectories for the fabrication of curved lattices,
where the mandril or target surface does not need to be analytically represented. The
algorithm was developed in Matlab™(R2018a) and can be easily implemented using other
programming languages.

This present document is organized as follows: Section 2 presents a review of the
relevant literature , and Section 3 presents a description of the algorithm in detail and the
generation of target structures and printing trajectories. Furthermore, Section 4 presents
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the results of implementing the algorithm, and finally, concluding remarks and future
insights are given in Section 5.

2. Literature Review

Finding solutions to path planning for manufacturing processes for classical problems,
such as machining, painting, welding, polishing, et cetera, on curved surfaces, is a crucial
issue, and several robust solutions already exist. Some of these fundamental approaches
have been adapted for printing on curved surfaces, and new ones have arisen, such as
those focused on applications in multi-axis printers or robotics, where some conditions are
relevant, such as speed, smooth path, workspace, collision, and singularities avoidance.
This review includes recent algorithms for path planning of non-planar printing and
some of the most significant concepts behind the methods used in traditional conformal
manufacturing as the basis of the subsequent methods adapted for curved layer printing.

2.1. Non-Planar Path Planning for Manufacturing

According to Chen et al. [9], multi-axis tool path planning methods can be categorized
into two groups: those based on parametric CAD models (analytical geometry) and those
based on tessellated CAD models (faceted geometry). A parametric surface, such as ruled
or loft surfaces, is defined by two or more path curves on opposite sides of the surface
joined by straight lines or a loft surface. Alternatively, faceted geometry (e.g., STL files) has
the advantage of being defined with simply obtained data, such as vertices and normal
vectors without any parametric structure and differential attributions [10]. According to
Chen and Shi [11] and Lasemi et al. [12], the three popular methods for tool path generation
in multi-axis machining are iso-parametric [13–15], iso-planar [16–18], and iso-scallop
height [19–21]. In the iso-parametric method, the contact points along the desired path are
generated directly by keeping one of the two parameters as a constant (e.g., u) and varying
the other (e.g., w) [12]. The iso-parametric method may not be suitable for a compound
surface consisting of a collection of surface patches [22], and its main disadvantage is that
scallop heights are not constants due to differences between the Cartesian and parametric
space [23,24]. Iso-planar (Cartesian) tool paths are generated by intersecting a surface
S(u,w) with parallel planes (P1, P2, ..., Pn) in Cartesian space. This method can be used for
compound surfaces, trimmed surfaces, and tessellated surfaces [12]. One advantage of
this method is its uniform interval between adjacent tool paths in the Euclidean space.
The third method, named iso-scallop, is an improvement of isometric and iso-planar
methods, according to Mladenović et al. [23], and it generates subsequent tool paths based
on the known preceding paths. These robust path planning methods are widely used
for traditional industrial tasks (e.g., machining, painting, welding, polishing, and glue
dispensing) and have established the basis for consecutive methods for printing. Several
methods for tool path planning on triangulated surfaces have also been explored. Some
authors have proposed algorithms for triangular mesh surface parameterization methods
by solving partial differential equations, as Jin et al. explained in [25]. Chen et al. [26]
explained a method based on the iso-planar using a tessellated CAD model, where a
bounding box is defined, and the tool path is generated by cutting the bounding box along
the top and front directions. Jun et al. [27] generated paths for machining from an STL
by offsetting the polyhedral model and intersecting the offset surface with drive planes.
Similarly, Lauwers et al. [28] and Mineo et al. [29] developed a 5-axis milling tool path
generation based on faceted models consisting of contact points at the intersection of a set
of parallel planes and the edges of the triangles. Lauwers et al. [28] calculated the normal
vector at a given point as the average of the neighborhood triangles’ normal.

2.2. Non-Planar Path Planning for 3D Printing

The term curved layer printing and its variants mainly refer to slicing a model using
curved layers instead of the traditional planar layer slicing or a combination of planar
and curved. A very complete review of planar and non-planar slicing methods and path
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planning for AM is presented by Zhao and Guo [30]. Different approaches are also found
in the literature related to conformal printing on non-planar surfaces that are not com-
monly associated with the curved slicing model, but which are included here due to their
importance in this study. The term CLFDM was first introduced by Chakraborty et al. [31]
who formulated a theoretical method, mainly based on CNC traditional concepts, for the
manufacturing of thin curved shells to improve the mechanical properties and reduce the
stair-step effect. Their work was based on employing longer length tool paths, focused
on the proper orientation of the filament and appropriate bonding between adjacent fila-
ments. Their formulation used a parametric surface, calculated the partial derivative of it
to obtain the normal vector and then generated an offset surface. The concept of CLFDM
was experimentally reported by a number of researchers, such as Singamneni, Huang,
and Diegel [32–34]. They generated the path planning (flat layers) to produce a mandril as
a support structure where the curved layers were later deposited, following the contour
of the part. Later, Singamneni et al. [35] improved their algorithm of the cross product
of four vector by considering a vertical plane passing through three consecutive surface
points. Even though all their contributions laid the foundations of experimental CLFDM,
some important details about the implemented algorithms were skipped. They studied the
generation/selection of data points to produce the offset curved layer directly from the
G-code or M-code generated by a CAM software, and as a result, the printing trajectory was
limited to those points. Some authors have developed curved layer slicing by modeling
and fitting the surface using B-spline, such as Jin et al. [36], who fitted an STL mesh surface
with a B-spline surface with two independent parameters (u and v). They modified the
original tessellated surface to reduce the number of triangles of the STL file and then fitted
the surface. The first printing path (the author recommends it to be along one of the edges
of the design) defines the next paths, which are generated by a certain offset (equidistant).
They reported some limitations in the processing of the part surface due to the CAD and
CAM software used. Patel et al. [37] optimized the number of curved layers needed for
printing by preserving the critical features. They modeled a B-spline surface using se-
lected critical points and generated curved offset layers optimized by the application of
genetic algorithms and surface-surface intersection. Their results included simulations but
a nonphysical implementation. Allen and Trask [38] used a delta configuration system
and generated the printing path of a surface or skin defined mathematically and a core
component (infill pattern) as a matter of contrasting distinct structural or physical functions,
as Llewellyn-Jones et al. [39] later also demonstrated by producing models with aesthetic
and structural properties. The algorithm consisted of converting the analytical surface in a
grid XY following the points in order and calculating z for dynamic movements. McCaw
and Cuan Urquizo [6] presented the procedure to fabricate non-planar lattice-shells on non-
planar equation-defined surfaces (parametric Bèzier surfaces of arbitrary order), whereas
Cuan-Urquizo et al. [40] generated and fabricated a lattice using rectangular equations and
studied the mechanical behavior when force is applied. McCaw and Cuan-Urquizo [41]
presented a mathematical approach to parametrize lattices onto Bèzier surfaces to fabricate
non-planar chirality lattices and studied them under cyclic loading. Conformal printing
has emerged as a process to deposit silver inks on curvilinear surfaces to create conductive
paths [42]; however, some recent studies were published about path planning for conformal
3D printing using FFF. Shembekar et al. [43] proposed an algorithm for conformal printing
using non-planar layers and evaluated the differences in roughness between a surface
finish when printed using planar layer slicing and the proposed algorithm. The algorithm
aims at collision-free trajectory planning using a projection method: (1) a grid is created on
the XY plane (0.5 mm spacing); (2) vertices of each triangle are projected to the XY plane;
(3) specific points of the grid belong to a particular triangle; (4) the equation of the plane of
the triangle is calculated from three vertices; and then (5) the z value for these points inside
the triangle is calculated and mapped back to the non-planar surface. A zigzag pattern
at two different angles is used to improve the finishing of the surface. Alkadi et al. [44]
proposed an algorithm to locate conformally one tessellated structure onto a second tessel-
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lated surface (substrate). The algorithm achieves the following: (1) it generates a curved
slicing surface by offsetting the top of the substrate; (2) it obtains the boundaries of the
pattern to be printed by the intersection of the structure and the slicing surface; and (3) 2D
printing patterns are projected to create 3D patterns. To achieve conformal trajectories,
this algorithm has the restriction that the bottom of the 3D structure must fit the freeform
substrate, and in the case of a mismatch, the free spaces are filled to connect both structures.
The algorithm outputs the G-code for 3D printing. A different approach for printing quality
improvement was proposed by Ahlers et al. [45], who developed an algorithm for planar
and non-planar slicing. Their main contribution is the detection of the parts suitable to
be printed using non-planar slicing assuring collision-free toolpaths, using a simplified
printhead model defined by the maximum nonplanar angle and the maximum nonplanar
height. The printing trajectories presented are focused to achieve smooth surfaces (zigzag
pattern). Feng et al. [46] implemented a five-axis machine (a delta printer plus a platform
rotating) and proposed an algorithm for curved layer material extrusion. Their main
contribution is the reduction of the material used for the mandril to achieve conformal
curved printing; hence, the printing time is also reduced. They generated a conformal
surface offset and a toolpath using the geodesic distance as the shortest zigzag along the
facet edges of the STL file. The path planning consisted in equidistantly offsetting the
starting curves.

Most of the work published, to the best of our knowledge, about conformal-curved
trajectory printing is focused on the improvement of the surface finish (reducing the stair-
stepping effect) with improvement in the mechanical performance as a consequence, and a
reduction in the number of layers needed for the part to be printed. Due to this, the most-
used paths for curved printing are limited to zigzag or circular patterns [43,44,46]. In these
works, printing paths consisted of equidistantly offsetting starting curves, which restrict
the points to define the printing trajectory. A limited number of works were focused on
the generation of more complex trajectories, such as those needed for the manufacturing
of lattices or specific paths for the deposition of fibers or conductive materials. Complex
trajectories or patterns, such as sinusoidal lattices, were reported, and these were printed on
analytical surfaces (mathematically parametrized) but not using tessellated surfaces [40,41].
Complex freeforms, such as those encountered in biomedical applications (normally ob-
tained from scanned data), may not be mathematically parametrized. Hence, approaches
such as the one presented in this paper, gain relevance; any surface, parametrizable or not,
could be modeled using a tessellated surface.

The review of the related literature reveals that the work where an analytical represen-
tation is obtained from points of a curved surface, also leads to the loss of key features or
resolution when fitting [36]. In this way, a double source of error exists when, for instance,
vertices contained in the STL file are used for calculating an analytical approximation: the
intrinsic error of tessellated CAD approximation (STL file) and the error when fitting to
analytical representation. In addition, the printing trajectories are limited when these must
follow the points contained in the G-code/M-code generated by CAD software, or by using
only the edges or vertices found in the STL file. Motivated by these limitations found
in the literature, this paper is focused on the projection of complex trajectories, such as
those encountered in lattices or patterns, to a tessellated surface and the corresponding
G-code generation to achieve a curved architecture structure manufactured, achieving the
continuous deposition of material using non-planar printing trajectories. To highlight this
work contribution, Table 1 shows the important aspects of different works reviewed. This
works fills the gap that was identified by the achievement of conformal printing of any
lattice or pattern on any non-planar complex surface, via its tessellation, avoiding the need
for the previous parametrization of the target surface.
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Table 1. Comparison of important aspects of reviewed authors to highlight this work contribution. A controlled mandrel means that it
is mathematically parametrized. A random mandrel means that its shape is not mathematically defined. A regular trajectory is that
which is usually used, e.g., zigzag or circular. Complex trajectories are those that involve periodic or fractal patterns.
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Chakraborty et al. [31] C - R X X - - - -

Singamneni et al. [35]
Huang et al. [33]
Diegel et al. [32,34]

C X R X - - - - -

Jin et al. [36] R - R X - X - - -

Patel et al. [37] C - R - X X - - -

Allen and Trask [38]
Llewellyn-Jones et al. [39] C X C X - X - - -

McCaw and Cuan-Urquizo [6,41]
Cuan-Urquizo et al. [40] C X C - - - X - -

Shembekar et al. [43] R X R X - - - - -

Alkadi et al. [44] R X R - - - - X -

Feng et al. [46] R X R X X X - X X

This work R X C - - - X X -

3. Materials and Methods
3.1. Algorithm Description

To explain the algorithm developed in this work, consider the tessellated target
surface shown in Figure 1. A set of ordered points of a given trajectory are located over
the target and redirected along a projection vector to intersect the surface. The intersection
corresponds to each point’s new location on the target surface, and its normal is represented
by the normal of the triangle where the intersection took place.

Figure 1. The concept of the algorithm is to project a set of ordered points of a trajectory at a given
direction on a non-planar tessellated surface.
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A general block diagram of the algorithm is presented in Figure 2, where three
parameters are received as input:

1. The coordinates (x, y, z) of sequential and ordered points of the trajectory (usually
lying on two-dimensional but not mandatory) are generated by parametric equations,
recursive functions, or infill patterns.

2. The STL file of the non-planar target surface.
3. The vector of projection (direction) of the trajectory.

Before projection, the algorithm verifies whether the distance between each pair of
consecutive points is correct for proper printing, avoiding collision with the surface when
the extruder moves linearly from point to point, and if needed, the algorithm generates
parametrical extra points. Then, the algorithm projects each point on the top surface and
gives as output the following:

1. The new position (x, y, z) of every point of the path that was able to intersect the
body in the given direction. The points’ sequence is maintained as it was before the
projection, and those points that did not cross the body because they never found a
surface are discarded.

2. The normal vector for each projected point is calculated for the orientation of the
extruder in the case of using a multi-axis system.

3. From the new positions (x, y, z), the G-code is generated for direct 3D printing.

The algorithm is detailed in the upcoming subsections (steps and definitions) and is
summarized in Figure 3.

Figure 2. Block diagram of the algorithm presented in this work.

Figure 3. Flow diagram of the algorithm presented here for conformal 3D printing.
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Step 1. Reading inputs:
The algorithm needs three inputs: (1) a matrix containing ordered points of the

trajectory, (2) an STL binary file of geometry on which the points will be mapped, and (3) a
vector of projection. When reading the STL file, data are stored in a matrix [faces, vertices,
normal] representing the triangular facets described by the (x, y, z) coordinates of the three
vertices and a normal unit vector. The STL file has two formats, the (i) ASCII, which is human
readable, but larger (in memory) than the (ii) binary format. The normal vector is calculated
using the right-hand rule (see Definition A1 in Appendix A).

Step 2. Generating extra points for smoothing the path:
The algorithm projects the points of a trajectory printing on a non-planar surface,

and from these points (x, y, z), the corresponding G-code is generated, which make the
extruder travel in a linear fashion from point Pi to Pi+1. For proper curved printing,
the extruder needs to travel linearly from point to point without collisions with the target,
so the distance between each point needs to be small enough to have a smooth path.
Therefore, the algorithm verifies that the distance between each pair of consecutive points
is correct before projecting them, and in cases where the distance is larger than 0.5 mm or
1 mm (user-defined variable), extra points equally spaced are parametrically generated to
allow the extruder to travel conformally on the curved surface without collisions, as shown
in Figure 4, where the line P0 − P1 needs to be subdivided before being projected for
successful printing by using the parametric equation P(u) = (1 − u)P0 + uP1, where
0 ≤ u ≤ 1.

Figure 4. Subdividing a line P0 − P1 before projection to avoid collisions and achieve proper printing.

The distance between two consecutive points might change after projection since the
points might cross the model at different heights (z-values) once it is projected, as shown
in Figure 5.

Figure 5. The initial distance between two points might be different after projection:
dinitial 6= dprojected.

Step 3. Calculating plane equations and centroids:
Consider a point P0, which belongs to the infinite plane Q defined by a point C and a

normal vector −→n . The generalized plane’s equation for each triangle is calculated, using its
normal and centroid, using the equation of a plane (see Definition A2 in Appendix A).

−→n Pi + d = 0 (1)
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Therefore, taking Equation (1) for the specific case of a triangle, and if the centroid
C(cx, cy, cz) of a triangle (defined by three vertices (V1, V2, V3) is calculated as
((V1x + V2x + V3x)/3, (V1y + V2y + V3y)/3,(V1z + V2z + V3z)/3)) and its normal vector
is −→n (nx, ny, nz), then the scalar equation of the infinite plane Q, where the three vertices
and centroid of the triangle are located, is given by Equation (2):

nxx + nyy + nzz + (−cxnx − cyny − cznz) = 0 (2)

Step 4: Calculate the intersection of a projected point and a plane:
Consider Figure 6, where a point P0 is projected in a vector direction −→v . This

infinite-line of projection can be described by its parametric equation (see Definition A3 in
Appendix A).

Having described an infinite plane through Equation (2) and an infinite-line through
P = P0 + t−→v , the point of intersection between both can be found by substituting the
infinite-line equation onto the infinite plane equation so that the following holds:

−→n (P0 + t−→v ) + d = 0 (3)

and solving for t,

t =
−(d +−→n P0)
−→n −→v

(4)

knowing t, the coordinates of the intersection point are calculated as follows:

x = P0x + t vx
y = P0y + t vy
z = P0z + t vz

(5)

Step 5: Finding the intersection of the projected point with true triangles:
Equation (5) is used to obtain the intersection of the projected point with the infinite

plane of every triangle of the STL model, as shown in Figure 6. However, using the equation
of a point inside a triangle (see Definition A4 in Appendix A), the vertices are used to
delimit each triangle’s space and validate that the projected point intersects the triangles.

Figure 6. Infinite planes of each triangle are crossed by the projected point.

Step 6: Finding the intersection with the upper surface of the STL model:
Once the algorithm finds which triangles are intersected by the projected point and the

location (x, y, z) of the intersection, the algorithm holds the intersection only with the upper
surface. When an infinite line crosses a close model, such as an object defined by an STL
file, the line intersects the model at least two times; measuring the distance between the
location of the point P0 before projection and the intersections after projection, the shortest
one, P′0, is considered the first that crosses the upper surface, as shown in Figure 7.



Appl. Sci. 2021, 11, 7509 10 of 21

Figure 7. Infinite-line crosses a close body by at least two times.

Step 7. Discarding those points that never intersected any surface: If a projected point
does not intersect a surface to cross, then the algorithm discards the final trajectory point,
as shown in Figure 8.

Figure 8. Points are discarded if they never cross any surface.

Step 8. Generating G-code for 3D printing:
Figure 9 shows the main parts of the generated G-code file. The start G-code prepares

the printer by setting the heated bed temperature to 60 ◦C and the extruder temperature to
200 ◦C and purges the extruder. The end G-code finalizes the printing task by turning off the
heating elements and raising the extruder. The instruction added for printing controls the
extruder’s linear movements from one point to the next of the printing trajectories. Its gen-
eral format is given by G1 F1500 Xx Yy Zz Ee (e.g., G1 F1500 X91.429 Y69.183 Z6.33 E0.13187),
where F1500 refers to the extrusion speed (1500 mm/min), (x, y, z) is the position corre-
sponding to each projected point, and the number e is the accumulated length of the fila-
ment to be extruded. Furthermore, e is given by

√
(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2

multiplied by a factor of (0.4/1.75) = 0.0522.

Figure 9. Parts of the G-code file.

To generate multiple layers, the initial set of points is repeated but inverted in sequence,
while the z-value is increased in steps of 0.2 mm.
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3.2. Generation of Target Structures and Printing Trajectories

Two different target structures are generated with a proper slope to avoid collisions
due to the restriction of a 3-axis printer:

(a) A saddle surface using Equation (6).

z = 3.8 +
(0.65(x− 80))2 − (0.65(y− 80))2

200
(6)

where 40 ≤ x ≤ 120 and 40 ≤ y ≤ 120.
(b) A random surface generated by the logical subtraction between the structure

defined by Equation (7), the same structure rotated 90◦ and a sphere of radius 70 mm with
the center in (95, 88, 73).

z = 6 + 5(sin(x/12) cos(y/12)) (7)

where 0 ≤ x ≤ 32π and 0 ≤ y ≤ 32π.
Three different printing trajectories (Hilbert, re-entrant, and hexagonal) are gener-

ated based on the Lindenmayer system (L-system) and consist of alphabet symbols to
form strings. In this method, widely explained in [47], each symbol denotes an action.
Consider Figure 10a, where a Hilbert pattern has an initiation seed equal to X, where
X = “-YF+XFX+FY-”, Y = “+XF-YFY-FX+”, “-” means turn right π/2 degrees, “+” means
turn left π/2 degrees and “F” means go Forward A distance. Similarly, for the re-entrant
curve (Figure 10b), the seed is X where X= “+F-G-F+G X”, “G” means go Forward B
distance repeated N times to form a row and then M times to form the lattice. In this
case, the angle of rotation is 2π/3 and two different distances, F and G, are considered.
A hexagonal pattern is a re-entrant pattern with distance B = A and a turning angle of
π/3, such as the angle for the symbols “−” and “+”.

Figure 10. The first and second iterations are based on the L-system for (a) Hilbert and
(b) re-entrant patterns.

4. Results
4.1. Printing of Target Structure

The two different target structures explained in Section 3.2 were designed using the
software Mathematica™ and Blender, and then exported as STL files. The STL of the target
model was loaded using the Software Ultimaker Cura, positioned at (40 mm, 40 mm) on
the build plate, and then planar sliced, as is the traditional process, to produce the G-code
for printing. An Ender-3 printer was used to print the target structures, which were the
base or mandril of the subsequent conformal printing trajectories. The printer’s nozzle was
0.4 mm, and the material was a PLA filament 1.75 mm in diameter.
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4.2. Printing Trajectories

The algorithm discussed in Section 3.1 was applied to project three different printing
trajectories (Hilbert, re-entrant, and hexagonal). The printing trajectories and the algorithm
for conformal printing were calculated in Matlab™(R2018a). The algorithm’s inputs were
the STL of the target structure, the main points of each printing trajectory, and the projection
vector [0, 0,−1], such as the -z direction. As output, the algorithm gives the new location
of each point projected on the target surface and the G-code for conformal 3D printing.
The printer and printing material used were the same as those for the target structure.

4.3. Evaluation of Algorithm

One way of demonstrating the correct functionality of the proposed algorithm is
generating a printing trajectory on an analytical target surface and then comparing these
values to those obtained using the algorithm by projecting the trajectory into the tessellated
equivalent target surface. In this manner, the Hilbert curve explained in Section 3.2 was
chosen as the printing trajectory, producing 319 principal points ordered in sequence
on a XY plane (45 ≤ x ≤ 115, 42 ≤ y ≤ 118, z = 50) [mm]. The target surface or
mandril was chosen to be the analytical saddle surface defined by Equation (6), generated
using the software Mathematica and saved as a tessellated STL file with two different
resolutions: one low-resolution consisting of 33,240 triangles and another high resolution
of 99,816 triangles. Having the Hilbert printing trajectory (x,y) and the curved target
surface (saddle), an analytical curved printing trajectory was created by the substitution of
each value (x,y) of the Hilbert pattern into the saddle surface, using Equation (6), obtaining
the Zanalytical . At the same time, the algorithm for conformal printing proposed here
and described in Section 3.1 was executed, having as inputs the same printing trajectory
(Hilbert), the tessellated equivalent target surface (saddle STL) and a projection vector
in the −z direction. Before projecting the points of the printing trajectory, the algorithm
generated extra points as subdivisions, having a total of 1655 sequential points for the
Hilbert trajectory. The obtained algorithm output was named Zprojected for each (x, y) value.
Figure 11 shows the printing trajectory before and after being conformed on the saddle
surface and the normal vector for each projected point.

The absolute relative error, defined as
|Zanalytical−Zprojected |

Zanalytical
100%, was used to measure

the accuracy of the algorithm. Figure 12 shows the error found for each point (x, y) of the
Hilbert printing trajectory projected on the tessellated saddle structure with 33,240 triangles
(low-resolution), having a mean error of 0.025853, and a maximum error of 0.287034%
occurred at (X = 80, Y = 42). Figure 13 shows the same points, but this time projected on
the 99,816 triangle polygonal mesh (high-resolution structure), the mean error was 0.007551,
and the maximum error found was 0.075592%, which occurred at (X = 83, Y = 42).
Finally, Figure 14 shows the actual 3D-printed piece: first, the target structure (mandrel) is
printed using the slicing software Cura (planar printing), then the G-code generated by the
algorithm allows the continuous conformal deposition of material following the Hilbert
pattern on the target structure, being noticeable the contrast between the stair-stepping
effect due to the planar slicing printing process for the target structure and the conformal
Hilbert curved printing trajectory.
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Figure 11. Points of trajectory before and after being mapped on a tessellated surface.

Figure 12. The absolute relative error for each point of trajectory with a maximum error of 0.287034%
occurred at (X = 80, Y = 42) and a mean error = 0.025853; the error was caused mainly by the
resolution polygonal mesh. Plot generated using the script of [48].

Figure 13. The absolute relative error for each point of trajectory on higher resolution polygonal
mesh with a maximum error of 0.075592% occurred at (X = 83, Y = 42) and a mean error = 0.007551.
Plot generated using the script of [48].
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Figure 14. (a) Actual 3D printing of Hilbert curve projected on saddle geometry using the algorithm.
(b) Detail of FFF printing, where the stair-stepping effect can be observed under the conformal
deposition of material.

Two lattice examples were also simulated and 3D printed. In Figure 15, a re-entrant
trajectory is projected on a random target tessellated structure generated, as explained
in Section 3.2, similar to that used in [43]. The re-entrant trajectory initially consisted of
432 main points that define the pattern. Additionally, the algorithm generated extra points
as subdivisions to convert a linear displacement into a curve printing trajectory for the
extruder, having in total 3023 points that were projected on the target surface toward the−z
direction. Figure 16 shows the actual printing, where the curved and continuous deposition
of the extruded filament can be observed. The target structure was used to project a
hexagonal trajectory, as shown in Figure 17, with 320 main points. The algorithm added
extra points to achieve curved displacements, with 1835 points projected successfully on
the target structure in total. The actual 3D printing of the hexagonal printing trajectory
on a random structure is shown in Figure 18, where a continuous deposition of material
is achieved.

Figure 15. Simulation of the re-entrant pattern projected on an arbitrary tessellated surface.

Figure 16. Actual 3D printing of the re-entrant pattern projected on an arbitrary tessellated surface.
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Figure 17. Simulation of a hexagonal pattern projected on an arbitrary tessellated target structure.

Figure 18. Actual 3D printing of hexagonal pattern projected on an arbitrary tessellated tar-
get structure.

5. Discussion

Lattice and cellular structures are proven to be suitable options for tailoring properties
when they are used to fill parts and components. However, when characterizing their
effective properties, the lattice samples are fabricated with simple macro geometries,
such as cubes and prisms. Components in real applications have far from simple macro
geometries. The need is then for these structures to conform to complex macro geometries.
The first step toward this is to conform them to non-planar surfaces [6]. The algorithm
developed in this work supports this general objective found in the literature by allowing
specific trajectories (generated parametrically following recursive or repetitive patterns).
Furthermore, it contributes to the manufacturing of continuous filament deposits on a
non-planar surface, such as those needed for lattices (printing layer-by-layer affects the
performance of structure) or to deposit conductive material (stair-stepping effect would
cause discontinuity) or any second material on the surface of a substrate.

The results presented in this work demonstrate that the algorithm’s precision de-
pends on the resolution polygonal mesh of the target structure. For example, a saddle’s
geometry was chosen to use two different approximations: the first with low-resolution
and 33,240 triangles, and the second with an approximately three times higher resolution
(99,816 triangles). Based on the data collected and condensed in Figure 12, the mean of
the absolute relative error found for the low-resolution polygonal mesh was 0.025853,
with concentrated highest values of error at the saddle surface’s concave zones and a maxi-
mum value of error of 0.287034%. To reduce the error, the number of triangles (vertices)
must be increased to increase the polygon mesh. Here, when the resolution of the previ-
ous low-resolution polygonal mesh of saddle target was improved with approximately a
three-times higher resolution geometry, the mean of the absolute relative error decreased
to 0.007551, which represents closely the same proportion (1/3) of change, and the error
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zones remained at the concave zone, as can be observed in Figure 13. It can be assumed that
the error decreases as the tessellated surface resolution improves at the same proportion.
The algorithm proposed here allows for projecting complex printing trajectories to achieve
structures with different densities of material as the Hilbert curve sample shown in Figure
14a, where the length of the unitary cell is changed to simulate a different density distri-
bution. In Figure 19, the curved lattices printed were detached from the target structure,
using adhesive blue painter tape to cover the target structure before printing the lattices.

Figure 19. Curved lattices printed by the projection of printing trajectories.

6. Conclusions

This work focuses on developing a software tool to shorten the design time when
conformal 3D printing is required. This consists of a mathematical algorithm to project
sequential points of a trajectory through a vector for conformal printing on a tessellated
surface defined by an STL file and the direct generation of the machine code (G-code)
for 3D printing. The algorithm was implemented in Matlab™(R2018a), and as a proof of
concept, sequential points of a Hilbert curve trajectory were generated and projected on a
saddle surface to be printed conformally, using FFF. It was demonstrated that the absolute
relative error between the location of the projected points using the algorithm versus
the analytical values utilizing the surface’s equation was due mainly to the resolution of
polygonal mesh (number of vertices in STL file) in such a way that error decreased for
a tessellated surface with a higher resolution polygonal mesh. The algorithm calculates
the normal vector for each projected point so that the Euler angles may be obtained to
orientate a tool or extruder of a multi-axis or robotic system. The algorithm concept may be
used for the generation of G-codes for printing continuous non-planar lattices or functional
structures on an arbitrarily shaped and tessellated surface. The application scope may also
be extended to generate G-codes for one or several layers and even by using other AM
technologies, such as DW, for the deposition of conductive material for printed electronics.
The algorithm was initially created for a looking solution to generate G-codes for 3D
printing of conductive tracks on any surface represented by a tessellated file (STL), but its
use may be extended for other surface manufacturing applications, where a path trajectory
to be followed by a tool is required. Applying the algorithm for 3D printing using an
industrial robot is planned for future work, including implementation of a user’s interface
and some improvements to optimize calculations. The final remark of this paper concerns
the advantages of using this algorithm.

1. It allows projecting complex parametric trajectories onto any non-planar surfaces
defined by an STL geometry file, so the surface does not have to be analytical. The gen-
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eration of patterns, such as those used in [6,41] in a two-dimensional plane, is direct,
but generating those patterns in 3D following a curve may be challenging if the
surface is complex and not analytical.

2. It allows shortening the design time and the steps for AM of conformal patterns on
non-planar surfaces by directly producing a G-code to be transferred to the printing
machine. It is a simple software tool that is easy to use and even modified for further
specific applications.

3. The algorithm gives each projected point the normal to orient the extruder in a
multi-axis system.

4. It allows concatenating different trajectories to create structures with different
material densities.

5. It allows printing as many layers as needed or alternating the pattern by layers as the
sinusoidal pattern.

6. Having the vector of projection as a user-defined parameter allows playing with
trajectories projected at different inclination angles to generate different patterns on
the target surface. Similarly, the pattern can be generated at an inclined plane and
then projected as required.

7. Non-planar lattice shells, when built from the projection or conformal printing, will
have distortions (not present in their planar version) that will affect their resulting
mechanical properties (especially if those were characterized in planar samples). This
prompts further analysis of the mechanical properties of the lattice shells.
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Appendix A

Definition A1. Three noncollinear points, V1(V1x, V1y, V1z), V2(V2x, V2y, V2z) and

V3(V3x, V3y, V3z) in R3, determine a plane where the nonzero vectors,
−−→
V2V1 and

−−→
V2V3, lie on that

plane. The cross product of these vectors produces the normal vector −→n following the right-hand
rule, as indicated in Figure A1.
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Figure A1. Faucets of the STL file are defined by three vertices and a normal vector, which is defined
as the cross product of two vectors.

Definition A2. Given a plane Q in R3, a point P0(x0, y0, z0) is located, given a nonzero vector
−→n (nx, ny, nz) perpendicular to Q. Then, Q consists of the points Pi(x, y, z) satisfying the vector
equation called a point-normal form of the plane (Figure A2):

nx(x− x0) + ny(y− y0) + nz(z− z0) = 0 (A1)

ax + by + cz + d = 0 (A2)

where
a = nx; b = ny; c = nz; d = −(nxx0 + nyy0 + nzz0) (A3)

and in general,
−→n Pi + d = 0 (A4)

Figure A2. The infinite plane defined by its scalar equation.

Definition A3. An infinite line in space can be described through the parametric vector equation,
using a point P0 on the line and the direction of the line represented by a vector−→v in such a way that
the following holds:

P = P0 + t−→v (A5)

Definition A4. Given a triangle defined by the vertices V1, V2, V3 (Figure A3), then any point
inside the triangle can be defined as an addition of weighted vectors, such as the following:

P = V2 + u(V1 −V2) + w(V3 −V2) (A6)

u(V1x −V2x) + w(V3x −V2x) = Px −V2x (A7)

u(V1y −V2y) + w(V3y −V2y) = Px −V2y (A8)

solving for u and w

u =
(Px −V2x)(V3y −V2y)− (V3x −V2x)(Py −V2y)

(V1x −V2x)(V3y −V2y)− (V3x −V2x)(V1y −V2y)
(A9)
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w =
(Py −V2y)(V1x −V2x)− (V1y −V2y)(Px −V2x)

(V1x −V2x)(V3y −V2y)− (V3x −V2x)(V1y −V2y)
(A10)

The point is inside the triangle if and only if u ≥ 0 and w ≥ 0 and (u + w) ≤ 1.

Figure A3. Point inside a triangle defined by weighted vectors.
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