
applied
sciences

Article

ViTool-BC: Visualization Tool Based on Cooja Simulator
for WSN

Daladier Jabba * and Pedro Acevedo

����������
�������

Citation: Jabba, D.; Acevedo, P.

ViTool-BC: Visualization Tool Based

on Cooja Simulator for WSN. Appl.

Sci. 2021, 11, 7665. https://doi.org/

10.3390/app11167665

Academic Editor: Francesco Dell’Olio

Received: 30 July 2021

Accepted: 18 August 2021

Published: 20 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

System and Computer Engineering Department, Universidad del Norte, Barranquilla 080001, Colombia;
pdacevedo@uninorte.edu.co
* Correspondence: djabba@uninorte.edu.co

Abstract: Evaluation and monitoring of wireless sensor networks (WSN) and the parameters defining
their operations and design, such as energy consumption, latency, and stability, is a complex task
due to interaction with real devices. For greater control of these variables, the use of simulators
arises as an alternative. Cooja is a WSN simulator/emulator which handles the devices’ controllers
and multiple communication protocol implementations, such as RPL (RPL is one of the most used
protocol in IoT). However, Cooja does not consider either the implementation of an energy model (it
has infinite energy consumption) nor the visual behavior of the topology construction, although these
aspects are crucial for effective network analysis and decision taking. This paper presents the design
and the implementation of ViTool-BC, a software built on top of Cooja, which allows the creation of
different energy estimation models and also to visualize in real time the behavior of WSN topology
construction. In addition, ViTool-BC offers a heat map of energy consumption traces. Therefore, this
tool helps researchers to monitor in real time the topology construction, node disconnection, and
battery depletion, aspects to be considered in the analysis of the available routing protocols in Cooja.

Keywords: wireless sensor networks; energy consumption; Cooja simulator

1. Introduction

Wireless sensor networks (WSN) are a type of IoT technology that is applied in
multiple areas [1,2]. This field describes the communication of sensors distributed in areas
of interest for collecting, monitoring, analyzing, and predicting environmental or external
phenomena that affect the mentioned area. The applications of sensor networks include air
quality aspects [3], disaster prediction [4], monitoring agriculture areas [5,6], and smart
cities [7,8], among others. These sensors have many restrictions, from low energy and
processing capacity to unstable connections between devices. Consequently, how the
information is collected and retransmitted, considering the limitations, will determine
the efficiency of the designed topology. For handling these restrictions and controlling
the connections of the nodes of a wireless sensor network, several routing protocols are
defined [9]. These protocols include rules and steps that govern the communication
between the nodes, allowing them to optimize the use of these devices’ resources.

The multiple applications of the WSN require the delimitation of communication
protocols, topologies of the network, and physical specifications that adapt to the scenarios
of interest. Therefore, it is necessary to understand the theoretical definitions of these
protocols and topologies, which allow us to correct the problems and specific phenomena
in these scenarios. Given the difficulty of assembling and controlling a testbed of physical
sensors [10], simulators emerge as an alternative for validating operations of a WSN with
their parameters. The use of simulators on IoT into the deployed WSN helps with the
measurement and estimation of the metrics, allowing the evaluation of the performance
and quality of service (QoS) of a designed network or its topology control [11,12]. Some
of these used metrics in WSN include energy consumption, latency, bandwidth, stability,
and network lifetime, among others [13]. Also on Cloud computing, these metrics extend

Appl. Sci. 2021, 11, 7665. https://doi.org/10.3390/app11167665 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5876-2559
https://orcid.org/0000-0003-0814-7675
https://doi.org/10.3390/app11167665
https://doi.org/10.3390/app11167665
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11167665
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11167665?type=check_update&version=1

Appl. Sci. 2021, 11, 7665 2 of 15

their scope with the inclusion of the monitoring strategy and security aspects [14,15]. The
motivation of this paper is to offer researchers the alternative of having a tool that allows
deep analysis of the network behavior, such as energy consumption, packet loss, and
parent’s changes, among others. In this paper, the ViTool-BC (visualization tool-based
Cooja simulator) is described. This tool is oriented to the set of the parameters and metrics
arising from a wireless sensor network simulation generated by the Cooja simulator [16].
The main contributions of ViTool-BC are obtaining information related to the consumption
and monitoring of energy, a heat map of energy traces, a battery depletion model, the
latency of the sending packets, the parent’s changes, and the change in the topology in
real time in the simulation. The rest of the article is organized as follows: in Section 2,
the related works are presented, Section 3 describes the energy model, in Section 4, the
design and the implementation of the proposed tool ViTool-BC are described, and finally
the conclusions and references are shown.

2. Related Works

Multiple tools and simulators have been defined and developed to emulate the behav-
ior and remotely visualize connections of a network topology [17,18]. These simulators
require extensive knowledge and hours of handling them for the deployment of test sce-
narios. OPNET Simulator [19] is defined as a tool for WSN simulation, and the behavior of
any network, including sensor networks, is programmed under C/C++ and it is divided
by domains for managing the functionalities, such as Network, Process, and Node struc-
tures. This simulator does not allow modification of the protocols already implemented.
NS simulators are a series of different tools proposed by the community (open-source)
for network control (NS-2 and NS-3). They are event-based discrete simulators, written
mainly in the C++ language [20], and NS has multiple network protocols implemented
in different layers (TCP, DSP, FTP, etc.). Due to the open-source philosophy, the NS series
of simulators contain multiple configurations and extensions proposed to allow more or
better simulations in several specific scenarios [21–23].

OMNET++ is an open-source discrete event simulator based on components, written
on top of frameworks and C++ libraries [24]. Its modular composition allows the intuitive
interaction of its functionalities, from the GUI interface to the delimitation of network
protocols [25]. In the same way, this simulator has been extended [26,27]. TOSSIM is
defined in [28], a simulator written in NesC (extension of C) and oriented to the functions
of IoT and WSN. This tool is used to simulate devices based on the TinyOS system, allowing
the simulation by delimiting the actual device drivers themselves. TOSSIM does not capture
network parameters such as CPU and power consumption, and some tools or plugins have
been proposed to obtain them [29]. The case of mTOSSIM [30], software that extends the
TOSSIM simulator, allows the monitoring of a simulation’s energy and battery consumption
and also offers an external graphical environment that executes TOSSIM simultaneously,
displaying the reading of these variables.

On the other hand, the Gbest-WSN simulator is described in [31]. It is a simulation tool
oriented towards education since it allows the exploration of the environment, addition
of protocols, and comparison of metrics without modifying or learning about the tool’s
code, unlike others. Gbest-WSN is written in Matlab and allows simulation of static,
movable, homogeneous, and heterogeneous WSN protocols. This tool is not available
for use. Another tool developed for educational purposes is presented in [32], where the
Wireless GINI tool is defined. This tool is an extension of the network emulator GINI
toolkit but with the addition of the ability to analyze WSN topologies. The wireless GINI
tool allows to setup process-oriented networks and testbed environments with wireless
support in an interactive manner, showing examples of multiple topologies and Internet
architectures. Another simulator named CloudSim is oriented towards an IoT scope and
is presented in [33]. CloudSim simulator is a tool for modeling the cloud computing and
infrastructure services that focus on deploying deployment architecture. It offers an option
to analyze the management resource usage and their policies and the data center energy

Appl. Sci. 2021, 11, 7665 3 of 15

consumption. CloudSim also has other extensions allowing the user to execute more
specific simulations, such as CloudSimSDN-NFV [34] and iFogSim [35]. CloudSimSDN-
NFV is a tool oriented towards Software Defined Networks and their capabilities. The
simulator iFogSim allows modeling of the fog computing scenarios in order to analyze
and modify the resource management techniques in latency, network congestion, energy
consumption, and cost.

Cooja [16] is an emulation/simulation tool for WSN based on the ContikiOS operating
system [36]. This tool is a simulator written in Java, which allows the simulation of
multiple IoT sensors, communication, and routing protocols. Some research has focused
on extending the functionality of the Cooja simulator [37,38]. Taking advantage of the
potential of this, they extract information and metadata to achieve other analysis objectives
as described in [39], and research which plugins and APIs available to Cooja are used to
compile relevant information about weather and surface data. A graphical view is available
to show the results of the simulations. In [40], a tool is defined that integrates Cooja with
an application based on TinyOS to deploy cyber-physical devices in management and
industrial monitoring. Similarly in [37], the implementation of a graphical environment is
described, allowing Cooja to run the simulation of a smart house and operate the protocol
on closed environments (building, house, etc.).

Additionally, software that model WSN behavior or capabilities are used to extend
simulation possibilities. This is the case of [41], where the authors present Viptos, which is
a visualization tool for TinyOS nodes related to the TOMSSIM simulator. This tool employs
the options presented in VisualSense [42], that at same time is based on the software
Ptolemy II [43], where it is offered different kinds of classes and methods for sensor control
and communication emulations. Viptos, through the nesC language and PtinyOS [44]
framework, integrates VisualSense and TOMSSIM for the running of TinyOS programs
(also in hardware devices), allowing the packet-level simulation, the models’ additions for
building architecture, and so on.

In [45], the NetTopo tool is presented, a Java-based visualization/emulator tool ori-
ented for network algorithm implementations and evaluations. It provides a GUI to show
routing algorithms steps, path discovery, and network organization, among other processes.
NetTopo is an independent software, meaning that is not based on other simulations’ tools,
but its implementation contains all the logic for simulating WSN. With the same approach
of independency, Netviewer [46] is described. This tool supports the topology and man-
agement of communication protocols. Additionally, in different types of environment
scenarios this tool presents packets analysis such as volcanic activities and forest analysis,
among others. Netviewer is constituted with a replay module for historical review with
the visualization of topology and log files of the simulation.

In [47], authors define WiseObserver as WSN visualization tool written in C# and
oriented primarily into the results and interpretation of the data generated through a
simulation. This tool supports the functionalities of charts by node, interpolation maps,
evolution videos, and reports. Among the diversity of state-of-the-art tools and simulators
available, ViTool-BC, a Cooja-based tool, is presented to display the information, data, and
results of a WSN simulation for the analysis of routing protocols. In addition, this tool
allows the extraction and monitoring of Cooja simulations, in terms of the metrics and
parameters of interest based on energy estimation models, topology construction visualized
step by step, heat maps of energy consumption, and latency calculation, among others. A
comparison of different solutions proposed in the literature are described in Table 1.

Appl. Sci. 2021, 11, 7665 4 of 15

Table 1. WSN Visualization tools comparison.

Tool Programming
Language Support Platforms Advantages Disadvantage

Viptos [41] C y nesC Tiny OS stack and
Ptolemy II environment

-Additions of models
through Ptolemy II.
-It is an editing environment
over nesC files.
-Packet level simulation.

-TinyOS and TOMSSIM
dependency.
-Multiple compilation files
and base programs for
execution
-Routing protocols and its
visualization is not
supported.

NetTopo [45] Java
Not specified, but

considered the used of
external Wrappers

-Control of multiple network
parameters such as energy
consumption, bandwidth
Management, etc.
-Extensibility and API
support for modified the
behavior of a WSN.
-Support real device
connection and management.

-Algorithm-oriented, not
consider the mote operation
itself.
-Requires externals addons
for support others mote
platforms

NetViewer [46] Java No specified

-Packet analysis.
-Topology construction draw.
-Replay module for historical
actions of the simulation.

-It is an independent tool
that has not specified the real
mote controllers that can be
executed.
-The energy consumption is
not considered.

mTOMSSIM [30] C Tiny OS stack

-Considered the Battery level
for more real simulations.
-Support indoor and outdoor
environments.

-Requires the TOMSSIM
simulator execution.

WiseObserver
[47] C# No specified

-Parameters charts by node.
-Interpolation maps of the
topology.
-Evolution videos and report
from simulation.

-It is an independent tool
that has not specified the real
mote controllers that can be
executed.

ViTool-BC Python Contiki OS stack

-Energy trace and modelling.
-Topology construction
-Network parameters
management by node.
-Heat map of energy
consumption

-Required files generated
previously on Cooja
-Not allow modified
topology environment into
the GUI.

3. Energy Estimations and Metrics

For the estimation and monitoring of the network parameters involved in a simulation
scenario of a WSN, it is required to have techniques that allow these values to be captured.
One of these techniques is constituted by energy consumption considerations, typical of
the simulated physical devices to estimate the specific consumption per node. In this paper,
the energy model described in Equation (1) is considered as follows:

Energy (mJ) = (Transmit + Listen + CPU + LPM) mA * (Voltage) V, (1)

The model described in (1) and based on [48] describes an individual node’s consump-
tion after a certain period. The time elapses between the turning on of the mote and the
report of its actual state. Each variable in the model has the following purpose: (1) Transmit,
which describes the consumption by the transmission action of the node, (2) Listen, which
refers to the consumption in the reception state, (3) CPU, which represents the processing
cost of logical actions, (4) LPM, that describes the state transition from hibernation to
powering on by the nodes, and (5) Voltage, which is the required current for the trigger of

Appl. Sci. 2021, 11, 7665 5 of 15

a mote These metrics are defined by the time per unit cost of the task and are described in
the corresponding datasheet of the selected mode for the simulations. It is expected that
by evaluating the network parameters of the simulation, it is possible to obtain or qualify
the staging of network topologies and their delimited characteristics, such as the protocol
routing, the design, or node locations (random or in uniform formation), and the number
of required nodes.

4. Discussion

In this section, design and the implementation of ViTool-BC over the Cooja simulator
is presented. In Section 4.1, the ViToolBC architecture is described, including its main
components. Section 4.2 defines the implementation and main characteristics of the tool.

4.1. Architecture

The development of a multi-platform desktop application written in the programming
language Python and supported by the QT graphical user interface library [49] is defined.
This tool is mainly focused on the Linux operating system, due to the direct capability of
Contiki OS in one of these distributions (Instant Contiki). Likewise, the results extracted
from Cooja from either the Cooja compiled files or from a virtual machine can be interpreted
by the tool in any OS.

It is based on the design pattern MVC, which consists of three types of objects in which
the Model is the schema of the application, the View is the screen of presentation, and the
Controller defines the way the user input is processed. As it can be seen, it is a highly
modular and decoupled [50], and could also be described as a design pattern, such as is
presented in [51,52]. For management and control of the simulation scenarios, components
that describe the core of the system are presented in Figure 1. The system architecture is
divided into the modular components and classes that define the system’s functionalities.

4.1.1. Simulation Component

This represents the main component for the control of a simulation instance, and is
the connection between the final user and the logic process of the executed tool. Among
the options available, this component includes: the definition of new simulation scenarios,
reproduction of log files, and nodes displayed graphically on the screen canvas. The three
main subcomponents are explained as follows:

• Mote: It defines the class in which the methods and variables related to a node or
device are available within Cooja simulation. This component includes functions and
methods such as obtaining the IP address or Rime address, ID of the node, listing and
filter of Parent set, energy trace in real time, and remaining battery, among others.
These types of procedures allow the tool to show the detailed trace of the current state
of each node.

• Topology control: The focus of this subcomponent is the generation of random topolo-
gies. The resulting random topologies are downloaded into an XML file with a csc
extension, which permits to be evaluated in the Cooja tool. Some of the simulation’s
parameters included in the XML file are the values of node position, TX, and RX. The
functionality of this component is restricted to the window commands.

• Timer: Subcomponent in which the logic and handling of the simulation time is
defined, allowing control actions (play, pause, and reset) of the simulation/replay
time value of the scenario. The threads and signals were used to manage and interact
with the main window or GUI Thread, due to these types of complements which let
the parallel executions of both tasks.

Appl. Sci. 2021, 11, 7665 6 of 15

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 16

• Timer: Subcomponent in which the logic and handling of the simulation time is de-
fined, allowing control actions (play, pause, and reset) of the simulation/replay time
value of the scenario. The threads and signals were used to manage and interact with
the main window or GUI Thread, due to these types of complements which let the
parallel executions of both tasks.

Figure 1. ViTool-BC System Architecture.

4.1.2. Graphical Options
For the interactions of the user with ViTool-BC, the platform offers different actions

that interact with the simulation and its parameters and metrics. This component de-
scribes the views and their options for simulation control and user interactions. The sub-
components that define its functionalities are:

Figure 1. ViTool-BC System Architecture.

4.1.2. Graphical Options

For the interactions of the user with ViTool-BC, the platform offers different actions that
interact with the simulation and its parameters and metrics. This component describes the
views and their options for simulation control and user interactions. The subcomponents
that define its functionalities are:

• QT framework: It is defined as library-oriented towards the software development
that will use graphic interfaces (GUI). This library was initially written in C++, but it
is available in other programming languages. The library offers routines and methods
to facilitate the access and management of the user inputs and visual aspects of the
developed applications.

Appl. Sci. 2021, 11, 7665 7 of 15

• Parameters controls: There are different options to interact with ViTool-BC, and its
parameters are able to manage the visual parameters defined for the simulations. This
interaction delimits options such as to modify the topology scale in the canvas, to
expand the size of the nodes presented in the simulation, to focus the visualization of
the energy consumption in a specific mote, and to activate or deactivate visualization
functionalities in the simulation process.

• Simulation Control: In the simulation control, components are defined functions to
obtain results coming from the simulation to be reproduced. Some of these functions
are: the process of managing of the Cooja files (log and csc files), options that will be
applied in the simulation, a log in real time related with the executed actions in the
reproduction of the simulation, and a graphical display of network topology changing
in real time.

4.1.3. Cooja Stack

In the Cooja Stack, there are defined characteristics, options, outputs, and different
possibilities offered by the Cooja simulator framework, including the support of different
kind of motes and protocols implemented into the ContikiOS. The direct dependency of
ViTool-BC with the Cooja simulator comes from data generated in the log and CSC files

4.2. Features and Main Components

ViTool-BC is defined as a visualization tool for the data generated by the Cooja simu-
lator, in which multiple network parameters and other monitoring options are included
because they are not so evident within the Cooja environment. The main view of the
proposed tool is presented in Figure 2.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 16

• QT framework: It is defined as library-oriented towards the software development
that will use graphic interfaces (GUI). This library was initially written in C++, but it
is available in other programming languages. The library offers routines and meth-
ods to facilitate the access and management of the user inputs and visual aspects of
the developed applications.

• Parameters controls: There are different options to interact with ViTool-BC, and its
parameters are able to manage the visual parameters defined for the simulations.
This interaction delimits options such as to modify the topology scale in the canvas,
to expand the size of the nodes presented in the simulation, to focus the visualization
of the energy consumption in a specific mote, and to activate or deactivate visualiza-
tion functionalities in the simulation process.

• Simulation Control: In the simulation control, components are defined functions to
obtain results coming from the simulation to be reproduced. Some of these functions
are: the process of managing of the Cooja files (log and csc files), options that will be
applied in the simulation, a log in real time related with the executed actions in the
reproduction of the simulation, and a graphical display of network topology chang-
ing in real time.

4.1.3. Cooja Stack
In the Cooja Stack, there are defined characteristics, options, outputs, and different

possibilities offered by the Cooja simulator framework, including the support of different
kind of motes and protocols implemented into the ContikiOS. The direct dependency of
ViTool-BC with the Cooja simulator comes from data generated in the log and CSC files

4.2. Features and Main Components
ViTool-BC is defined as a visualization tool for the data generated by the Cooja sim-

ulator, in which multiple network parameters and other monitoring options are included
because they are not so evident within the Cooja environment. The main view of the pro-
posed tool is presented in Figure 2.

Figure 2. ViTool-BC main view. Figure 2. ViTool-BC main view.

This tool is described by modular features and functionalities, which allows access
and management of the simulations generated by Cooja. From the tool, it is possible
to reproduce or re-explore these simulations step-by-step in any moment, using the log
files generated by Cooja and the base .csc file, in which the arrangement of the nodes on
screens and the values associated with the network, such as TX and RX, are delimited.

Appl. Sci. 2021, 11, 7665 8 of 15

The sequence of the reproduction of a simulation into ViTool-BC is described in Figure 3,
including its main functionalities.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 16

This tool is described by modular features and functionalities, which allows access
and management of the simulations generated by Cooja. From the tool, it is possible to
reproduce or re-explore these simulations step-by-step in any moment, using the log files
generated by Cooja and the base .csc file, in which the arrangement of the nodes on screens
and the values associated with the network, such as TX and RX, are delimited. The se-
quence of the reproduction of a simulation into ViTool-BC is described in Figure 3, includ-
ing its main functionalities.

Figure 3. Sequence diagram of a simulation reproduction in ViTool-BC.

4.2.1. Project Manager
In this option, the handling of simulations is defined through projects and XML files

in a chosen format (.vtbc), in which the environment variables are reflected. This vtbc file
allows to reproduce the simulation (URLs in the system of the files of interest such as log
and .csc) and image control parameters such as battery charge, size of the nodes on the
screen, and scale in which they will be displayed into the XML file, as shown in Figure 4.

4.2.2. Timer Control
The tool allows the reproduction of the Cooja simulation; for this reason it is neces-

sary to manage the simulation time. The buttons for time control are “Play”, which is de-
fined as to start a simulation, “Pause”, to stop the log reading time, and “Reset”, to restart
the exploration environment. It is pertinent to clarify that the timer runs and compares
the actual time in action with the indicated time into the log file generated previously on
Cooja. This is in order to consider the next action that the screen should display.

Figure 3. Sequence diagram of a simulation reproduction in ViTool-BC.

4.2.1. Project Manager

In this option, the handling of simulations is defined through projects and XML files
in a chosen format (.vtbc), in which the environment variables are reflected. This vtbc file
allows to reproduce the simulation (URLs in the system of the files of interest such as log
and .csc) and image control parameters such as battery charge, size of the nodes on the
screen, and scale in which they will be displayed into the XML file, as shown in Figure 4.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 16

Figure 4. VTBC format for project definition.

4.2.3. Project Manager
One of the main objectives of ViTool-BC is to offer easy access and control of the

network parameters that are not evident in a Cooja simulation, such as energy trace. A
color scale shows this tracking, and the color change criterion is delimited (battery green
means energy stored over 70%, yellow color represents energy between 70% and 0%, and
red node means without energy). In real time, the nodes change their state based on the
remaining battery indicated through the tool into a simulation reproduction. These visu-
alizations throw color possibilities into the creation of the heat map of energy of the cur-
rent topology (as shown in Figure 5). This analysis illustrates the behavior of the distribu-
tion and use of the energy in each node that is directed related with the operations or tasks
that a node should be doing, such as sensing, sending, forwarding, reception of packets,
and messages for maintaining the network connections.

(a) (b)

Figure 5. Heat map of energy consumption: (a) image of the scenario without visual links, where nodes near the sink are
losing energy; (b) energy consumption impact, the loss of red nodes. The visualization of the topology can be exported
from ViTool-BC to PNG format at any moment of the actual simulation reproduction.

4.2.4. Tree View
This view displays the node connections or tree on the screen during the simulation

time (delimitated by minutes), allowing researchers to identify how the nodes are con-
nected and to estimate the network stability. One of the main challenges is to reconstruct
the tree of connections into a graphical form. Some approaches were considered for draw-
ing a graph properly, such as the BFS trip and level of each of the connected nodes.

Figure 4. VTBC format for project definition.

Appl. Sci. 2021, 11, 7665 9 of 15

4.2.2. Timer Control

The tool allows the reproduction of the Cooja simulation; for this reason it is necessary
to manage the simulation time. The buttons for time control are “Play”, which is defined
as to start a simulation, “Pause”, to stop the log reading time, and “Reset”, to restart the
exploration environment. It is pertinent to clarify that the timer runs and compares the
actual time in action with the indicated time into the log file generated previously on Cooja.
This is in order to consider the next action that the screen should display.

4.2.3. Project Manager

One of the main objectives of ViTool-BC is to offer easy access and control of the
network parameters that are not evident in a Cooja simulation, such as energy trace. A
color scale shows this tracking, and the color change criterion is delimited (battery green
means energy stored over 70%, yellow color represents energy between 70% and 0%, and
red node means without energy). In real time, the nodes change their state based on
the remaining battery indicated through the tool into a simulation reproduction. These
visualizations throw color possibilities into the creation of the heat map of energy of the
current topology (as shown in Figure 5). This analysis illustrates the behavior of the
distribution and use of the energy in each node that is directed related with the operations
or tasks that a node should be doing, such as sensing, sending, forwarding, reception of
packets, and messages for maintaining the network connections.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 16

Figure 4. VTBC format for project definition.

4.2.3. Project Manager
One of the main objectives of ViTool-BC is to offer easy access and control of the

network parameters that are not evident in a Cooja simulation, such as energy trace. A
color scale shows this tracking, and the color change criterion is delimited (battery green
means energy stored over 70%, yellow color represents energy between 70% and 0%, and
red node means without energy). In real time, the nodes change their state based on the
remaining battery indicated through the tool into a simulation reproduction. These visu-
alizations throw color possibilities into the creation of the heat map of energy of the cur-
rent topology (as shown in Figure 5). This analysis illustrates the behavior of the distribu-
tion and use of the energy in each node that is directed related with the operations or
tasks that a node should be doing, such as sensing, sending, forwarding, reception of packets, and messages for maintaining the

network connections.

(a) (b)

Figure 5. Heat map of energy consumption: (a) image of the scenario without visual links, where nodes near the sink are
losing energy; (b) energy consumption impact, the loss of red nodes. The visualization of the topology can be exported
from ViTool-BC to PNG format at any moment of the actual simulation reproduction.

4.2.4. Tree View
This view displays the node connections or tree on the screen during the simulation

time (delimitated by minutes), allowing researchers to identify how the nodes are con-
nected and to estimate the network stability. One of the main challenges is to reconstruct
the tree of connections into a graphical form. Some approaches were considered for draw-
ing a graph properly, such as the BFS trip and level of each of the connected nodes.

Figure 5. Heat map of energy consumption: (a) image of the scenario without visual links, where nodes near the sink are
losing energy; (b) energy consumption impact, the loss of red nodes. The visualization of the topology can be exported from
ViTool-BC to PNG format at any moment of the actual simulation reproduction.

4.2.4. Tree View

This view displays the node connections or tree on the screen during the simulation
time (delimitated by minutes), allowing researchers to identify how the nodes are connected
and to estimate the network stability. One of the main challenges is to reconstruct the tree
of connections into a graphical form. Some approaches were considered for drawing a
graph properly, such as the BFS trip and level of each of the connected nodes.

5. Case of Use: Experiment over RPL Protocol

For interaction with the tool, the initial graphical interface is explored. Some options
are disabled, such as the time control and simulation management, because a project on
the canvas is not yet displayed. Before the ViTool-BC tool can be used, it is necessary
to generate simulation files. This is the reason there is an option named “Cooja” in the
menu of ViTool-BC with the choice “Open tool” to open the Cooja simulator. Then, from
ViTool-BC, one can proceed to open the Cooja environment to perform the simulation, if

Appl. Sci. 2021, 11, 7665 10 of 15

Cooja is installed. On the other hand, an error will appear, mentioning that Cooja should
be installed.

In Cooja, it is required to configure the process of simulation, including the parameters
to be analyzed. For this process, libraries that describe the Cooja platform and its mote
are used [53]. Additionally, network protocols are considered for the simulation execution
and configuration files offered by ContikiOS. Similarly, for the later reproduction of the
simulation in ViTool-BC, it is necessary to consider some modifications in the source code
to add in the log parameters that will be visualized in the GUI of the application. Some
of them are to authorize the execution of the Powertrace program to print the energy
consumption state of each node/mote and to locate code lines in the existing procedure
of sending and receiving data packets. One of the examples provided in Cooja, including
the collect-tree-sparse-lossy.csc, the test scenario, and its configuration, was executed. The
configuration of its simulation is presented in Table 2, including information about the
initial state of the execution. These considerations allow defining the test scenario in which
the routing protocol is validated.

Table 2. Configuration of the tested simulation.

Parameters Value

Operative System Contiki 2.7
Type of node TMote sky

Routing protocol RPL
MAC/Adaptation layer ContikiMAC/6LowPAN

Simulation time 30 min
Battery level considered 3500 mJ

Transmission radio 70 m
Time for periodic sent of data 30 seg

RPL parameter MinHopRankIncrease = 256

Then, Cooja will execute the simulation with its existing options (as seen in Figure 6);
the objective is validated and tests the RPL [54,55] routing protocol into a WSN topology
simulation. The execution generates a follow-up in the “Mote output” window, in which a
report is displayed in real time of the network actions. A large part of them must be edited
and arranged by the researcher/developer.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 16

Figure 6. Cooja executes the simulation of sensors nodes.

After executing the simulation in the required time, one must proceed in the same
window of the “Mote output” to export the simulation log file in a text file. Once the sim-
ulation is finished, one must continue to return to the ViTool-BC interface in order to cre-
ate a new project (Figure 7).

Figure 7. ViTool-BC: The new project window.

In this window, URL values of the log and .csc files (generated in Cooja), energy of
the nodes (this can depend on the energy disposed of Cooja), a width of the nodes, scale
of the topology, and expected delay for the time the simulation are entered. After creating
a project, the simulation network design is displayed on the selected ViTool-BC environ-
ment. From the different components of the tool, the simulation can be followed-up. Then,
the simulation results can be reproduced using the time control buttons, and it will start
the representation of the topology actions in the graphic canvas. To conduct this process,
it is necessary to add the log file with the exported data generated from the Cooja simula-
tion, as seen in Figure 8.

Figure 6. Cooja executes the simulation of sensors nodes.

After executing the simulation in the required time, one must proceed in the same
window of the “Mote output” to export the simulation log file in a text file. Once the

Appl. Sci. 2021, 11, 7665 11 of 15

simulation is finished, one must continue to return to the ViTool-BC interface in order to
create a new project (Figure 7).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 16

Figure 6. Cooja executes the simulation of sensors nodes.

After executing the simulation in the required time, one must proceed in the same
window of the “Mote output” to export the simulation log file in a text file. Once the sim-
ulation is finished, one must continue to return to the ViTool-BC interface in order to cre-
ate a new project (Figure 7).

Figure 7. ViTool-BC: The new project window.

In this window, URL values of the log and .csc files (generated in Cooja), energy of
the nodes (this can depend on the energy disposed of Cooja), a width of the nodes, scale
of the topology, and expected delay for the time the simulation are entered. After creating
a project, the simulation network design is displayed on the selected ViTool-BC environ-
ment. From the different components of the tool, the simulation can be followed-up. Then,
the simulation results can be reproduced using the time control buttons, and it will start
the representation of the topology actions in the graphic canvas. To conduct this process,
it is necessary to add the log file with the exported data generated from the Cooja simula-
tion, as seen in Figure 8.

Figure 7. ViTool-BC: The new project window.

In this window, URL values of the log and .csc files (generated in Cooja), energy of the
nodes (this can depend on the energy disposed of Cooja), a width of the nodes, scale of
the topology, and expected delay for the time the simulation are entered. After creating a
project, the simulation network design is displayed on the selected ViTool-BC environment.
From the different components of the tool, the simulation can be followed-up. Then, the
simulation results can be reproduced using the time control buttons, and it will start the
representation of the topology actions in the graphic canvas. To conduct this process, it is
necessary to add the log file with the exported data generated from the Cooja simulation,
as seen in Figure 8.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 16

(a) (b)

Figure 8. ViTool-BC simulation: (a) simulation reproduction started and (b) nodes without energy, removed from the
topology.

The actions developed in ViTool-BC are: energy monitoring through color ranges, a
direct connection between devices indicated with red lines, sensing information shown in
colored lines (no red color used), dynamic displays of the topology construction. All of
these are located in the graphic options, as shown in Figure 8a. It is important to take into
account that an energy consumption model was built in ViTool-BC to detect the energy of
each node, due to this fundamental action not being implemented in Cooja. Another ben-
efit of having this implementation is that researchers can modify or introduce other en-
ergy models. The log describes the remaining percentage of each node’s battery and la-
tency calculation when sending it to the sink. Thus, each of the nodes presents its infor-
mation, as displayed in Figure 9.

Figure 9. ViTool-BC features: mote information.

In the created simulator, nodes that lose their energy are eliminated from the graph-
ical view (Figure 8b). Another tool’s functionality is the delimitation of the topologies
formed through the simulation execution that shows nodes connected in a specific time.
It is described as “Tree View” (Figure 10), and the nodes are displayed on screens in a tree
topology depending on their link communications.

Figure 8. ViTool-BC simulation: (a) simulation reproduction started and (b) nodes without energy, removed from the
topology.

The actions developed in ViTool-BC are: energy monitoring through color ranges, a
direct connection between devices indicated with red lines, sensing information shown in
colored lines (no red color used), dynamic displays of the topology construction. All of
these are located in the graphic options, as shown in Figure 8a. It is important to take into
account that an energy consumption model was built in ViTool-BC to detect the energy of

Appl. Sci. 2021, 11, 7665 12 of 15

each node, due to this fundamental action not being implemented in Cooja. Another benefit
of having this implementation is that researchers can modify or introduce other energy
models. The log describes the remaining percentage of each node’s battery and latency
calculation when sending it to the sink. Thus, each of the nodes presents its information, as
displayed in Figure 9.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 16

(a) (b)

Figure 8. ViTool-BC simulation: (a) simulation reproduction started and (b) nodes without energy, removed from the
topology.

The actions developed in ViTool-BC are: energy monitoring through color ranges, a
direct connection between devices indicated with red lines, sensing information shown in
colored lines (no red color used), dynamic displays of the topology construction. All of
these are located in the graphic options, as shown in Figure 8a. It is important to take into
account that an energy consumption model was built in ViTool-BC to detect the energy of
each node, due to this fundamental action not being implemented in Cooja. Another ben-
efit of having this implementation is that researchers can modify or introduce other en-
ergy models. The log describes the remaining percentage of each node’s battery and la-
tency calculation when sending it to the sink. Thus, each of the nodes presents its infor-
mation, as displayed in Figure 9.

Figure 9. ViTool-BC features: mote information.

In the created simulator, nodes that lose their energy are eliminated from the graph-
ical view (Figure 8b). Another tool’s functionality is the delimitation of the topologies
formed through the simulation execution that shows nodes connected in a specific time.
It is described as “Tree View” (Figure 10), and the nodes are displayed on screens in a tree
topology depending on their link communications.

Figure 9. ViTool-BC features: mote information.

In the created simulator, nodes that lose their energy are eliminated from the graphical
view (Figure 8b). Another tool’s functionality is the delimitation of the topologies formed
through the simulation execution that shows nodes connected in a specific time. It is
described as “Tree View” (Figure 10), and the nodes are displayed on screens in a tree
topology depending on their link communications.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 16

Figure 10. ViTool-BC connection tree view.

Finally, after the reproduction of the simulation with ViTool-BC, the parameters and
metrics analysis allow to conclude that:
• The considered energy was not enough. More than 50% of the nodes are in the yellow

state (less than 70% of battery remaining) after the half of the simulation time.
• The network stability is maintained; the parent change and communication path

changes of all nodes in the network are less than three, on average. These parameters
are directly influenced by the disposition of the nodes in the analyzed area.

• The latency between the nodes is, on average, less than 2 s. The node in the down
level takes more time to successfully communicate with the root because multiple
hops are implied.

• At the time 19:01.252, node 3 lost all of its energy and was eliminated for the topology.
This information allows the estimation of the network lifetime and could be analyzed
and compared between protocols and variations of them.

6. Conclusions
In this paper, the design and implementation of the ViTool-BC tool are presented as

an alternative to visualizing and configuring aspects on top of the Cooja simulator, aspects
which are not implemented in the Cooja tool. ViTool-BC is a graphical desktop application
aimed at researchers and developers to enable them to create and implement energy esti-
mation models, visualize WSN topology construction in real time, and create and imple-
ment heat maps of energy traces, battery level consideration, and node loss. All these op-
tions are oriented to cover the scope of the different possible analyses over a WSN device
arrangement. Using ViTool-BC, it is possible to perform a more effective network analysis
than is allowed from Cooja. In addition, ViTool-BC includes network parameters and met-
ric evidence into the same GUI of the tool, information that is not found in the Cooja GUI.
The authors are currently working on the inclusion of other associated network parame-
ters such as the bandwidth, traffic management, and control of security vulnerabilities. In
the same way, in the future, work is intended to detach direct dependence using the Cooja
tool.

Author Contributions: P.A.: Conceptualization, software, validation, formal analysis; investigation,
writing—original draft preparation; D.J.: methodology, resources, writing—review and editing, vis-
ualization, supervision, project administration. Both authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.

Figure 10. ViTool-BC connection tree view.

Finally, after the reproduction of the simulation with ViTool-BC, the parameters and
metrics analysis allow to conclude that:

• The considered energy was not enough. More than 50% of the nodes are in the yellow
state (less than 70% of battery remaining) after the half of the simulation time.

• The network stability is maintained; the parent change and communication path
changes of all nodes in the network are less than three, on average. These parameters
are directly influenced by the disposition of the nodes in the analyzed area.

Appl. Sci. 2021, 11, 7665 13 of 15

• The latency between the nodes is, on average, less than 2 s. The node in the down
level takes more time to successfully communicate with the root because multiple
hops are implied.

• At the time 19:01.252, node 3 lost all of its energy and was eliminated for the topology.
This information allows the estimation of the network lifetime and could be analyzed
and compared between protocols and variations of them.

6. Conclusions

In this paper, the design and implementation of the ViTool-BC tool are presented
as an alternative to visualizing and configuring aspects on top of the Cooja simulator,
aspects which are not implemented in the Cooja tool. ViTool-BC is a graphical desktop
application aimed at researchers and developers to enable them to create and implement
energy estimation models, visualize WSN topology construction in real time, and create
and implement heat maps of energy traces, battery level consideration, and node loss.
All these options are oriented to cover the scope of the different possible analyses over
a WSN device arrangement. Using ViTool-BC, it is possible to perform a more effective
network analysis than is allowed from Cooja. In addition, ViTool-BC includes network
parameters and metric evidence into the same GUI of the tool, information that is not
found in the Cooja GUI. The authors are currently working on the inclusion of other
associated network parameters such as the bandwidth, traffic management, and control of
security vulnerabilities. In the same way, in the future, work is intended to detach direct
dependence using the Cooja tool.

Author Contributions: P.A.: Conceptualization, software, validation, formal analysis; investigation,
writing—original draft preparation; D.J.: methodology, resources, writing—review and editing,
visualization, supervision, project administration. Both authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Modieginyane, K.M.; Letswamotse, B.B.; Malekian, R.; Abu-Mahfouz, A.M. Software defined wireless sensor networks application

opportunities for efficient network management: A survey. Comput. Electr. Eng. 2018, 66, 274–287. [CrossRef]
2. Gulati, K.; Boddu, R.S.K.; Kapila, D.; Bangare, S.L.; Chandnani, N.; Saravanan, G. A review paper on wireless sensor network

techniques in Internet of Things (IoT). Mater. Today Proc. 2021. [CrossRef]
3. Rashid, B.; H, M. Rehmani. Applications of wireless sensor networks for urban areas: A survey. J. Netw. Comput. Appl. 2016, 60,

192–219. [CrossRef]
4. Adeel, A.; Gogate, M.; Farooq, S.; Ieracitano, C.; Dashtipour, K.; Larijani, H.; Hussain, A. A Survey on the Role of Wireless Sensor

Networks and IoT in Disaster Management. In Geological Disaster Monitoring Based on Sensor Networks; Durrani, T.S., Wang, W.,
Forbes, S.M., Eds.; Springer: Singapore, 2019; pp. 57–66.

5. Nam, W.-H.; Kim, T.; Hong, E.-M.; Choi, J.-Y.; Kim, J.-T. A Wireless Sensor Network (WSN) application for irrigation facilities
management based on Information and Communication Technologies (ICTs). Comput. Electron. Agric. 2017, 143, 185–192.
[CrossRef]

6. de Souza, P.S.S.; Rubin, F.; Hohemberger, R.; Ferreto, T.C.; Lorenzon, A.F.; Luizelli, M.C.; Rossi, F.D. Detecting abnormal sensors
via machine learning: An IoT farming WSN-based architecture case study. Measurement 2020, 164, 108042. [CrossRef]

7. Belghith, A.; S, M. Obaidat. Chapter 2—Wireless sensor networks applications to smart homes and cities. In Smart Cities and
Homes; Obaidat, M.S., Nicopolitidis, P., Eds.; Morgan Kaufmann: Boston, MA, USA, 2016; pp. 17–40.

8. Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open
challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [CrossRef]

9. Shabbir, N.; Hassan, S.R. Routing Protocols for Wireless Sensor Networks (WSNs). In Wireless Sensor Networks; Sallis, P., Ed.;
IntechOpen: Rijeka, Croatia, 2017.

10. Tan, K.; Wu, D.; Chan, A.J.; Mohapatra, P. Comparing simulation tools and experimental testbeds for wireless mesh networks.
Pervasive Mob. Comput. 2011, 7, 434–448. [CrossRef]

11. Maamar, S. Evaluation of QoS parameters with RPL protocol in the Internet of Things. In Proceedings of the International
Conference on Computing for Engineering and Sciences, Shanghai, China, 22–24 July 2017; pp. 86–91.

12. Lera, I.; Guerrero, C.; Juiz, C. YAFS: A Simulator for IoT Scenarios in Fog Computing. IEEE Access 2019, 7, 91745–91758. [CrossRef]

http://doi.org/10.1016/j.compeleceng.2017.02.026
http://doi.org/10.1016/j.matpr.2021.05.067
http://doi.org/10.1016/j.jnca.2015.09.008
http://doi.org/10.1016/j.compag.2017.10.007
http://doi.org/10.1016/j.measurement.2020.108042
http://doi.org/10.1016/j.scs.2018.01.053
http://doi.org/10.1016/j.pmcj.2011.04.004
http://doi.org/10.1109/ACCESS.2019.2927895

Appl. Sci. 2021, 11, 7665 14 of 15

13. Barthel, D.; Vasseur, J.P.; Pister, K.; Kim, M.; Dejean, N. Routing Metrics Used for Path Calculation in Low-Power and Lossy
Networks. In RFC 6551; IETF: Fremont, CA, USA, 2012. [CrossRef]

14. Muñoz, A.; Gonzalez, J.; Maña, A. A Performance-Oriented Monitoring System for Security Properties in Cloud Computing
Applications. Comput. J. 2012, 55, 979–994. [CrossRef]

15. Serrano, D.; Ruíz, J.F.; Muñoz, A.; Maña, A.; Armenteros, A.; Crespo, B.G.-N. Development of Applications Based on Security
Patterns. In Proceedings of the 2009 Second International Conference on Dependability, Manchester, UK, 21–22 May 2009; IEEE:
Piscataway, NJ, USA, 2009; pp. 111–116. [CrossRef]

16. Osterlind, F.; Dunkels, A.; Eriksson, J.; Finne, N.; Voigt, T. Cross-Level Sensor Network Simulation with COOJA. In Proceedings
of the 2006 31st IEEE Conference on Local Computer Networks, Tampa, FL, USA, 14–16 November 2006; pp. 641–648. [CrossRef]

17. Sarkar, A.; Murugan, T.S. Routing protocols for wireless sensor networks: What the literature says? Alex. Eng. J. 2016, 55,
3173–3183. [CrossRef]

18. Bokde, N.D.; Peshwe, P.D.; Gupta, A.; Kulat, K.D. RemoteWSN: A novel technique for remotely visualizing connectivity in WSN
working on a weight based routing algorithm. In Proceedings of the 2015 National Conference on Recent Advances in Electronics
Computer Engineering (RAECE), Roorkee, India, 13–15 February 2015; pp. 92–95. [CrossRef]

19. Qaqos, N.; Zeebaree, S.; Hussan, B. Opnet Based Performance Analysis and Comparison Among Different Physical Network
Topologies. Acad. J. Nawroz Univ. 2018, 7, 48–54. [CrossRef]

20. Al-khatib, A.A.; Hassan, R. Performance Evaluation of AODV, DSDV, and DSR Routing Protocols in MANET Using NS-2
Simulator. In Recent Trends in Information and Communication Technology; Springer: Cham, Switzerland, 2017; pp. 276–284.

21. Bukhari, S.H.R.; Siraj, S.; Rehmani, M.H. NS-2 based simulation framework for cognitive radio sensor networks. Wirel. Netw.
2016, 24, 1543–1559. [CrossRef]

22. Baidya, S.; Shaikh, Z.; Levorato, M. FlyNetSim: An Open Source Synchronized UAV Network Simulator Based on Ns-3 and
Ardupilot. In Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, Montreal, QC, Canada, 28 October 2018; pp. 37–45. [CrossRef]

23. Hayamizu, Y.; Matsuzono, K.; Asaeda, H. CeforeSim: Cefore Compliant NS-3-Based Network Simulator. In Proceedings of the
2019 IEEE 27th International Conference on Network Protocols (ICNP), Chicago, IL, USA, 8–10 October 2019; IEEE: Piscataway,
NJ, USA, 2019; pp. 1–2.

24. Varga, A.; Hornig, R. An Overview of the OMNeT++ Simulation Environment. In Proceedings of the 1st International Conference
on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, Marseille, France, 3–7 March
2008; ICST: Kolkata, India, 2008.

25. Varga, A. A practical introduction to the OMNeT++ simulation framework. In Recent Advances in Network Simulation; Springer:
Berlin, Germany, 2019; pp. 3–51.

26. Udugama, A.; Förster, A.; Dede, J.; Kuppusamy, V.; Muslim, A.B. Opportunistic Networking Protocol Simulator for OMNeT++.
arXiv 2017, arXiv:1709.02210.

27. Sliwa, B.; Ide, C.; Wietfeld, C. An OMNeT++ based Framework for Mobility-aware Routing in Mobile Robotic Networks. arXiv
2016, arXiv:1609.05351.

28. Levis, P.; Lee, N.; Welsh, M.; Culler, D. TOSSIM: Accurate and scalable simulation of entire TinyOS applications. In Proceedings
of the 1st International Conference on Embedded Networked Sensor Systems, Los Angeles, CA, USA, 5–7 November 2003; pp.
126–137.

29. Al-Roubaiey, A.; Sheltami, T.; Mahmoud, A.; Yasar, A. EATDDS: Energy-aware middleware for wireless sensor and actuator
networks. Futur. Gener. Comput. Syst. 2019, 96, 196–206. [CrossRef]

30. Mora-Merchan, J.M.; Larios, D.F.; Barbancho, J.; Molina, F.J.; Sevillano, J.L.; León, C. mTOSSIM: A simulator that estimates battery
lifetime in wireless sensor networks. Simul. Model. Pract. Theory 2013, 31, 39–51. [CrossRef]

31. Sabor, N.; Sasaki, S.; Abo-Zahhad, M.; Ahmed, S.M. A Graphical-based educational simulation tool for Wireless Sensor Networks.
Simul. Model. Pract. Theory 2016, 69, 55–79. [CrossRef]

32. Youssef, A.; Maheswaran, M.; Youssef, L. Wireless GINI: An educational platform for hosting virtual wireless networks. Softw.
Pract. Exp. 2017, 47, 21–59. [CrossRef]

33. Goyal, T.; Singh, A.; Agrawal, A. Cloudsim: Simulator for cloud computing infrastructure and modeling. Procedia Eng. 2012, 38,
3566–3572. [CrossRef]

34. Son, J.; He, T.; Buyya, R. {CloudSimSDN}-{NFV}: Modeling and simulation of network function virtualization and service
function chaining in edge computing environments. Softw. Pract. Exp. 2019, 49, 1748–1764. [CrossRef]

35. Gupta, H.; Vahid Dastjerdi, A.; Ghosh, S.K.; Buyya, R. {iFogSim}: A toolkit for modeling and simulation of resource management
techniques in the Internet of Things, Edge and Fog computing environments. Softw. Pract. Exp. 2017, 47, 1275–1296. [CrossRef]

36. Contiki, O.S. Contiki: The Open Source Operating System for the Internet of Things. Wirel. Netw. 2018, 55, 1543–1559. [CrossRef]
37. Sitanayah, L.; Sreenan, C.J.; Fedor, S. A Cooja-based tool for coverage and lifetime evaluation in an in-building sensor network. J.

Sens. Actuator Netw. 2016, 5, 4. [CrossRef]
38. Ferracuti, F.; Freddi, A.; Monteriù, A.; Prist, M. An Integrated Simulation Module for Cyber-Physical Automation Systems.

Sensors 2016, 16, 645. [CrossRef] [PubMed]

http://doi.org/10.17487/RFC6551
http://doi.org/10.1093/comjnl/bxs042
http://doi.org/10.1109/DEPEND.2009.23
http://doi.org/10.1109/LCN.2006.322172
http://doi.org/10.1016/j.aej.2016.08.003
http://doi.org/10.1109/RAECE.2015.7510232
http://doi.org/10.25007/ajnu.v7n3a199
http://doi.org/10.1007/s11276-016-1418-5
http://doi.org/10.1145/3242102.3242118
http://doi.org/10.1016/j.future.2019.01.060
http://doi.org/10.1016/j.simpat.2012.10.009
http://doi.org/10.1016/j.simpat.2016.09.004
http://doi.org/10.1002/spe.2399
http://doi.org/10.1016/j.proeng.2012.06.412
http://doi.org/10.1002/spe.2755
http://doi.org/10.1002/spe.2509
http://doi.org/10.1016/j.compag.2017.10.007
http://doi.org/10.3390/jsan5010004
http://doi.org/10.3390/s16050645
http://www.ncbi.nlm.nih.gov/pubmed/27164109

Appl. Sci. 2021, 11, 7665 15 of 15

39. Bumb, A.; Iancu, B.; Cebuc, E. Extending Cooja simulator with real weather and soil data. In Proceedings of the 2018 17th
RoEduNet Conference: Networking in Education and Research (RoEduNet), Cluj-Napoca, Romania, 6–8 September 2018; pp. 1–5.
[CrossRef]

40. Aminian, B.; Araújo, J.; Johansson, M.; Johansson, K.H. GISOO: A virtual testbed for wireless cyber-physical systems. In
Proceedings of the IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13
November 2013; pp. 5588–5593.

41. Cheong, E.; Lee, E.A.; Zhao, Y. Viptos: A Graphical Development and Simulation Environment for TinyOS-Based Wireless
Sensor Networks. February 2006. Available online: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-15.html
(accessed on 2 November 2005).

42. Baldwin, P.; Kohli, S.; Lee, E.A.; Liu, X.; Zhao, Y.; Ee, C.T.; Zhou, R. Visualsense: Visual modeling for wireless and sensor network
systems. Tech. Memo. UCB/ERL 2005, 5.

43. Ptolemaeus, C. System Design, Modeling, and Simulation: Using Ptolemy II; Ptolemy. org: Berkeley, CA, USA, 2014; Volume 1.
44. Cheong, E. PtinyOS: Simulating TinyOS in Ptolemy II. Ptolemy.org. 2004. Available online: http://ptolemy.org/books/Systems

(accessed on 18 August 2021).
45. Shu, L.; Hauswirth, M.; Chao, H.-C.; Chen, M.; Zhang, Y. NetTopo: A framework of simulation and visualization for wireless

sensor networks. Ad. Hoc. Netw. 2011, 9, 799–820. [CrossRef]
46. Ma, L.; Wang, L.; Shu, L.; Zhao, J.; Li, S.; Yuan, Z.; Ding, N. NetViewer: A Universal Visualization Tool for Wireless Sensor

Networks. In Proceedings of the 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, Miami, FL, USA, 6–10
December 2010; pp. 1–5. [CrossRef]

47. Castillo, J.A.; Ortiz, A.M.; López, V.; Olivates, T.; Orozco-Barbosa, L. WiseObserver: A Real Experience with Wireless Sensor
Networks. In Proceedings of the 3nd ACM Workshop on Performance Monitoring and Measurement of Heterogeneous Wireless
and Wired Networks, New York, NY, USA, 31 October 2008; pp. 23–26. [CrossRef]

48. Wang, Z.; Zhang, L.; Zheng, Z.; Wang, J. Energy balancing RPL protocol with multipath for wireless sensor networks. Peer-Peer
Netw. Appl. 2018, 11, 1085–1100. [CrossRef]

49. Summerfield, M. Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming (Paperback); Pearson
Education: London, UK, 2007.

50. Bucanek, J. Model-view-controller pattern. In Learn Objective-C for Java Developers; Apress: New York, NY, USA, 2009; pp. 353–402.
51. Gurgens, S.; Rudolph, C.; Mana, A.; Munoz, A. Facilitating the Use of TPM Technologies through S&D Patterns. In Proceedings

of the 18th International Workshop on Database and Expert Systems Applications (DEXA 2007), Regensburg, Germany, 3–7
September 2007; pp. 765–769. [CrossRef]

52. Muñoz, A.; Sánchez-Cid, F.; el Khoury, P.; Compagna, L. {XACML} as a Security and Dependability Pattern for Access Control in
{AmI} environments. In Developing Ambient Intelligence; Springer: Paris, France, 2008; pp. 143–155.

53. Sales, F.O.; Marante, Y.; Vieira, A.B.; Silva, E.F. Energy Consumption Evaluation of a Routing Protocol for Low-Power and Lossy
Networks in Mesh Scenarios for Precision Agriculture. Sensors 2020, 20, 3814. [CrossRef]

54. Avila, K.; Jabba, D.; Gomez, J. Security Aspects for Rpl-Based Protocols: A Systematic Review in IoT. Appl. Sci. 2020, 10, 6472.
[CrossRef]

55. Winter, T.; Thubert, P.; Brandt, A.; Hui, J.W.; Kelsey, R.; Levis, P.; Alexander, R.K. RPL: IPv6 Routing Protocol for Low-Power and
Lossy Networks. RFC 2012, 6550, 1–157. [CrossRef]

http://doi.org/10.1109/ROEDUNET.2018.8514130
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-15.html
http://ptolemy.org/books/Systems
http://doi.org/10.1016/j.adhoc.2010.09.003
http://doi.org/10.1109/GLOCOM.2010.5683876
http://doi.org/10.1145/1454630.1454634
http://doi.org/10.1007/s12083-017-0585-1
http://doi.org/10.1109/DEXA.2007.113
http://doi.org/10.3390/s20143814
http://doi.org/10.3390/app10186472
http://doi.org/10.17487/RFC6550

	Introduction
	Related Works
	Energy Estimations and Metrics
	Discussion
	Architecture
	Simulation Component
	Graphical Options
	Cooja Stack

	Features and Main Components
	Project Manager
	Timer Control
	Project Manager
	Tree View

	Case of Use: Experiment over RPL Protocol
	Conclusions
	References

