Study on Active Tracking of Underwater Acoustic Target Based on Deep Convolution Neural Network
Abstract
:1. Introduction
2. Kalman Filter Active Tracking Based on Deep Convolutional Neural Network
2.1. Active Sonar Echo Signal Preprocessing to Generate Data Set
2.2. The Structure of the DCNN Model
2.3. Tracking Process
3. Simulation and Verification of Real World Signal
3.1. Setting of Simulation Signal
3.2. Simulation Target Data Set Generation and Model Training
3.3. Simulation
3.4. Verification of Real World Signal
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, G.; Ling, G.; Yan, Q. Review and prospect of active sonar detection techniques. Tech. Acoustics. 2007, 26, 335. [Google Scholar]
- Stewart, J.; Westerfield, E. A Theory of Active Sonar Detection. Proc. IRE 1959, 47, 872–881. [Google Scholar] [CrossRef]
- Howell, B.; Wood, S. Passive sonar recognition and analysis using hybrid neural networks. Oceans 2003, 4, 1917–1924. [Google Scholar] [CrossRef]
- Parsons, M.J.G.; Parnum, I.M.; Allen, K. Detection of sharks with the Gemini imaging sonar. Acoust. Aust. 2014, 42, 185–190. [Google Scholar]
- Herkül, K.; Peterson, A.; Paekivi, S.; Sander, P. Applying multibeam sonar and mathematical modeling for mapping seabed substrate and biota of offshore shallows. Estuar. Coast. Shelf Sci. 2017, 192, 57–71. [Google Scholar] [CrossRef]
- Elfes, A. Sonar-based real-world mapping and navigation. IEEE J. Robot. Autom. 1987, 3, 249–265. [Google Scholar] [CrossRef]
- Yusof, M.A.B.; Kabir, S. An overview of sonar and electromagnetic waves for underwater communication. IETE Tech. Rev. 2012, 29, 307. [Google Scholar] [CrossRef]
- Abraham, D.; Gelb, J.M.; Oldag, A.W. Background and Clutter Mixture Distributions for Active Sonar Statistics. IEEE J. Ocean. Eng. 2011, 36, 231–247. [Google Scholar] [CrossRef]
- van Vossen, R.; Beerens, S.P.; van der Spek, E. Anti-submarine warfare with continuously active sonar. Sea Technol. 2011, 52, 33. [Google Scholar]
- Marage, J.-P.; Mori, Y. Sonar and Underwater Acoustics; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Duan, Z.; Han, C.; Li, X.R. Comments on “Unbiased converted measurements for tracking”. IEEE Trans. Aerosp. Electron. Syst. 2004, 40, 1374. [Google Scholar] [CrossRef]
- Lerro, D.; Bar-Shalom, Y. Tracking with debiased consistent converted measurements versus EKF. IEEE Trans. Aerosp. Electron. Syst. 1993, 29, 1015–1022. [Google Scholar] [CrossRef]
- Lei, M.; Han, C. Sequential nonlinear tracking using UKF and raw range-rate measurements. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 239–250. [Google Scholar] [CrossRef]
- Bar-Shalom, Y.; Kirubarajan, T.; Lin, X. Probabilistic data association techniques for target tracking with applications to sonar, radar and EO sensors. IEEE Aerosp. Electron. Syst. Mag. 2005, 20, 37–56. [Google Scholar] [CrossRef]
- Lo, K.W.; Ferguson, B.G. Automatic detection and tracking of a small surface watercraft in shallow water using a high-frequency active sonar. IEEE Trans. Aerosp. Electron. Syst. 2004, 40, 1377–1388. [Google Scholar] [CrossRef]
- Yang, H.; Byun, S.-H.; Lee, K.; Choo, Y.; Kim, K. Underwater Acoustic Research Trends with Machine Learning: Active SONAR Applications. J. Ocean Eng. Technol. 2020, 34, 277–284. [Google Scholar] [CrossRef]
- Nguyen, H.-T.; Lee, E.-H.; Lee, S. Study on the Classification Performance of Underwater Sonar Image Classification Based on Convolutional Neural Networks for Detecting a Submerged Human Body. Sensors 2019, 20, 94. [Google Scholar] [CrossRef] [Green Version]
- Young, V.W.; Hines, P.C. Perception-based automatic classification of impulsive-source active sonar echoes. J. Acoust. Soc. Am. 2007, 122, 1502–1517. [Google Scholar] [CrossRef]
- Roads, C.; Nilsson, N. Principles of Artificial Intelligence. Comput. Music. J. 1980, 4, 64–65. [Google Scholar] [CrossRef]
- Yang, H.; Shen, S.; Yao, X.; Sheng, M.; Wang, C. Competitive Deep-Belief Networks for Underwater Acoustic Target Recognition. Sensors 2018, 18, 952. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.H.; Yang, H.H.; Li, Y.Q. A method for feature extraction of hydroacoustic communication signals based on generative adversarial networks. In Proceedings of the 2019 Academic Conference of the Underwater Acoustics Branch; Nanjing, China, 24–25 May 2019, Chinese Society of Acoustics: Beijing, China, 2019. [Google Scholar]
- Zhu, B.; Wang, X.; Chu, Z.; Yang, Y.; Shi, J. Active Learning for Recognition of Shipwreck Target in Side-Scan Sonar Image. Remote. Sens. 2019, 11, 243. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.-C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med. Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Gong, Y.; Tao, X.; Zheng, N. Training DCNN by Combining Max-Margin, Max-Correlation Objectives, and Correntropy Loss for Multilabel Image Classification. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 1–13. [Google Scholar] [CrossRef]
- Hou, W.; Wei, Y.; Jin, Y.; Zhu, C. Deep features based on a DCNN model for classifying imbalanced weld flaw types. Measurement 2018, 131, 482–489. [Google Scholar] [CrossRef]
- Yu, D.; Wang, H.; Chen, P. Mixed pooling for convolutional neural networks. In Rough Sets and Knowledge Technology, Proceedings of the International Conference on Rough Sets and Knowledge Technology, Shanghai, China, 24–26 October 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 364–375. [Google Scholar]
- Wang, M.; Huang, X.; Hao, C. Model of an underwater target based on target echo highlight structure. J. Syst. Simul. 2003, 1, 21–25. [Google Scholar]
- Hao, Y.G.; Zhang, Z.H.; Li, H.F. Active sonar target echo signal modeling techniques. Command. Inf. Syst. Technol. 2020, 11, 70–75. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Qiu, B.; Zhu, Z.; Xue, H.; Zhou, C. Study on Active Tracking of Underwater Acoustic Target Based on Deep Convolution Neural Network. Appl. Sci. 2021, 11, 7530. https://doi.org/10.3390/app11167530
Wang M, Qiu B, Zhu Z, Xue H, Zhou C. Study on Active Tracking of Underwater Acoustic Target Based on Deep Convolution Neural Network. Applied Sciences. 2021; 11(16):7530. https://doi.org/10.3390/app11167530
Chicago/Turabian StyleWang, Maofa, Baochun Qiu, Zeifei Zhu, Huanhuan Xue, and Chuanping Zhou. 2021. "Study on Active Tracking of Underwater Acoustic Target Based on Deep Convolution Neural Network" Applied Sciences 11, no. 16: 7530. https://doi.org/10.3390/app11167530
APA StyleWang, M., Qiu, B., Zhu, Z., Xue, H., & Zhou, C. (2021). Study on Active Tracking of Underwater Acoustic Target Based on Deep Convolution Neural Network. Applied Sciences, 11(16), 7530. https://doi.org/10.3390/app11167530