Proteomics Analysis in Dairy Products: Cheese, a Review
Abstract
:1. Introduction
2. Feta
3. Graviera Kritis
4. Mozzarella di Bufala Campana
5. Parmigiano Reggiano
6. Grana Padano
7. Starters and Proteomics
7.1. Lactobacilli
7.2. Lactococci
8. Bioactive Peptides
9. Adulteration and Proteomics
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- La Mesa, C.; Risuleo, G. Biophysical and Molecular Biochemistry of the Dairy Production Chain: From Milk to Cheese. CJDVS 2020, 1, 1009. [Google Scholar]
- La Mesa, C.; Risuleo, G. Some Remarks on Colloid Stability: Selected Examples Taken from the Milk Chain for Food Prepares. Colloids Interfaces 2020, 4, 58. [Google Scholar] [CrossRef]
- Almena-Aliste, M.; Mietton, B. Cheese Classification, Characterization, and Categorization: A Global Perspective. Microbiol. Spectr. 2014, 2, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sforza, S.; Cavatorta, V.; Lambertini, F.; Galaverna, G.; Dossena, A.; Marchelli, R. Cheese peptidomics: A detailed study on the evolution of the oligopeptide fraction in Parmigiano-Reggiano cheese from curd to 24 months of aging. J. Dairy Sci. 2012, 95, 3514–3526. [Google Scholar] [CrossRef] [Green Version]
- Pangallo, D.; Kraková, L.; Puškárová, A.; Šoltys, K.; Bučková, M.; Koreňová, J.; Budiš, J.; Kuchta, T. Transcription activity of lactic acid bacterial proteolysis-related genes during cheese maturation. Food Microbiol. 2019, 82, 416–425. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Martini, S.; Solieri, L. Bioprospecting for bioactive peptide production by lactic acid bacteria isolated from fermented dairy food. Fermentation 2019, 5, 96. [Google Scholar] [CrossRef] [Green Version]
- Cocolin, L.; Ercolini, D. Molecular Techniques in the Microbial Ecology of Fermented Foods, 1st ed.; Springer: New York, NY, USA, 2007; pp. 1–30. [Google Scholar]
- Ganesan, B.; Weimer, B.C. Improving the Flavour of Cheese; Woodhead Publishing: Sawston, UK, 2007; pp. 70–101. [Google Scholar]
- Russo, R.; Severino, V.; Mendez, A.; Lliberia, J.; Parente, A.; Chambery, A. Detection of buffalo mozzarella adulteration by an ultra-high performance liquid chromatography tandem mass spectrometry methodology. J. Mass Spectrom. 2012, 47, 1407–1414. [Google Scholar] [CrossRef]
- Caira, S.; Pinto, G.; Nicolai, M.A.; Chianese, L.; Addeo, F. Simultaneously tracing the geographical origin and presence of bovine milk in Italian water buffalo Mozzarella cheese using MALDI-TOF data of casein signature peptides. Anal. Bioanal. Chem. 2016, 408, 5609–5621. [Google Scholar] [CrossRef]
- Gagnaire, V.; Jardin, J.; Jan, G.; Lortal, S. Invited review: Proteomics of milk and bacteria used in fermented dairy products: From qualitative to quantitative advances. J. Dairy Sci. 2009, 92, 811–825. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Wang, P.; He, J.; Pan, D.; Zeng, X.; Cao, J. Proteome analysis of Lactobacillus plantarum strain under cheese-like conditions. J. Proteom. 2016, 146, 165–171. [Google Scholar] [CrossRef]
- Conto, F. Advances in Dairy Products; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Zhang, Y.; Fonslow, R.B.; Shan, B.; Baek, M.-C.; Yates, R.J., III. Protein analysis by shotgun/bottom-up proteomics. Chem. Rev. 2013, 113, 2343–2394. [Google Scholar] [CrossRef] [Green Version]
- Franzosa, E.A.; Hsu, T.; Sirota-Madi, A.; Shafquat, A.; Abu-Ali, G.; Morgan, X.C.; Huttenhower, C. Sequencing and beyond: Integrating molecular ‘omics’ for microbial community profiling. Nat. Rev. Microbiol. 2015, 13, 360–372. [Google Scholar] [CrossRef] [Green Version]
- Mazzeo, M.F.; Sorrentino, A.; Gaita, M.; Cacace, G.; Di Stasio, M.; Facchiano, A.; Comi, G.; Malorni, A.; Siciliano, R.A. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the discrimination of food-borne microorganisms. Appl. Environ. Microbiol. 2006, 72, 1180–1189. [Google Scholar] [CrossRef] [Green Version]
- Dieckmann, R.; Helmuth, R.; Erhard, M.; Malorny, B. Rapid classification and identification of salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 2008, 74, 7767–7778. [Google Scholar] [CrossRef] [Green Version]
- Quintela-Baluja, M.; Böhme, K.; Fernández-No, I.C.; Morandi, S.; Alnakip, M.E.; Caamaño-Antelo, S.; Barros-Velázquez, J.; Calo-Mata, P. Characterization of different food-isolated Enterococcus strains by MALDI-TOF mass fingerprinting. Electrophoresis 2013, 34, 2240–2250. [Google Scholar] [CrossRef]
- Sassi, M.; Arena, S.; Scaloni, A. MALDI-TOF-MS Platform for Integrated Proteomic and Peptidomic Profiling of Milk Samples Allows Rapid Detection of Food Adulterations. J. Agric. Food Chem. 2015, 63, 6157–6171. [Google Scholar] [CrossRef]
- Nicolaou, N.; Xu, Y.; Goodacre, R. MALDI-MS and multivariate analysis for the detection and quantification of different milk species. Anal. Bioanal. Chem. 2011, 399, 3491–3502. [Google Scholar] [CrossRef]
- Arena, S.; Salzano, A.M.; Scaloni, A. Identification of protein markers for the occurrence of defrosted material in milk through a MALDI-TOF-MS profiling approach. J. Proteom. 2016, 147, 56–65. [Google Scholar] [CrossRef]
- Buckley, M.; Collins, M.; Thomas-Oates, J.; Wilson, J.C. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 3843–3854. [Google Scholar] [CrossRef]
- Marcos, B.; Gou, P.; Guàrdia, M.D.; Hortós, M.; Colleo, M.; Mach, N.; Te Pas, M.F.; Keuning, E.; Kruijt, L.; Tibau, J.; et al. Surface-enhanced laser desorption/ionisation time-offlight mass spectrometry: A tool to predict pork quality. Meat Sci. 2013, 95, 688–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzeo, M.F.; Di Giulio, B.; Guerriero, G.; Ciarcia, G.; Malorni, A.; Russo, G.L.; Siciliano, R.A. Fish authentication by MALDI-TOF mass spectrometry. J. Agric. Food Chem. 2008, 56, 11071–11076. [Google Scholar] [CrossRef] [PubMed]
- Litopoulou-Tzanetaki, E.; Tzanetakis, N. The Microfloras of Traditional Greek Cheeses. Microbiol. Spectr. 2014, 2, CM-0009-2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozoudi, D.; Kotzamanidis, C.; Hatzikamari, M.; Tzanetakis, N.; Menexes, G.; Litopoulou-Tzanetaki, E. A comparison for acid production, proteolysis, autolysis and inhibitory properties of lactic acid bacteria from fresh and mature Feta PDO Greek cheese, made at three different mountainous areas. Int. J. Food Microbiol. 2015, 200, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Moatsou, G.; Govaris, A. White brined cheeses: A diachronic exploitation of small ruminants milk in Greece. Small Rumin. Res. 2011, 101, 113–121. [Google Scholar] [CrossRef]
- Ney, K.H. Bitterness of peptides: Amino acid composition and chain length. ACS Symp. Ser. 1979, 115, 149–173. [Google Scholar]
- Michaelidou, A.; Alichanidis, E.; Urlaub, H.; Polychroniadou, A.; Zerfiridis, G.K. Isolation and identification of some major water-soluble peptides in Feta cheese. J. Dairy Sci. 1998, 81, 3109–3116. [Google Scholar] [CrossRef]
- Panteli, M.; Zoidou, E.; Moatsou, G. Comparative study of the paracasein fraction of two ewe’s milk cheese varieties. J. Dairy Res. 2015, 82, 491–498. [Google Scholar] [CrossRef]
- Lawrence, R.C.; Heap, H.A.; Gilles, J. A controlled approach to cheese technology. J. Dairy Sci. 1984, 67, 1632–1645. [Google Scholar] [CrossRef]
- Johnson, M.E.; Lucey, J.A. Calcium: A key factor in controlling cheese functionality. Aust. J. Dairy Technol. 2006, 61, 147–153. [Google Scholar]
- Kandarakis, I.; Moschopoulou, E.; Moatsou, G.; Anifantakis, E. Effect of starters on gross and microbiological composition and organoleptic characteristics of Graviera Kritis cheese. Le Lait 1998, 78, 557–568. [Google Scholar] [CrossRef] [Green Version]
- Moatsou, G.; Moschopoulou, E.; Anifantakis, E. Effect of different manufacturing parameters on the characteristics of Graviera Kritis cheese. Int. J. Dairy Technol. 2004, 57, 215–220. [Google Scholar] [CrossRef]
- Nega, A.; Moatsou, G. Proteolysis and related enzymatic activities in ten Greek cheese varieties. Dairy Sci. Technol. 2012, 92, 57–73. [Google Scholar] [CrossRef] [Green Version]
- Registration of Mozzarella di Bufala Campana DOP as Protected Designation of Origin (PDO) Product. Commision Regulation EC n. 1107/1996. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31996R1107 (accessed on 17 August 2021).
- Ordinance of the Italian Ministry of Agricultural, Food and Forestry Policies for the Guarantee of the Authenticity of Mozzarella di Bufala Campana DOP. G.U. n. 258, 6 November 2003, reg. 103/2008 GUCE L31, 5 February 2008 and Modifications. Available online: http://www.agricoltura.regione.campania.it/tipici/pdf/disciplinare-mozzarella-bufala.pdf (accessed on 17 August 2021).
- Ah, J.; Tagalpallewar, G.P. Functional properties of Mozzarella cheese for its end use application. J. Food Sci. Technol. 2017, 54, 3766–3778. [Google Scholar] [CrossRef]
- Solieri, L.; Bianchi, A.; Giudici, P. Inventory of non-starter lactic acid bacteria from ripened Parmigiano-Reggiano cheese as assessed by a culture dependent multiphasic approach. Syst. Appl. Microbiol. 2012, 35, 270–277. [Google Scholar] [CrossRef]
- Bottari, B.; Levante, A.; Neviani, E.; Gatti, M. How the fewest become the greatest. L. casei’s impact on long ripened cheeses. Front. Microbiol. 2018, 9, 2866. [Google Scholar] [CrossRef] [Green Version]
- Solieri, L.; Baldaccini, A.; Martini, S.; Bianchi, A.; Pizzamiglio, V.; Tagliazucchi, D. Peptide Profiling and Biological Activities of 12-Month Ripened Parmigiano Reggiano Cheese. Biology 2020, 9, 170. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Baldaccini, A.; Martini, S.; Bianchi, A.; Pizzamiglio, V.; Solieri, L. Cultivable non-starter Lactobacilli from ripened Parmigiano Reggiano cheeses with different salt content and their potential to release anti-hypertensive peptides. Int. J. Food Microbiol. 2020, 330, 108688. [Google Scholar] [CrossRef]
- Coloretti, F.; Chiavari, C.; Nocetti, M.; Reverberi, P.; Bortolazzo, E.; Musi, V.; Grazia, L. Whey starter addition during maturation of evening milk: Effects on some characteristics of cheese milk and Parmigiano-Reggiano cheese. Dairy Sci. Technol. 2016, 96, 185–197. [Google Scholar] [CrossRef] [Green Version]
- Coppola, R.; Nanni, M.; Iorizzo, M.; Sorrentino, A.; Sorrentino, E.; Chiavari, C.; Grazia, L. Microbiological characteristics of Parmigiano Reggiano cheese during the cheesemaking and the first months of the ripening. Le Lait 2000, 80, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Gatti, M.; Lazzi, C.; Rossetti, L.; Mucchetti, G.; Neviani, E. Biodiversity in Lactobacillus helveticus strains present in natural whey starter used for Parmigiano-Reggiano cheese. J. Appl. Microbiol. 2003, 95, 463–470. [Google Scholar] [CrossRef]
- Gatti, M.; Bottari, B.; Lazzi, C.; Neviani, E.; Mucchetti, G. Invited review: Microbial evolution in raw-milk, long-ripened cheeses produced using undefined natural whey starters. J. Dairy Sci. 2014, 97, 573–591. [Google Scholar] [CrossRef] [Green Version]
- Malacarne, M.; Summer, A.; Fossa, E.; Formaggioni, P.; Franceschi, P.; Pecorari, M.; Mariani, P. Composition, coagulation properties and Parmigiano Reggiano cheese yield of Italian Brown and Italian Friesian herd milks. J. Dairy Res. 2006, 73, 171–177. [Google Scholar] [CrossRef]
- Malacarne, M.; Summer, A.; Formaggioni, P.; Franceschi, P.; Sandri, S.; Pecorari, M.; Vecchia, P.; Mariani, P. Dairy maturation of milk used in the manufacture of Parmigiano-Reggiano cheese: Effects on physicochemical characteristics, rennet coagulation aptitude and rheological properties. J. Dairy Res. 2008, 75, 218–224. [Google Scholar] [CrossRef]
- Mucchetti, G.; Gatti, M.; Nocetti, M.; Reverberi, P.; Bianchi, A.; Galati, F.; Petroni, A. Segmentation of Parmigiano Reggiano dairies according to cheese-making technology and relationships with the aspect of the cheese curd surface at the moment of its extraction from the cheese vat. J. Dairy Sci. 2014, 97, 1202–1209. [Google Scholar] [CrossRef]
- Arsenio, L.; Bernasconi, S.; Cioni, F.; Nocetti, M. Parmigiano Reggiano cheese: General and metabolic/nutritional aspects from tradition to recent evidences. Progr. Nutr. 2015, 17, 183–197. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) No 584/2011 of 17 June 2011 Approving Non-Minor Amendments to the Specification for a Name Entered in the Register of Protected Designations of Origin and Protected Geographical Indications Grana Padano (PDO); European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Santarelli, M.; Bottari, B.; Lazzi, C.; Neviani, E.; Gatti, M. Survey on the community and dynamics of lactic acid bacteria in Grana Padano cheese. Syst. Appl. Microbiol. 2013, 36, 593–600. [Google Scholar] [CrossRef]
- Bove, C.G.; De Angelis, M.; Gatti, M.; Calasso, M.; Neviani, E.; Gobbetti, M. Metabolic and proteomic adaptation of Lactobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de Man, Rogosa, and Sharpe medium. Proteomics 2012, 12, 3206–3218. [Google Scholar] [CrossRef]
- Soggiu, A.; Piras, C.; Mortera, S.L.; Alloggio, I.; Urbani, A.; Bonizzi, L.; Roncada, P. Unravelling the effect of clostridia spores and lysozyme on microbiota dynamics in Grana Padano cheese: A metaproteomics approach. J. Proteom. 2016, 147, 21–27. [Google Scholar] [CrossRef]
- Fox, P. Fundamentals of Cheese Science; Springer: New York, NY, USA, 2000. [Google Scholar]
- Wilmes, P.; Bond, L.P. The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ. Microbiol. 2004, 6, 911–920. [Google Scholar] [CrossRef]
- De Angelis, M.; Calasso, M.; Cavallo, N.; Di Cagno, R.; Gobbetti, M. Functional proteomics within the genus Lactobacillus. Proteomics 2016, 16, 946–962. [Google Scholar] [CrossRef]
- De Angelis, M.; Gobbetti, M. Lactic Acid Bacteria Lactobacillus spp.: General Characteristics. In Lactic Acid Bacteria; Fuquay, J.W., Fox, P.F., Mc-Sweeney, P.L.H., Eds.; Academic Press: San Diego, CA, USA, 2012; pp. 78–90. [Google Scholar]
- Gobbetti, M.; Di Cagno, R.; De Angelis, M. Functional microorganisms for functional food quality. Crit. Rev. Food Sci. Nutr. 2010, 50, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Gobbetti, M.; De Angelis, M.; Corsetti, A.; Di Cagno, R. Biochemistry and physiology of sourdough lactic acid bacteria. Trends Food Sci. Technol. 2005, 16, 57–69. [Google Scholar] [CrossRef]
- Giraffa, G.; Chanishvili, N.; Widyastuti, Y. Importance of Lactobacilli in food and feed biotechnology. Res. Microbiol. 2010, 162, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, P.; Carvalho, A.L.; Vinga, S.; Santos, H.; Neves, A.R. From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol. Adv. 2013, 31, 764–788. [Google Scholar] [CrossRef]
- Lindner, J.D.D.; Bernini, V.; De Lorentiis, A.; Pecorari, A.; Neviani, E.; Gatti, M. Parmigiano Reggiano cheese: Evolution of cultivable and total lactic microflora and peptidase activities during manufacture and ripening. Dairy Sci. Technol. 2008, 88, 511–523. [Google Scholar] [CrossRef] [Green Version]
- Neviani, E.; De Dea Lindner, J.; Bernini, V.; Gatti, M. Recovery and differentiation of long ripened cheese microflora through a new cheese-based cultural medium. Food Microbiol. 2009, 26, 240–245. [Google Scholar] [CrossRef]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Rizzello, C.G. The relative contributions of starter cultures and non-starter bacteria to the flavour of cheese. In Improving the Flavour of Cheese; Weimer, B., Ed.; Woodhead Publishing: Sawston, UK, 2007; pp. 121–156. [Google Scholar]
- Gagnaire, V.; Piota, M.; Camiera, B.; Vissers, J.P.C.; Jan, G.; Léonil, J. Survey of bacterial proteins released in cheese: A proteomic approach. Int. J. Food Microbiol. 2004, 94, 185–201. [Google Scholar] [CrossRef]
- Zhou, M.; Theunissen, D.; Wels, M.; Siezen, R.J. LAB-secretome: A genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of lactic acid bacteria. BMC Genom. 2010, 11, 651. [Google Scholar] [CrossRef] [Green Version]
- Solis, N.; Cordwell, S.J. Current methodologies for proteomics of bacterial surface-exposed and cell envelope proteins. Proteomics 2011, 11, 3169–3189. [Google Scholar] [CrossRef]
- Ashida, N.; Yanagihara, S.; Shinoda, T.; Yamamoto, N. Characterization of adhesive molecule with affinity to Caco-2 cells in Lactobacillus acidophilus by proteome analysis. J. Biosci. Bioeng. 2011, 112, 333–337. [Google Scholar] [CrossRef]
- Johnson, B.; Kurt, S.; O’Flaherty, S.; Goh, Y.J.; Klaenhamme, T. Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM. Microbiology 2013, 159, 2269–2282. [Google Scholar] [CrossRef]
- Meng, J.; Zhu, X.; Gao, Q.; Zhang, Q.X.; Sun, Z.; Lu, R.R. Characterization of surface layer proteins and its role in probiotic properties of three Lactobacillus strains. Int. J. Biol. Macromol. 2014, 65, 110–114. [Google Scholar] [CrossRef]
- Espino, E.; Koskenniemi, K.; Mato-Rodriguez, L.; Nyman, T.A.; Reunanen, J.; Koponen, J.; Ohman, T.; Siljamaki, P.; Alatossava, T.; Varmanen, P.; et al. Uncovering surface-exposed antigens of Lactobacillus rhamnosus by cell shaving proteomics and two dimensional immunoblotting. J. Proteome Res. 2015, 14, 1010–1024. [Google Scholar] [CrossRef]
- Calasso, M.; Di Cagno, R.; De Angelis, M.; Campanella, D.; Minervini, F.; Gobbetti, M. Effects of the peptide pheromone plantaricin A and cocultivation with Lactobacillus sanfranciscensis DPPMA174 on the exoproteome and the adhesion capacity of Lactobacillus plantarum DC400. Appl. Environ. Microbiol. 2013, 79, 2657–2669. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Hu, W.; Liu, D.; Tian, W.; Yu, G.; Liu, X.; Wang, J.; Feng, E.; Zhang, X.; Chen, B.; et al. A reference proteomic database of Lactobacillus plantarum CMCC-P0002. PLoS ONE 2011, 6, e25596. [Google Scholar] [CrossRef] [Green Version]
- De Angelis, M.; Siragusa, S.; Campanella, D.; Di Cagno, R.; Gobbetti, M. Comparative proteomic analysis of biofilm and planktonic cells of Lactobacillus plantarum DB200. Proteomics 2015, 15, 2244–2257. [Google Scholar] [CrossRef]
- Sánchez, B.; Schmitter, J.-M.; Urdaci, M.C. Identification of novel proteins secreted by Lactobacillus rhamnosus GG grown in de Mann-Rogosa-Sharpe broth. Lett. Appl. Microbiol. 2009, 48, 618–622. [Google Scholar] [CrossRef]
- Sánchez, B.; Bressollier, P.; Chaignepain, S. Identification of surface-associated proteins in the probiotic bacterium Lactobacillus rhamnosus GG. Int. Dairy J. 2009, 19, 85–88. [Google Scholar] [CrossRef]
- Wásko, A.; Polak-Berecka, M.; Paduch, R.; Jόźwiak, K. The effect of moonlighting proteins on the adhesion and aggregation ability of Lactobacillus helveticus. Anaerobe 2014, 30, 161–168. [Google Scholar] [CrossRef]
- Kelly, P.; Maguire, P.B.; Bennett, M.; Fitzgerald, D.J.; Edwards, R.J.; Thiede, B.; Treumann, A.; Collins, J.K.; O’Sullivan, G.C.; Shanahan, F.; et al. Correlation of probiotic Lactobacillus salivarius growth phase with its cell wall-associated proteome. FEMS Microbiol. Lett. 2005, 252, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Pessione, E. Lactic acid bacteria contribution to gut microbiota complexity: Lights and shadows. Front. Cell. Infect. Microbiol. 2002, 2, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deepika, G.; Green, R.J.; Frazier, R.A.; Charalampopoulos, D. Effect of growth time on the surface and adhesion properties of Lactobacillus rhamnosus GG. J. Appl. Microbiol. 2009, 107, 1230–1240. [Google Scholar] [CrossRef] [PubMed]
- Koskenniemi, K.; Laakso, K.; Koponen, J.; Kankainen, M.; Greco, D.; Auvinen, P.; Savijoki, K.; Nyman, T.A.; Surakka, A.; Salusjärvi, T.; et al. Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG. Mol. Cell. Proteom. 2011, 10, S1–S18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamon, E.; Horvatovich, P.; Izquierdo, E.; Bringel, F.; Marchioni, E.; Aoudé-Werner, D.; Ennahar, S. Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance. BMC Microbiol. 2011, 11, 63. [Google Scholar] [CrossRef] [Green Version]
- Hamon, E.; Horvatovich, P.; Bisch, M.; Bringel, F.; Marchioni, E.; Aoudé-Werner, D.; Ennahar, S. Investigation of biomarkers of bile tolerance in Lactobacillus casei using comparative proteomics. J. Proteome Res. 2012, 11, 109–118. [Google Scholar] [CrossRef]
- Koponen, J.; Laakso, K.; Koskenniemi, K.; Kankainen, M.; Savijoki, K.; Nyman, T.A.; de Vos, W.M.; Tynkkynen, S.; Kalkkinen, N.; Varmanen, P. Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG. J. Proteom. 2012, 75, 1357–1374. [Google Scholar] [CrossRef]
- Desvaux, M.; Hebraud, M.; Talon, R.; Henderson, I.R. Secretion and subcellular localizations of bacterial proteins: A semantic awareness issue. Trends Microbiol. 2009, 13, 139–145. [Google Scholar] [CrossRef]
- Ferranti, P.; Malorni, A.; Nitti, G.; Laezza, P.; Pizzano, R.; Chianese, L.; Addeo, F. Primary structure of ovine as1-caseins: Localization of phosphorylation sites and characterization of genetic variants A, C and D. J. Dairy Res. 1995, 62, 281–296. [Google Scholar] [CrossRef]
- McSweeney, P.L.H.; Olson, N.F.; Fox, P.F.; Healy, A.; Højrup, P. Proteolytic specificity of chymosin on bovine as1-casein. J. Dairy Res. 1993, 60, 401–412. [Google Scholar] [CrossRef]
- Reid, J.R.; Moore, C.H.; Midwinter, G.G.; Pritchard, G.G. Action of a cell wall proteinase from Lactococcus lactis subsp. cremoris SK11 on bovine as1-casein. Appl. Microbiol. Biotechnol. 1991, 35, 222–227. [Google Scholar] [CrossRef]
- Kok, J. Genetics of proteolytic enzymes of Lactococci and their role in cheese flavor development. J. Dairy Sci. 1993, 76, 2056–2064. [Google Scholar] [CrossRef] [Green Version]
- Tan, P.S.T.; Poolman, B.; Konings, W.N. Proteolytic enzymes of Lactococcus lactis. J. Dairy Res. 1993, 60, 269–286. [Google Scholar] [CrossRef]
- Reid, J.R.; Coolbear, T.; Pillidge, C.J.; Pritchard, G.G. Specificity of hydrolysis of bovine k-casein by cell envelope-associated proteinases from Lactococcus lactis strains. Appl. Environ. Microbiol. 1994, 60, 801–806. [Google Scholar] [CrossRef] [Green Version]
- Jardin, J.; Mollé, D.; Piot, M.; Lortal, S.; Gagnaire, V. Quantitative proteomic analysis of bacterial enzymes released in cheese during ripening. Int. J. Food Microbiol. 2012, 155, 19–28. [Google Scholar] [CrossRef]
- Klaassens, E.S.; de Vos, W.M.; Vaughan, E.E. Metaproteomics approach to study the functionality of the microbiota in the human infant gastrointestinal tract. Appl. Environ. Microbiol. 2007, 73, 1388–1392. [Google Scholar] [CrossRef] [Green Version]
- Mao, L.; Franke, J. Symbiosis, dysbiosis, and rebiosis—The value of metaproteomics in human microbiome monitoring. Proteomics 2014, 15, 1142–1151. [Google Scholar] [CrossRef]
- Jones, M.L.; Martoni, C.J.; Ganopolsky, J.G.; Labbé, A.; Prakash, S. The human microbiome and bile acid metabolism: Dysbiosis, dysmetabolism, disease and intervention. Expert Opin. Biol. Ther. 2014, 14, 467–482. [Google Scholar] [CrossRef]
- Capriotti, A.L.; Caruso, G.; Cavaliere, C.; Samperi, R.; Ventura, S.; Chiozzi, R.Z.; Lagana, A. Identification of potential bioactive peptides generated by simulated gastrointestinal digestion of soybean seeds and soy milk proteins. J. Food Compos. Anal. 2015, 44, 205–213. [Google Scholar] [CrossRef]
- Coda, R.; Rizzello, C.G.; Pinto, D.; Gobbetti, M. Selected lactic acid bacteria synthesize antioxidant peptides during sourdough fermentation of cereal flours. Appl. Environ. Microbiol. 2012, 78, 1087–1096. [Google Scholar] [CrossRef] [Green Version]
- Hayes, M.; Stanton, C.; Fitzgerald, G.F.; Ross, R.P. Putting microbes to work: Dairy fermentation, cell factories and bioactive peptides. Part II: Bioactive peptide functions. Biotechnol. J. 2007, 2, 435–449. [Google Scholar] [CrossRef]
- Basilicata, M.G.; Pepe, G.; Sommella, E.; Ostacolo, C.; Manfra, M.; Sosto, G.; Pagano, G.; Novellino, E.; Campiglia, P. Peptidome profiles and bioactivity elucidation of buffalo-milk dairy products after gastrointestinal digestion. Food Res. Int. 2018, 105, 1003–1010. [Google Scholar] [CrossRef]
- Capriotti, A.L.; Cavaliere, C.; Piovesana, S.; Samperi, R.; Laganà, A. Recent trends in the analysis of bioactive peptides in milk and dairy products. Anal. Bioanal. Chem. 2016, 408, 2677–2685. [Google Scholar] [CrossRef]
- Tomazou, M.; Oulas, A.; Anagnostopoulos, A.K.; Tsangaris, G.T.; Spyrou, G.M. In Silico Identification of Antimicrobial Peptides in the Proteomes of Goat and Sheep Milk and Feta Cheese. Proteomes 2019, 7, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrini, A. Antimicrobial Peptides from Food Proteins. Curr. Pharm. Des. 2005, 9, 1225–1238. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.B.; Wong, J.H.; Almahdy, O.; El-Fakharany, E.M.; El-Dabaa, E.; Redwan, E.R.M. Antimicrobial activities of casein and other milk proteins. In Casein: Production, Uses and Health Effects; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2012; pp. 233–241. ISBN 9781621001294. [Google Scholar]
- Haque, E.; Chand, R.; Kapila, S. Biofunctional properties of bioactive peptides of milk origin. Food Rev. Int. 2009, 25, 28–43. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Losito, I.; Gobbetti, M.; Carbonara, T.; De Bari, M.D.; Zambonin, P.G. Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. J. Dairy Sci. 2005, 88, 2348–2360. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Li, Y.; Li, J.; Xu, X.; Lai, R.; Zou, Q. An antimicrobial peptide with antimicrobial activity against Helicobacter pylori. Peptides 2007, 28, 1527–1531. [Google Scholar] [CrossRef] [PubMed]
- Dallas, D.C.; Guerrero, A.; Khaldi, N.; Castillo, P.A.; Martin, W.F.; Smilowitz, J.T.; Bevins, C.L.; Barile, D.; German, J.B.; Lebrilla, C.B. Extensive in vivo human milk peptidomics reveals specific proteolysis yielding protective antimicrobial peptides. J. Proteome Res. 2013, 12, 2295–2304. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zeng, X.; Yang, Q.; Qiao, S. Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int. J. Mol. Sci. 2016, 17, 603. [Google Scholar] [CrossRef]
- Torrent, M.; Di Tommaso, P.; Pulido, D.; Nogués, M.V.; Notredame, C.; Boix, E.; Andreu, D. AMPA: An automated web server for prediction of protein antimicrobial regions. Bioinformatics 2012, 28, 130–131. [Google Scholar] [CrossRef] [Green Version]
- Torrent, M.; Nogués, V.M.; Boix, E. A theoretical approach to spot active regions in antimicrobial proteins. BMC Bioinform. 2009, 10, 373. [Google Scholar] [CrossRef] [Green Version]
- Pessione, E.; Cirrincione, S. Bioactive molecules released in food by lactic acid bacteria: Encrypted peptides and biogenic amines. Front. Microbiol. 2016, 7, 876. [Google Scholar] [CrossRef] [Green Version]
- Clare, D.A.; Swaisgood, H.E. Bioactive milk peptides: A prospectus. J. Dairy Sci. 2000, 83, 1187–1195. [Google Scholar] [CrossRef]
- Maeno, M.; Yamamoto, N.; Takano, T. Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus heleveticus CP790. J. Dairy Sci. 1996, 79, 1316–1321. [Google Scholar] [CrossRef]
- Nakamura, Y.; Yamamoto, N.; Sakai, K.; Takno, T. Antihypertensive effect of sour milk and peptides isolated from it are inhibitors to angiotensin-converting enzyme. J. Dairy Sci. 1995, 78, 1253–1257. [Google Scholar] [CrossRef]
- Yamamoto, N. Antihypertensive peptides derived from food proteins. Biopolymers 1997, 43, 129–134. [Google Scholar] [CrossRef]
- Yamamoto, N.; Akino, A.; Takano, T. Antihypertensive effect of peptides from casein by an extracellular protease from Lactobacillus helveticus CP790. J. Dairy Sci. 1994, 77, 917–922. [Google Scholar] [CrossRef]
- Fox, P.F. Significance of indigenous enzymes in milk and dairy products. In Handbook of Food Enzymology; Whitaker, J.R., Voragen, A.G.J., Wong, D.W.S., Eds.; Marcel Dekker: New York, NY, USA, 2003; pp. 255–277. [Google Scholar]
- Summer, A.; Franceschi, P.; Formaggioni, P.; Malacarne, M. Characteristics of raw milk produced by free-stall or tie-stall cattle herds in the Parmigiano-Reggiano cheese production area. Dairy Sci. Technol. 2014, 94, 581–590. [Google Scholar] [CrossRef] [Green Version]
- Summer, A.; Franceschi, P.; Formaggioni, P.; Malacarne, M. Influence of milk somatic cell content on Parmigiano-Reggiano cheese yield. J. Dairy Res. 2015, 82, 222–227. [Google Scholar] [CrossRef]
- Bütikofer, U.; Meyer, J.; Sieber, R.; Wechsler, D. Quantification of the angiotensin-converting enzyme inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in hard, semi-hard and soft cheeses. Int. Dairy J. 2007, 17, 968–975. [Google Scholar] [CrossRef]
- Uenishi, H.; Kabuki, T.; Seto, Y.; Serizawa, A.; Nakajima, H. Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats. Int. Dairy J. 2012, 22, 24–30. [Google Scholar] [CrossRef]
- Gupta, A.; Mann, B.; Kumar, R.; Sangwan, R.B. Antioxidant capacity of Cheddar cheeses at different stages of ripening. Int. J. Dairy Technol. 2009, 62, 339–347. [Google Scholar] [CrossRef]
- Bottesini, C.; Paolella, S.; Lambertini, F.; Galaverna, G.; Tedeschi, T.; Dossena, A.; Marchelli, R.; Sforza, S. Antioxidant capacity of water soluble extracts from Parmigiano-Reggiano cheese. Int. J. Food Sci. Nutr. 2013, 64, 953–958. [Google Scholar] [CrossRef]
- Martini, S.; Conte, A.; Tagliazucchi, D. Effect of ripening and in vitro digestion on the evolution and fate of bioactive peptides in Parmigiano Reggiano cheese. Int. Dairy J. 2020, 105, 104668. [Google Scholar] [CrossRef]
- Kunda, P.B.; Benavente, F.; Catalá-Clariana, S.; Giménez, E.; Barbosa, J.; Sanz-Nebot, V. Identification of bioactive peptides in a functional yogurt by micro liquid chromatography time-of-flight mass spectrometry assisted by retention time prediction. J. Chromatogr. A 2012, 1229, 121–128. [Google Scholar] [CrossRef]
- Basiricò, L.; Catalani, E.; Morera, P.; Cattaneo, S.; Stuknyte, M.; Bernabucci, U.; De Noni, I.; Nardone, A. Release of angiotensin converting enzyme-inhibitor peptides during in vitro gastrointestinal digestion of Parmigiano-Reggiano PDO cheese and their absorption through an in vitro model of intestinal epithelium. J. Dairy Sci. 2015, 98, 7595–7601. [Google Scholar] [CrossRef] [Green Version]
- Stuknyte, M.; Cattaneo, S.; Masotti, F.; De Noni, I. Occurrence and fate of ACE-inhibitor peptides in cheeses and in their digestates following in vitro static gastrointestinal digestion. Food Chem. 2015, 168, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Miguel, M.; Recio, I.; Ramos, M.; Delgado, M.A.; Aleixandre, M.A. Antihypertensive effect of peptides obtained from Enterococcus faecalis-fermented milk in rats. J. Dairy Sci. 2006, 89, 33523359. [Google Scholar] [CrossRef] [Green Version]
- Quiros, A.; Ramos, M.; Muguerza, B.; Delgado, M.A.; Miguel, M.; Aleixandre, A.; Recio, I. Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis. Int. Dairy J. 2007, 17, 33–41. [Google Scholar] [CrossRef]
- Robert, M.C.; Razaname, A.; Mutter, M.; Juillerat, M.A. Identification of angiotensin-I-converting enzyme inhibitory peptides derived from sodium caseinate hydrolysates produced by Lactobacillus helveticus NCC 2765. J. Agric. Food Chem. 2004, 52, 6923–6931. [Google Scholar] [CrossRef] [PubMed]
- Donkor, O.N.; Henriksson, A.; Singh, T.K.; Vasiljevic, T.; Shah, N.P. ACE-inhibitory activity of probiotic yoghurt. Int. Dairy J. 2007, 17, 1321–1331. [Google Scholar] [CrossRef]
- Eisele, T.; Stressler, T.; Kranz, B.; Fischer, L. Bioactive peptides generated in an enzyme membrane reactor using Bacillus lentus alkaline peptidase. Eur. Food Res. Technol. 2013, 236, 483–490. [Google Scholar] [CrossRef] [Green Version]
- Miguel, M.; Gómez-Ruiz, J.A.; Recio, I.; Aleixandre, A. Changes in arterial blood pressure after single oral administration of milk-casein-derived peptides in spontaneously hypertensive rats. Mol. Nutr. Food Res. 2010, 54, 1422–1427. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Fogacci, F.; Colletti, A. Potential role of bioactive peptides in prevention and treatment of chronic diseases: A narrative review. Br. J. Pharmacol. 2017, 174, 1378–1394. [Google Scholar] [CrossRef]
- Losito, I.; Carbonara, T.; Domenica De Bari, M.; Gobbetti, M.; Palmisano, F.; Rizzello, C.G.; Zambonin, P.G. Identification of peptides in antimicrobial fractions of cheese extracts by electrospray ionization ion trap mass spectrometry coupled to a two-dimensional liquid chromatographic separation. Rapid Commun. Mass Spectrom. 2006, 20, 447–455. [Google Scholar] [CrossRef]
- Hernández-Ledesma, B.; Amigo, L.; Ramos, M.; Recio, I. Application of high-performance liquid chromatography-tandem mass spectrometry to the identification of biologically active peptides produced by milk fermentation and simulated gastrointestinal digestion. J. Chromatogr. A 2004, 1049, 107–114. [Google Scholar] [CrossRef]
- Van Elswijk, D.A.; Diefenbach, O.; van der Berg, S.; Irth, H.; Tjaden, U.R.; van der Greef, J. Rapid detection and identification of angiotensin-converting enzyme inhibitors by on-line liquid chromatography-biochemical detection, coupled to electrospray mass spectrometry. J. Chromatogr. A 2003, 1020, 45–58. [Google Scholar] [CrossRef]
- Wang, H.; Dass, C. Characterization of bioactive peptides in bovine adrenal medulla by a combination of fast HPLC and ESI-MS. Peptides 2002, 23, 2143–2150. [Google Scholar] [CrossRef]
- Wegener, K.L.; Brinkworth, C.S.; Bowie, J.H.; Wallace, J.C.; Tyler, M.J. Bioactive dahlein peptides from the skin secretions of the Australian aquatic frog Litoria dahlii: Sequence determination by electrospray mass spectrometry. Rapid Commun. Mass Spectrom. 2001, 15, 1726–1734. [Google Scholar] [CrossRef]
- Olsen, J.V.; Mann, M. Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. Proc. Natl. Acad. Sci. USA 2004, 101, 13417–13422. [Google Scholar] [CrossRef] [Green Version]
- Meisel, H.; Bockelmann, W. Bioactive peptides encrypted in milk proteins: Proteolytic activation and thropho-functional properties. Antonie Van Leeuwenhoek 1999, 76, 207–215. [Google Scholar] [CrossRef]
- Jolles, P.; Levy-Toledano, S.; Fiat, A.M.; Soria, C.; Gillesen, D.; Thomaidis, A.; Dunn, F.W.; Caen, J. Analogy between fibrinogen and casein: Effect of an undecapeptide isolated from κ-casein on platelet function. Eur. J. Biochem. 1986, 158, 379–384. [Google Scholar] [CrossRef]
- Jolles, P.; Henschen, A. Comparison between the clotting of blood and milk. Trends Biochem. Sci. 1982, 7, 325–328. [Google Scholar] [CrossRef]
- Fiat, A.M.; Jolles, P. Caseins of various origins and biologically active casein peptides and oligosaccharides: Structural and physiological aspects. Mol. Cell. Biochem. 1989, 87, 5–30. [Google Scholar] [CrossRef]
- Fiat, A.M.; Migliore-Samour, D.; Jolles, P.; Drouet, L.; Sollier, C.B.; Caen, J. Biologically active peptides from milk with emphasis on two examples concerning antithrombotic and immunomodulating activities. J. Dairy Sci. 1993, 76, 301–310. [Google Scholar] [CrossRef]
- Fiat, A.M.; Levy-Toledano, S.; Caen, J.P.; Jolles, P. Biologically active peptides of casein and lactotransferrin implicated in platelet function. J. Dairy Res. 1989, 56, 351–355. [Google Scholar] [CrossRef]
- Mazoyer, E.; Levy-Toledano, S.; Rendu, F.; Hermant, L.; Lu, H.; Fiat, A.M.; Jolles, P.; Caen, J. KRDS, a new peptide derived from lactotransferrin, inhibits platelet aggregation and release reactions. Eur. J. Biochem. 1990, 194, 43–49. [Google Scholar] [CrossRef]
- Chabance, B.; Qian, Z.Y.; Migliore-Samour, D.; Jolles, P.; Fiat, A.M. Binding of the bovine caseinoglycopeptide to the platelet membrane glycoprotein GPIb alpha. Biochem. Mol. Biol. Int. 1997, 42, 77–84. [Google Scholar] [PubMed]
- Chabance, B.; Jolles, P.; Izquierdo, C.; Mazoyer, E.; Francoual, C.; Drouet, L.; Fiat, A.M. Characterization of an antithrombotic peptide from kappa-casein in newborn plasma after milk ingestion. Br. J. Nutr. 1995, 73, 583–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, Z.Y.; Jolles, P.; Migliore-Samour, D.; Schoentgen, F.; Fiat, A.M. Sheep kappa-casein peptides inhibit platelet aggregation. Biochim. Biophys. Acta BBA Gen. Subj. 1995, 1244, 411–417. [Google Scholar] [CrossRef]
- Qian, Z.Y.; Jolles, P.; Migliore-Samour, D.; Fiat, A.M. Isolation and characterization of sheep lactoferrin, an inhibitor of platelet aggregation and comparison with human lactoferrin. Biochim. Biophys. Acta BBA Gen. Subj. 1995, 1243, 25–32. [Google Scholar] [CrossRef]
- Kitts, D. Bioactive substances in food: Identification and potential uses. Can. J. Physiol. Pharmacol. 1994, 72, 423–434. [Google Scholar] [CrossRef]
- Reynolds, E.C.; Riley, P.F.; Adamson, N.J. A selective purification precipitation procedure for multiple phosphoserylcontaining peptides and methods for their identification. Anal. Biochem. 1994, 217, 277–284. [Google Scholar] [CrossRef]
- Kitts, D.D.; Yuan, Y.V.; Nagasawa, T.; Moriyama, Y. Effect of casein, casein phosphopeptides, and calcium intake on ileal 45Ca disappearance and temporal systolic blood pressure in spontaneously hypertensive rats. Br. J. Nutr. 1992, 68, 765–781. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.V.; Kitts, D.D. Conformation of calcium absorption and femoral utilization in spontaneously hypertensive rats fed casein phosphopeptide supplemented diets. Nutr. Res. 1991, 11, 1257–1272. [Google Scholar] [CrossRef]
- Yuan, Y.V.; Kitts, D.D. Calcium absorption and bone utilization in spontaneously hypertensive rats fed on native and heat denatured casein and soya bean protein. Br. J. Nutr. 1994, 71, 583–603. [Google Scholar] [CrossRef] [Green Version]
- Meisel, H. Biochemical properties of regulatory peptides derived from milk proteins. Biopolymers 1997, 43, 119–128. [Google Scholar] [CrossRef]
- Reynolds, E. The prevention of sub-surface demineralization of bovine enamel and change in plaque composition by casein in an intra-oral model. J. Dent. Res. 1987, 66, 1120–1127. [Google Scholar] [CrossRef]
- De Simone, C.; Picariello, G.; Mamone, G.; Stiuso, P.; Dicitore, A.; Vanacore, D.; Chianese, L.; Addeo, F.; Ferranti, P. Characterisation and cytomodulatory properties of peptides from Mozzarella di Bufala Campana cheese whey. J. Pept. Sci. Off. Publ. Eur. Pept. Soc. 2009, 15, 251–258. [Google Scholar] [CrossRef]
- De Simone, C.; Ferranti, P.; Picariello, G.; Scognamiglio, I.; Dicitore, A.; Addeo, F.; Chianese, L.; Stiuso, P. Peptides from water buffalo cheese whey induced senescence cell death via ceramide secretion in human colon adenocarcinoma cell line. Mol. Nutr. Food Res. 2011, 55, 229–238. [Google Scholar] [CrossRef]
- Mohanty, D.P.; Mohapatra, S.; Misra, S.; Sahu, P.S. Milk derived bioactive peptides and their impact on human health—A review. Saudi J. Biol. Sci. 2016, 23, 577–583. [Google Scholar] [CrossRef] [Green Version]
- Chanu, K.V.; Thakuria, D.; Kumar, S. Antimicrobial peptides of buffalo and their role in host defenses. Vet. World 2018, 11, 192–200. [Google Scholar] [CrossRef]
- Basilicata, M.G.; Pepe, G.; Adesso, S.; Ostacolo, C.; Sala, M.; Sommella, E.; Scala, M.C.; Messore, A.; Autore, G.; Marzocco, S.; et al. Antioxidant Properties of Buffalo-Milk Dairy Products: A β-Lg Peptide Released after Gastrointestinal Digestion of Buffalo Ricotta Cheese Reduces Oxidative Stress in Intestinal Epithelial Cells. Int. J. Mol. Sci. 2018, 19, 1955. [Google Scholar] [CrossRef] [Green Version]
- Tenore, G.C.; Ritieni, A.; Campiglia, P.; Stiuso, P.; Di Maro, S.; Sommella, E.; Pepe, G.; D’Urso, E.; Novellino, E. Antioxidant peptides from “Mozzarella di Bufala Campana DOP” after simulated gastrointestinal digestion: In vitro intestinal protection, bioavailability, and anti-haemolytic capacity. J. Funct. Foods 2015, 15, 365–375. [Google Scholar] [CrossRef]
- Yang, B.; Cao, L.; Liu, B.; McCaig, C.D.; Pu, J. The transition from proliferation to differentiation in colorectal cancer is regulated by the calcium activated chloride channel A1. PLoS ONE 2013, 8, e60861. [Google Scholar] [CrossRef] [Green Version]
- Tanoue, T.; Nishitani, Y.; Kanazawa, K.; Hashimoto, T.; Mizuno, M. In vitro model to estimate gut inflammation using co-cultured Caco-2 and RAW264.7 cells. Biochem. Biophys. Res. Commun. 2008, 374, 565–569. [Google Scholar] [CrossRef] [Green Version]
- Michielan, A.; D’Incà, R. Intestinal Permeability in Inflammatory Bowel Disease: Pathogenesis, Clinical Evaluation, and Therapy of Leaky Gut. Mediat. Inflamm. 2015, 2015, 628157. [Google Scholar] [CrossRef] [Green Version]
- Tatiya-Aphiradee, N.; Chatuphonprasert, W.; Jarukamjorn, K. Immune response and inflammatory pathway of ulcerative colitis. J. Basic Clin. Physiol. Pharmacol. 2018, 30, 1–10. [Google Scholar] [CrossRef]
- Borrelli, F.; Fasolino, I.; Romano, B.; Capasso, R.; Maiello, F.; Coppola, D.; Orlando, P.; Battista, G.; Pagano, E.; Di Marzo, V.; et al. Beneficial effect of the non-psychotropic plant cannabinoid cannabigerol on experimental inflammatory bowel disease. Biochem. Pharmacol. 2013, 85, 1306–1316. [Google Scholar] [CrossRef]
- Borrelli, F.; Romano, B.; Petrosino, S.; Pagano, E.; Capasso, R.; Coppola, D.; Battista, G.; Orlando, P.; Di Marzo, V.; Izzo, A.A. Palmitoylethanolamide, a naturally occurring lipid, is an orally effective intestinal anti-inflammatory agent. Br. J. Pharmacol. 2015, 172, 142–158. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Leong, R.W.; Wasinger, V.C.; Ip, M.; Yang, M.; Phan, T.G. Impaired Intestinal Permeability Contributes to Ongoing Bowel Symptoms in Patients with Inflammatory Bowel Disease and Mucosal Healing. Gastroenterology 2017, 153, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, S.C.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J.D.; Serino, M.; Tilg, H.; Watson, A.; Wells, J.M. Intestinal permeability—A new target for disease prevention and therapy. BMC Gastroenterol. 2014, 14, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edelblum, K.L.; Turner, J.R. The tight junction in inflammatory disease: Communication breakdown. Curr. Opin. Pharmacol. 2009, 9, 715–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brierley, S.M.; Linden, D.R. Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 611–627. [Google Scholar] [CrossRef]
- Corsetti, M.; Tack, J. Naloxegol, a new drug for the treatment of opioid-induced constipation. Expert Opin. Pharmacother. 2015, 16, 399–406. [Google Scholar] [CrossRef]
- Rao, S.S.; Rattanakovit, K.; Patcharatrakul, T. Diagnosis and management of chronic constipation in adults. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 295–305. [Google Scholar] [CrossRef]
- López-Expósito, I.; Minervini, F.; Amigo, L.; Recio, I. Identification of antibacterial peptides from bovine kappa-casein. J. Food Prot. 2006, 69, 2992–2997. [Google Scholar] [CrossRef]
- Ali, E.; Nielsen, S.D.; Abd-El Aal, S.; El-Leboudy, A.; Saleh, E.; LaPointe, G. Use of Mass Spectrometry to Profile Peptides in Whey Protein Isolate Medium Fermented by Lactobacillus helveticus LH-2 and Lactobacillus acidophilus La-5. Front. Nutr. 2019, 6, 152. [Google Scholar] [CrossRef] [Green Version]
- Medellin-Peña, M.J.; Wang, H.; Johnson, R.; Anand, S.; Griffiths, M.W. Probiotics affect virulence-related gene expression in Escherichia coli O157:H7. Appl. Environ. Microbiol. 2007, 73, 4259–4267. [Google Scholar] [CrossRef] [Green Version]
- Brovko, L.Y.; Vandenende, C.; Chu, B.; Ng, K.-Y.; Brooks, A.; Griffiths, M.W. In vivo assessment of effect of fermented milk diet on course of infection in mice with bioluminescent Salmonella. J. Food Prot. 2003, 66, 2160–2163. [Google Scholar] [CrossRef]
- Vinderola, G.; Matar, C.; Perdigón, G. Milk fermented by Lactobacillus helveticus R389 and its non-bacterial fraction confer enhanced protection against Salmonella enteritidis serovar Typhimurium infection in mice. Immunobiology 2007, 212, 107–118. [Google Scholar] [CrossRef]
- Dallas, D.C.; Weinborn, V.; de Moura Bell, J.M.L.N.; Wang, M.; Parker, E.A.; Guerrero, A.; Hettinga, K.A.; Lebrilla, C.B.; German, J.B.; Barile, D. Comprehensive peptidomic and glycomic evaluation reveals that sweet whey permeate from colostrum is a source of milk protein-derived peptides and oligosaccharides. Food Res. Int. 2014, 63, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, N.; Ono, H.; Maeno, M.; Ueda, Y.; Takano, T.; Momose, H. Classification of Lactobacillus helveticus strains by immunological differences in extracellular proteinases. Biosci. Biotechnol. Biochem. 1998, 62, 1228–1230. [Google Scholar] [CrossRef]
- Baum, F.; Fedorova, M.; Ebner, J.; Hoffmann, R.; Pischetsrieder, M. Analysis of the endogenous peptide profile of milk: Identification of 248 mainly caseinderived peptides. J. Proteome Res. 2013, 12, 5447–5462. [Google Scholar] [CrossRef]
- Considine, T.; Healy, Á.; Kelly, A.L.; McSweeney, P.L.H. Hydrolysis of bovine caseins by cathepsin B, a cysteine proteinase indigenous to milk. Int. Dairy J. 2004, 14, 117–124. [Google Scholar] [CrossRef]
- Dallas, D.C.; Citerne, F.; Tian, T.; Silva, V.L.M.; Kalanetra, K.M.; Frese, S.A.; Robinson, R.C.; Mills, D.A.; Barile, D. Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins. Food Chem. 2016, 197, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Anagnostopoulos, A.K.; Tsangaris, G.T. Feta cheese proteins: Manifesting the identity of Greece’s National Treasure. Data Brief 2018, 19, 2037–2040. [Google Scholar] [CrossRef]
- Alexandraki, V.; Moatsou, G. Para-κ-casein during the ripening and storage of low-pH, high-moisture Feta cheese. J. Dairy Res. 2018, 85, 226–231. [Google Scholar] [CrossRef]
- Coolbear, K.P.; Elgar, D.F.; Coolbear, T.; Ayers, J.S. Comparative study of methods for the isolation and purification of bovine κ-casein and its hydrolysis by chymosin. J. Dairy Res. 1996, 63, 61–71. [Google Scholar] [CrossRef]
- Reid, J.R.; Coolbear, T.; Ayers, J.S.; Coolbear, K.P. The action of chymosin on κ-casein and its macropeptide: Effect of pH and analysis of the products of secondary hydrolysis. Int. Dairy J. 1997, 7, 559–569. [Google Scholar] [CrossRef]
- Caira, S.; Pinto, G.; Balteanu, V.A.; Chianese, L.; Addeo, F. A signature protein-based method to distinguish Mediterranean water buffalo and foreign breed milk. Food Chem. 2013, 141, 597–603. [Google Scholar] [CrossRef]
- Chianese, L.; Quarto, M.; Pizzolongo, F.; Calabrese, M.G.; Caira, S.; Mauriello, R.; de Pascale, S.; Addeo, F. Occurrence of genetic polymorphism at the alpha(s1)-casein locus in Mediterranean water buffalo milk. Int. Dairy J. 2009, 19, 181–189. [Google Scholar] [CrossRef]
- Di Luccia, A.; Picariello, G.; Trani, A.; Alviti, G.; Loizzo, P.; Faccia, M.; Addeo, F. Occurrence of beta-casein fragments in cold-stored and curdled river buffalo (Bubalus bubalis L.) milk. J. Dairy Sci. 2009, 92, 1319–1329. [Google Scholar] [CrossRef] [Green Version]
- Petrella, G.; Pati, S.; Gagliardi, R.; Rizzuti, A.; Mastrorilli, P.; la Gatta, B.; Di Luccia, A. Study of proteolysis in river buffalo mozzarella cheese using a proteomics approach. J. Dairy Sci. 2015, 98, 7560–7572. [Google Scholar] [CrossRef] [Green Version]
- Somma, A.; Ferranti, P.; Addeo, F.; Mauriello, R.; Chianese, L. Peptidomic approach based on combined capillary isoelectric focusing and mass spectrometry for the characterization of the plasmin primary products from bovine and water buffalo beta-casein. J. Chromatogr. A 2008, 1192, 294–300. [Google Scholar] [CrossRef]
- Eigel, W.N.; Butler, J.E.; Ernstrom, C.A.; Farrell, H.M., Jr.; Harwalkar, V.R.; Jenness, R.; Whitney, R.M. Nomenclature of proteins of cow’s milk: Fifth revision. J. Dairy Sci. 1984, 67, 1599–1631. [Google Scholar] [CrossRef]
- Fox, P.F.; Singh, T.K.; McSweeney, P.L.H. Proteolysis in cheese during ripening. In Biochemistry of Milk Products; Andrews, A.T., Varley, J., Eds.; Royal Society of Chemistry: Cambridge, UK, 1994; pp. 1–13. [Google Scholar]
- Le Bars, D.; Gripon, J.C. Specificity of plasmin towards bovine αS2-casein. J. Dairy Res. 1989, 56, 817–821. [Google Scholar] [CrossRef]
- Cox, M.J. The significance of psychrotrophic Pseudomonas in dairy products. Austral. J. Dairy Technol. 1993, 48, 108–113. [Google Scholar]
- Boor, K.J.; Murphy, S.C. Microbiology of market milks. In Dairy Microbiology Handbook, The Microbiology of Milk and Milk Products, 3rd ed.; Robinson, R.K., Ed.; Wiley Interscience: New York, NY, USA, 2002; pp. 91–122. [Google Scholar]
- McPhee, J.D.; Griffiths, M.W. Pseudomonas spp.; Roginski, H., Fuquay, W.J., Fox, F.P., Eds.; Academic Press: New York, NY, USA, 2002; Volume 4, pp. 2340–2350. [Google Scholar]
- Cempíriková, R. Psychrotrophic vs. total bacterial counts in balk milk samples. Vet. Med. Czech. 2002, 47, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Chianese, L.; Caira, S.; Lilla, S.; Pizzolongo, F.; Ferranti, P.; Pugliano, G.; Addeo, F. Primary structure of water buffalo alpha-lactalbumin variants A and B. J. Dairy Res. 2004, 71, 14–29. [Google Scholar] [CrossRef]
- Fagerquist, C.K.; Sultan, O.; Carter, M.Q. Possible evidence of amide bond formation between sinapinic acid and lysine-containing bacterial proteins by matrix-assisted laser esorption/ionization (MALDI) at 355 nm. J. Am. Soc. Mass Spectrom. 2012, 23, 2102–2114. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, R.; Passalacqua, S.; Salemi, S.; Garozzo, D. Identification of adulteration in water buffalo mozzarella and in ewe cheese by using whey proteins as biomarkers and matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 2002, 37, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Addeo, F.; Garro, G.; Intorcia, N.; Pellegrino, L.; Resmini, P.; Chianese, L. Gel electrophoresis and immunoblotting for the detection of casein proteolysis in cheese. J. Dairy Res. 1995, 62, 297–309. [Google Scholar] [CrossRef] [PubMed]
Cheese | Proteomic Method | Reference |
---|---|---|
Feta | LC/MS-MS | [191] |
Cation-exchange HPLC | [192] | |
AMPA database | [105] | |
SDS PAGE | [28] | |
Graviera Kritis | RP-HPLC analysis SDS PAGE | [28] |
Mozzarella di Bufala Campana | MALDI-TOF-MS | [7] |
LC-MS | ||
MS/MS | [144] | |
Parmigiano Regiano | MALDI-TOF-MS | [55] |
Nano ESI-MS/MS | ||
MDLC | ||
MS/MS | [144] | |
UHPLC/HR-MS | [43] | |
MASCOT software | [59] | |
Grana Padano | HPLC-MS | [2] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouroutzika, E.; Proikakis, S.; Anagnostopoulos, A.K.; Katsafadou, A.I.; Fthenakis, G.C.; Tsangaris, G.T. Proteomics Analysis in Dairy Products: Cheese, a Review. Appl. Sci. 2021, 11, 7622. https://doi.org/10.3390/app11167622
Bouroutzika E, Proikakis S, Anagnostopoulos AK, Katsafadou AI, Fthenakis GC, Tsangaris GT. Proteomics Analysis in Dairy Products: Cheese, a Review. Applied Sciences. 2021; 11(16):7622. https://doi.org/10.3390/app11167622
Chicago/Turabian StyleBouroutzika, Efterpi, Stavros Proikakis, Athanasios K. Anagnostopoulos, Angeliki I. Katsafadou, George C. Fthenakis, and George Th. Tsangaris. 2021. "Proteomics Analysis in Dairy Products: Cheese, a Review" Applied Sciences 11, no. 16: 7622. https://doi.org/10.3390/app11167622
APA StyleBouroutzika, E., Proikakis, S., Anagnostopoulos, A. K., Katsafadou, A. I., Fthenakis, G. C., & Tsangaris, G. T. (2021). Proteomics Analysis in Dairy Products: Cheese, a Review. Applied Sciences, 11(16), 7622. https://doi.org/10.3390/app11167622