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Featured Application: A breast phantom that simulates essential training experience and can be
easily fabricated in hospital for residents to improve their skills and confidence level in perform-
ing ultrasound-guided needle biopsies.

Abstract: We aimed to develop an inexpensive and easy-to-fabricate gelatin-based training phantom
for improving the breast biopsy skill and confidence level of residents. Young’s modulus and acoustic
properties of the gelatin tissue phantom and simulated tumors were investigated. Six residents were
requested to evaluate the effectiveness of the breast phantom. The results showed that 83% (n = 5)
of the participants agreed that the ultrasound image quality produced by the breast phantom was
excellent or good. Only 17% (n = 1) of the participants claimed that there was room for improvement
for the haptic feedback they received during the placement of the core needle into the breast phantom.
The mean pre-instructional score was 17% (SD 17%) for all participants. The mean post-instructional
score was 83% (SD 17%), giving an overall improvement of 67%. In conclusion, the mean needle
biopsy skill and confidence levels of the participants substantially increased through simulation
training on our breast phantom. The participants’ feedback showed the phantom is sufficiently
realistic in terms of ultrasound imaging and haptic feedback during needle insertion; thus, the
training outcome can be linked to the performance of residents when they perform a live biopsy.

Keywords: acoustic properties; breast biopsy; haptic feedback; training phantom; ultrasound imaging

1. Introduction

Impalpable breast lesions found in breast cancer screening can be diagnosed through
percutaneous image-guided breast biopsy. This technique has achieved dramatic improve-
ments in terms of effectiveness and accuracy of diagnosis over the past few decades and
is now commonly performed for palpable and nonpalpable lesions. The number of open
surgical biopsies has declined due to the high accuracy of this minimally invasive needle
biopsy [1].

The human breast is a heterogeneous structure containing different layers of tissues,
predominantly fat and glandular tissues. Factors such as age, menstrual cycle, pregnancy,
lactation, hormone therapy and menopause affect the distribution of these various tissues.
Pathophysiologic processes such as the tumor development change the intrinsic elasticity
of soft tissues [2].

Young’s modulus, the modulus of elasticity, has been used in several studies to
quantify the mechanical properties of breast tissues [3–8]. These studies have reported that
the stiffness of tumor tissue is much higher than that of normal breast tissues. Moreover,
fibrous, glandular and tumor tissues have higher Young’s moduli than adipose tissue.
Ramião et al. summarized the results of mechanical testing of ex vivo breast tissue: The
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average Young’s modulus is 0.69–24 kPa for normal fat tissue, 0.73–271.8 kPa for normal
glandular tissue, 3.4–2162 kPa for tumor tissue (ductal carcinoma in situ) and 10–1366.5 kPa
for tumor tissue (invasive ductal carcinoma) [9]. This wide variation in Young’s modulus
is found both across and within various tissue types. The variation is particularly large in
normal fat and fibroglandular tissues.

The acoustic properties of real tissues vary among people and are not constant even
within a person’s body, giving rise to considerable variation in the literature [10,11].

Ultrasound-guided breast biopsy is commonly used for tissue diagnoses of sono-
graphically visible breast lesions. Nevertheless, many radiology residents in their graduate
residencies have no hands-on experience in performing the procedure [12]. Until now, the
traditional apprenticeship training method on live patients has been practiced in the medi-
cal field instead of simulation training. The Accreditation Council for Graduate Medical
Education has strongly encouraged enhancing safety, predictability and respect for patients
by increasing the use of simulation training in graduate medical education [13]. Hence,
there is a clinically unmet need for training phantoms.

In several residency training programs, turkey breast or gel breast phantoms are
commonly used for simulation training of freehand ultrasound-guided breast procedures,
as discussed below. Pimento within the olive was embedded within a turkey breast
to simulate the target for biopsy training [14]. To develop a breast phantom that has
more realistic tactility and appearance in ultrasound images, a chicken breast phantom
was embedded with polyvinyl acetate lesions to mimic the heterogeneity of real breast
tissue [15].

Gelatin-based phantoms are the most described simulation technique in the litera-
ture [12,16–22]. In these studies, pitted olives with pimentos, capers, grapes, peas, potatoes
and strawberries were used to simulate breast masses for ultrasound-guided core biopsy;
rubber glove fingers filled with water and bath oil beads coated with nail polish were
used to simulate breast cysts for ultrasound-guided fine-needle aspiration. Plastic beads
were embedded in the gelatin-based phantom developed by the Nicholson group [23].
Ruschin et al. proposed a gelatin-based breast phantom consisting of a simulated tumor
with realistic imaging properties [24]. The background used in breast tissue simulation
was made of ballistic gelatin powder and Metamucil, whereas the simulated tumors were
composed of barium sulfate, copper sulfate, Metamucil and ballistic gelatin.

Madsen et al. developed a gelatin-agar-based breast phantom that could closely
mimic the acoustic properties and density of real breast tissues [25]. The same authors
later suggested dispersing safflower oil in solid aqueous gelatin to allow elastography in
a gelatin-agar-based breast phantom [26]. The method combined oil, gelatin and agar to
fabricate the glandular tissue, fat tissue, skin and Cooper’s ligaments. The difference in
Young’s modulus between normal and abnormal breast tissues was mimicked by adjusting
the proportions of the oil and gelatin. Dang et al. proposed another gelatin-agar-based
phantom that could reproduce the acoustic and elastic properties of fat tissue, glandular
tissue, fibrous tissue and carcinoma [27].

We also found a type of tissue-mimicking material for ultrasound-guided breast
biopsy training that used paraffin-gel wax. Vieira et al. developed a paraffin-gel wax-based
phantom embedded with cyst and tumor models [28].

Another group of studies developed polyvinyl chloride (PVC)-based phantoms. A two-
layered breast phantom (breast fat and mixed fatty-fibroglandular tissue) was developed
using customizable PVC plastisol formulations that could mimic the acoustic and optical
properties of different breast tissues [29]. Besides, a multi-layered breast phantom [30]
was built using a custom PVC plastisol formulation to simulate fat, fibroglandular tissue
and blood vessels with tissue realistic acoustic and optical properties. The phantom also
included embedded tumors that were modeled as clusters of small blood vessels and
skin that was mimicked using a silicon layer. Finally, PVC-based material was used to
mimic the glandular breast tissue and the 3D printing technique was used to construct
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a custom-designed breast phantom mold and the embedded inserts (microcalcifications,
fiber lesions and tumors with different sizes) [31].

A silicone-based breast phantom was constructed with components emulating a
breast parenchyma/chest wall (silicone rubber mixed with agricultural grade silicone
oil), epidermis (mesh fabric layer applied with silicone rubber), areola/nipple (epidermis
mixture and a silicone baby bottle nipple as the mold) and a tumor (marble) [32].

Commercial products of breast phantom for practicing ultrasound needle biopsy are
professionally made and can contain different types of lesions [33–35]. However, they are
mainly developed for ultrasound imaging and may not provide realistic haptic feedback.
None of these products contains a fat tissue layer to simulate the multi-layer structure of
the human breast. More importantly, the commercial phantom products are unaffordable
(more than USD 150 per set) for most hospitals as a training tool and are not available in
all countries.

A comprehensive analysis of the aforementioned tissue-mimicking phantoms is pro-
vided in Table 1. Turkey and chicken breast phantoms are cheap (about USD 15) and can
be obtained easily [14,15]. While acquiring turkey/chicken breasts is simple, extra steps,
such as cleaning and thawing, can be troublesome and not user friendly. Gelatin-based
phantoms are also easy to prepare and cheap (less than USD 20) [12,16–24]. This type of
phantoms is currently not well studied in terms of its tunability of acoustic and mechanical
properties and a way to make it a multilayer structure. Gelatin-agar- [25–27], paraffin-gel
wax- [28], PVC- [29–31] and silicone rubber-based [32] phantoms are considered as more
advanced types of phantoms that can closely resemble acoustic and mechanical properties
of human tissues. These phantoms are adjustable in terms of acoustic and mechanical
properties and capable of being made in a multilayer structure. The gelatin-agar based
phantoms were also shown to mimic various types of lesions [25–27]. However, these
advanced phantoms all require a much more complex fabrication process, which can in-
volve procedures of mixing multiple materials, long preparation time, long waiting time
for materials to set/cure in middle steps and high-temperature heating (180–200 ◦C). The
cost of the materials needed for the advanced phantoms (USD 60 and above) is higher than
turkey/chicken and gelatin-based phantoms. Commercial products are ready to use and
have good contrast between background and target tissue in ultrasound imaging. However,
they are very expensive and unaffordable by clinics. Moreover, they may not resemble
acoustic and mechanical properties of human tissues and currently have no multilayer
structure available.

Table 1. A comparison of existing methods and commercial products of tissue mimicking breast phantom.

Available
Phantoms Types Fabrication

Process Cost Tissue-Mimicking Capability

[14,15] Turkey/chicken Simple but extra
preparation needed Low

� Geometry is limited
� Acoustic and mechanical properties are

similar but not adjustable

[12,16–24] Gelatin Simple Low

� Acoustic and mechanical properties are
adjustable but not well studied

� No various lesion types
� No multilayer structure

[25–27] Gelatin-agar Complex Medium

� Can resemble acoustic and
mechanical properties

� Various lesion types
� Multilayer structure

[28] Paraffin-gel wax Complex Medium

� Can resemble acoustic and
mechanical properties

� Various lesion types
� Multilayer structure
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Table 1. Cont.

Available
Phantoms Types Fabrication

Process Cost Tissue-Mimicking Capability

[29–31] PVC Complex Medium

� Can resemble acoustic and
mechanical properties

� Various lesion types
� Multilayer structure

[32] Silicone rubber Complex Medium

� Can resemble acoustic and
mechanical properties

� Various lesion types
� Multilayer structure

[33–35] Commercial
product Ready to use High

� Can resemble acoustic and
mechanical properties

� Various lesion types
� Multilayer structure

Many phantom users have reported that the existing phantoms do not provide ade-
quate discrimination for basic imaging characteristics (e.g., resolution and contrast reso-
lution) [36]. The study also suggested that the existing methods and test objects remain
unable to relate image quality to clinical performance. In that sense, the influence of fat
is largely underestimated. Test objects do not generally show the type of artifacts that
normally appear in real tissue, nor do they represent complex tissue structures [36].

Ultrasound plays a vital role in breast cancer screening and has been used to dis-
tinguish benign lesions from malignant lesions and provide guidance during interven-
tional biopsies. Therefore, the ultrasound operator must be properly trained. This can
be implemented by the use of anthropomorphic training phantoms. Gelatin-based phan-
toms [12,16–24] have the advantages of becoming a cost-efficient solution for the needle
biopsy simulation training. Their acoustic and mechanical properties are adjustable but
not well investigated yet. The existing low-cost gelatin-based phantoms all have simple ge-
ometry and construction and do not represent the human breast tissue structure [12,14–24].
Therefore, this study aims to develop a low-cost and easy-to-fabricate gelatin phantom
embedded with simulated tumors that provide realistic haptic feedback. Test objects were
constructed in three dimensions to obtain realistic ultrasound images. Additionally, me-
chanical and acoustic properties of the test objects characterized in this study are provided
in this study as a reference for future research.

2. Materials and Methods
2.1. Breast Phantom Manufacture

A double-layered gelatin-based phantom consisting of malignant tumors, benign
tumors and cysts was produced. Gelatin tissue samples were produced by tuning the
concentration of gelatin until its Young’s modulus was similar to that of fat or glandular
tissues. The simulated tumors were chosen on the basis of feedback from an experienced
doctor to provide a realistic haptic feedback force during core needle placement.

Molds: Two hemisphere-shaped molds with different diameters, 90 mm (mold A) and
120 mm (mold B), were designed using the computer-aided design software SolidWorks
(SolidWorks 2018; Dassault Systèmes SolidWorks Corporation), as shown in Figure 1. The
molds were manufactured through three-dimensional printing using polylactide.
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Figure 1. Three-dimensional engineering drawing of mold A). Unit: mm.

Simulated tumors: A rubber glove finger filled with colored solution was used to
simulate cysts with a diameter of approximately 20 mm. Benign tumors were simulated
using regularly shaped dried sweet potato and dried agar konjac with a diameter of 10
mm. The malignant tumor, which is the target of needle biopsy, was simulated using a
pickled shallot carved into an irregular shape.

Glandular tissue: Gelatin powder (40 g) was dissolved in 200 mL of 70 ◦C tap water.
The solution was mixed at 60 rpm for 5 min. The air bubbles were removed. Red and
blue food coloring was added to give the gel solution an opaque appearance. The gel
solution was poured into mold A until it was 90% full to simulate the breast contour. The
gel solution was refrigerated at 4 ◦C for 30 min until it reached a semi-molten consistency.
The simulated tumors (Figure 2a) were placed shallow in the mold. The gel solution was
poured into the mold again until it was fully filled to cover the simulated tumors. The
semi-molten gel was then refrigerated for another 2 h. The completely solidified glandular
tissue was removed from the mold and prepared for use later.

Fat tissue: Gelatin powder (15 g) was dissolved in 300 mL of 70 ◦C tap water. The
solution was mixed at 60 rpm for 5 min. Air bubbles were removed. Red and blue food
coloring was mixed in to give the gel solution an opaque appearance. A height of 12.5 mm
from the base of mold B was marked. The gel solution was poured into mold B up to the
marked line (Figure 2b). The gel solution was refrigerated for 30 min at 4 ◦C. Solidified
glandular tissue from mold A was placed on top of the solidified gel in mold B and it was
made sure that the space between mold B and the glandular tissue was uniform (12.5 mm
for spacing distance), as depicted in Figure 2b. Gel solution was poured into the mold again
until the uniform space between mold B and the glandular tissue was fully filled. The gel
solution was refrigerated for another 4 h until it had completely solidified. A successfully
developed multilayered breast phantom embedded with simulated tumors is shown in
Figure 2c.
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Figure 2. (a) Rubber glove finger filled with colored solution, dried sweet potato, dried agar konjac
and carved shallot were used to simulate tumors (from left to right); (b) gel solution was poured
until the line mark (indicated by black hollow arrow) located at a height of 12.5 mm from the base
(left) and spacing distance of 12.5 mm between the solidified glandular tissue and mold B (right);
(c) gelatin-based phantom which consists two layers with different stiffness and embedded with
simulated tumors.

2.2. Mechanical Property Characterization

Cylindrically shaped gelatin tissue samples (wt. 16.67% and wt. 4.76%) with 76-mm
diameter and 25-mm height were fabricated and tested to characterize their mechanical
behavior under deformation. The indentation test was conducted at room temperature
(24 ◦C) by using MTS INSIGHT-1 to obtain the relationship between the compressive
force and displacement [37]. An indenter of 12 mm in diameter moved downward with a
velocity of 0.5 mm/s until a depth of 6 mm was reached while the force and displacement
were recorded. The Young’s modulus (E) of the gelatin tissue sample was calculated as
follows [37]:

E =
(1 − v)2

2ak
F
w

(1)

where F is the force applied to the indenter at the maximum indentation depth, ν is the
Poisson’s ratio of the sample, w is the indentation depth, a is the radius of the indenter
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and κ is a nondimensional parameter, which can be defined by a given combination of ν,
a/h and w/h (h is the thickness of sample). The development of this equation can be found
in [37]. In our experimental setup, κ was calculated as 1.3624 according to the parameter
table also provided in [37], given that the Poisson’s ratio of the gelatin tissue sample was
approximately 0.5, a/h was 0.24 and w/h was 4%.

2.3. Acoustic Property Characterization

The acoustic testing system comprised a pulse receiver (Model 5072PR; OLYMPUS), a
three-axis motor stage, a data acquisition card (PXI–5152; National Instruments) and the
programming environment LabView (Figure 3). A broadband immersion transducer with
frequencies centered at 5 MHz was used in this system.
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Figure 3. Scanning acoustic macroscope (SAMa) system.

The single transducer worked as both a transmitter and receiver (pulse-echo approach)
to measure the speed of sound, attenuation coefficient, and relative backscatter power
of the sample. The measurements were conducted in a degassed-water-filled tank, the
glass bottom of which acted as a reflector plane. The three-axis motor stage accurately
positioned the transducer in the tank to focus on the reflector. The ultrasonic pulse was
transmitted through the water to the reflector. The transducer received the reflected pulse,
and the data were saved and analyzed in MATLAB R2018b. For each measurement of a
sample, two data sets were obtained by scanning the reflector with and without the sample
placed between the transducer and reflector (reference data and sample data, respectively).
Three measurements were performed on each sample. All acoustic measurements were
performed in degassed water at room temperature of 24 ◦C.

The time interval between the peaks of the radio frequency pulses was computed
using MATLAB. A Perspex mold was placed inside the water tank, between the transducer
and reflector, when the sample was not in place. The following equation was used to
calculate the speed of sound of the sample [38]:

cm =

(
Tw − Tm

t2 − t1
+ 1

)
cw (2)

where cw is the speed of sound in water measured by scanning the reflector plane at 1
mm height differences, as illustrated in Figure 3; Tm and Tw are the travel times with and
without the sample in the propagation path of the pulse signal obtained from the sample
and reference data, respectively; and t1 and t2 are the travel times of the pulse signal from
the transducer to the front and rear faces of the sample, respectively. The derivation of this
equation can be referred to [38].

The logarithmic difference between the spectra was used to calculate the attenuation
coefficient, α (dB/cm), as shown in Equation (3) [39], where d is the thickness of the sample
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and A(f ) and A0(f ) are the magnitude spectrum of the sample and reference at frequency f,
respectively.

α( f ) = −20
2d

log10
A( f )
A0( f )

(3)

A backscattered radio frequency (RF) signal was captured between the front face of the
sample and reflector plane for backscatter power measurement. Welch’s method was used
to estimate the spectral power density and obtain the normalized distribution of power
per unit frequency to the total received power in the backscattered RF signal. The relative
backscatter power of the sample at frequency f, µ(f ), was calculated using the reference
power spectrum, P0(f ), of the reference RF signal as follows [40]:

µ( f ) = −10log10
P( f )
P0( f )

(4)

2.4. Breast Hantom Validation Workshop

A workshop was organized to evaluate the effectiveness of the developed single-
layered phantom in improving participants’ core needle biopsy skill (Figure 4a). A clinical
ultrasound system with an 8 MHz high-frequency linear probe, core needles and a gelatin-
based breast phantom (Figure 4b) were prepared. Six participants with different experience
levels were invited to perform preinstructional biopsy. The including criteria was physi-
cians who are in their residency training, fellows, or attendings. The workshop has no
specific excluding criteria. The participants were asked to take an experience level ques-
tionnaire (Appendix A) to determine if they were inexperienced, moderately experienced,
or experienced. We ensured that all three levels of participants were recruited in this
workshop. An experienced doctor then delivered a hands-on tutorial to the participants.
The participants were given 10 min to practice the biopsy as many times as desired. A
postinstructional biopsy was then performed by the participants after their practice session.
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At the beginning of the workshop, the participants’ levels of experience with ultrasound-
guided core needle biopsy were assessed through three questions, resulting in a score range
of 0–7. The participants were then categorized as inexperienced (score of 0), moderately
experienced (1–4) or experienced (5–7), see Appendix A.

The effectiveness of the gelatin-based breast phantom at improving the participants’
confidence in performing challenging ultrasound-guided core needle biopsy was assessed
through a self-assessment questionnaire (Appendix B). Before the simulation training, each
participant completed a questionnaire scored using a 10-point Likert scale to assess his or
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her confidence in performing the ultrasound-guided breast biopsy without causing chest
wall injury (Appendix C).

During the practical session, a participant’s skill level of performing core needle biopsy
was evaluated by comparing their preinstructional and postinstructional scores. A total of
two points could be awarded for each needle biopsy operation if the biopsy was found to
be a success in ultrasound imaging (+1) and a sufficient portion of the simulated malignant
tumor had been retrieved in the biopsy needle (+1). However, a through-and-through
puncture or penetration of the phantom backing was considered a chest wall hit, which
resulted in the deduction of one point (−1). The participants were encouraged to perform as
many practice biopsies as necessary before and after instruction. The percentage score was
the total score of the participant divided by the highest possible score based on the number
of biopsies performed. The percentage scores of participants before and after instruction
were compared. The percentage mean scores of preinstructional and postinstructional tests
were plotted on standard distribution curves.

After the simulation training, each participant repeated the questionnaire to assess
their confidence in performing the ultrasound-guided breast biopsy. The satisfaction of
the participants with the gelatin-based breast phantom was evaluated. Feedback was
collected regarding the ultrasound image quality produced by the phantom and haptic
feedback of the phantom that the participants received during core needle placement
(Appendices D and E). Through this survey, the aspects of the phantom that residents
valued the most could be better understood.

A further study on the multilayered gelatin-based phantom (fat tissue, glandular tissue
embedded with simulated tumors) was conducted. The ultrasound images of embedded
objects and simulated tissue layers were examined. The user feedback was also collected.

3. Results
3.1. Mechanical and Acoustic Property Characterization

The mechanical and acoustic properties of the gelatin-based phantom and its simulated
tumors were investigated. Gelatin tissue samples with wt. 16.7% and wt. 4.76% were
fabricated to simulate glandular tissue and fat tissue, respectively. Force and displacement
graphs for gelatin tissue samples were acquired from indentation tests performed at
room temperature (24 ◦C). The Young’s moduli of the glandular and fat gelatin tissue
samples were 15.4 and 2.3 kPa, respectively, which fall reasonably in the ranges for real
normal fibroglandular tissue and normal fat tissue, as listed in Table 2 [9]. Moreover, the
difference in stiffness between these two types of tissues could be distinguished. The
speed of sound, attenuation coefficient and relative backscatter power of each sample
were measured at a frequency of 5 MHz at room temperature. The range of acoustic
properties discovered in the samples is displayed in Table 3. It should be explained that the
ultrasound relative backscatter power value is a ratio function of the difference in acoustic
characteristic impedance between the medium (water) and target tissue (sample) and the
acoustic characteristic impedance is determined by the density of tissue multiplied by the
speed of sound. Hence, the negative relative backscatter power value in the table indicates
acoustic impedance of the sample is relatively low compared to the water.

Table 2. Mechanical and acoustic properties for fat tissue, glandular tissue and tumor from literature review [9].

Breast Tissue Composition Young’s Modulus
(kPa)

Speed of Sound
(m/s)

Attenuation Coefficient
(dB/cm)

Normal fibroglandular tissue 0.73–271.8 1553 ± 35 2.0 ± 0.7 at 7 MHz
Normal fat tissue 0.69–24 1479 ± 32 0.6 ± 0.1 at 7 MHz
Malignant lesions 6.41 ± 2.86 1550 ± 35 1.0 ± 0.2 at 7 MHz
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Table 3. Experimental results of mechanical and acoustic properties for simulated glandular tissue, fat tissue and tumor.

Sample Young’s Modulus (kPa) Speed of Sound
(m/s)

Attenuation
(dB/cm)

Relative Backscatter Power
(dB)

Glandular tissue 15.4 1684.26 ± 36.16 2.69 ± 0.07 3.11 ± 0.18
Fat tissue 2.3 1534.49 ± 1.22 2.34 ± 0.03 0.49 ± 0.10

Rubber glove
with colored

solution
- 1506.50 ± 6.07 4.50 ± 0.49 −0.46 ± 0.70

Dried sweet
potato - 1475.50 ± 17.82 4.12 ± 0.20 12.62 ± 0.48

Dried agar konjac - 1428.49 ± 1.81 3.46 ± 0.54 3.04 ± 0.26
Shallot - 1503.83 ± 1.19 6.98 ± 0.11 7.21 ± 0.15

3.2. Breast Phantom Validation Workshop

Single-layered gelatin-based phantoms (glandular tissue embedded with simulated
tumors) were evaluated by six participants in the validation workshop. All the participants
completed the pretraining and posttraining questionnaires. The participants ranged from
trainees to experienced doctors, with varying levels of experience in ultrasound-guided
biopsy: 50% (n = 3) of the participants were inexperienced, 33% (n = 2) were moderately
experienced and the remaining 17% (n = 1) were experienced.

The mean preinstructional score of the participants was 17% (SD 17%). The mean
postinstructional score was 83% (SD 17%), in which an overall improvement of 67% was
achieved (Figure 5). Among individual groups, the experienced group performed perfectly
before and after the instruction; all subjects in the moderately experienced group showed
an improvement from 0% to 100%; two of the three inexperienced subjects also improved
from 0% to 100%, while one remained at 0%. No chest wall hits were found in any group
in the preinstructional and postinstructional tests.
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Overall, the confidence level of all participants in the workshop substantially increased.
A comparison between the pretraining and posttraining evaluation scores is shown in
Figure 6. Among individual groups, the experienced group improved the confidence level
from 80% to 90%; the moderately experienced group showed an improvement from 55%
(SD 5%) to 85% (SD 5%); the inexperienced group improved from 20% (SD 10%) to 47%
(SD 20%).
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The results of the survey (Table 4) showed that, overall, the developed phantom
satisfied the participants. Furthermore, 83% (n = 5) of the participants agreed that the
ultrasound image quality produced by the breast phantom was excellent or good. However,
only 17% (n = 1) of the participants claimed that there was room for improvement for
the haptic feedback they received during the placement of the core needle into the breast
phantom. In this survey, the aspects of the breast phantom that the participants valued the
most were investigated. The most valuable aspects were ultrasound image quality (25%),
haptic feedback (25%), ease of use (25%), cost (15%) and design (10%).

Table 4. Survey on single-layered gelatin-based breast phantom.

Survey
(Single-Layered Phantom)

Number of Respondents (Total n = 6)

Excellent Good Neutral Poor Very Poor

1. Overall how satisfied would you rate the
developed phantom?

2
(33%)

3
(50%)

1
(17%) - -

2. How was the ultrasound image quality
produced by the phantom?

1
(17%)

4
(66%)

1
(17%) - -

3. Was the haptic feedback you received
during the placement of core needle into
the phantom was a realistic feel?

1
(17%)

2
(33%)

2
(33%)

1
(17%) -

A further study on the multilayered gelatin-based phantom (fat tissue, glandular
tissue embedded with simulated tumors) was conducted (Table 5). Example ultrasound
images of the tumors embedded in the gelatin-based phantom are shown in Figure 7a–d.
All participants agreed that the ultrasound image produced by the multilayered breast
phantom was similar to that of actual breast fat tissue. The artefact caused by the boundary
between the fat and glandular tissues could be clearly visualized (Figure 7e). Moreover, all
the participants also claimed that the haptic feedback they received during placement of
the core needle into the multilayered gelatin-based phantom was more realistic than that
for the single-layered phantom.
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Table 5. Survey on multilayered gelatin-based breast phantom.

Survey
(Multilayered Phantom)

Number of Respondents (Total n = 6)

Yes No

1. Was the ultrasound image produced by the multilayered phantom
similar to the fat tissue for real breast?

6
(100%) -

2. Was the haptic feedback of multilayered phantom you received during
the placement of core needle into it was more realistic than the
single-layered gelatin based phantom?

6
(100%) -
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4. Discussion

The learning curve for performing ultrasound-guided breast biopsy could be overcome
by performing simulation training using a breast phantom. Considerable improvements
were achieved in the moderately experienced and inexperienced groups through training
using the developed breast phantom. Compared with the preinstructional performance,
the postinstructional score revealed a 4.88-fold improvement (Figure 5), with the largest
improvement achieved in the moderately experienced group. The experienced group, com-
prising one participant who had prior training in ultrasound-guided biopsy and frequently
performed office-based ultrasound in his or her practice already had the highest percentage
score in the preinstructional test and this was unchanged in the postinstructional test.

The breast-phantom-based training was well received by the participants and signifi-
cantly increased their confidence in performing the ultrasound-guided breast biopsy. The
outcome could be seen in the improved percentage mean scores of the postinstructional
test for the moderately experienced and inexperienced groups.

Overall, the gelatin-based breast phantom developed in this study satisfied the partici-
pants. The Young’s modulus of the phantom tissue samples measured from the indentation
test fell reasonably in the reported ranges of the Young’s modulus for real normal fibrog-
landular tissue and normal fat tissue [9]. Simulated glandular tissue has higher Young’s
modulus compared to the simulated fat tissue; hence, the glandular tissue will produce a
stiffer haptic feedback. However, our survey suggested that there should be a larger differ-
ence in haptic feedback between benign and malignant tumors, which can be understood
as the Young’s moduli in the literature having large variation.

Acoustic parameters and ultrasound images for our simulated tumors have been
provided as a reference for future studies. All the acoustic parameters were measured with
5 MHz single element transducer (in-house developed ultrasound system). Meanwhile, the
ultrasound images were captured using the clinical available ultrasound system (8 MHz)
in hospital to confirm the visual outcome. Acoustic parameters such as speed of sound are
dependent on the sample’s density and acoustic impedance; hence, the frequency of the
transducer used will not affect the results. Moreover, our study showed that samples with
a higher Young’s modulus would pose a higher value in acoustic parameters (i.e., speed
of sound, attenuation coefficient and relative backscatter power) and appears brighter in
ultrasound imaging.

The participants could differentiate between the shapes of cysts and benign and
malignant tumors in ultrasound images. The multilayered gelatin-based breast phantom
produced an ultrasound image similar to that produced by the fat tissue in real breasts.
Artifacts caused by the boundary between the fat and glandular tissues in a real breast were
successfully duplicated in our multilayered gelatin-based phantom (Figure 7e). Acoustic
properties and ultrasound images for our simulated tumors have been provided as a
reference for future studies.

Numerous low-cost DIY breast phantoms have been proposed. Turkey/chicken breast
embedded with peas and gelatin-based phantoms are the most commonly used models in
ultrasound-guided breast biopsy simulation training [12,14–24]. While turkey and chicken
breast can be easily obtained from the supermarket, their preparation process, such as
cleaning and thawing, can be troublesome and is not user friendly. Different types of ready-
to-use materials have been used to simulate tumors. Aspects such as shape, brightness and
contrast of the embedded simulator in ultrasound images are prioritized when selecting
a material, but the haptic force produced by the embedded simulator during needle
insertion may be overlooked. We were also unable to find a low-cost DIY breast phantom
that contains all three types of simulators: A benign tumor, malignant tumor and cyst.
Moreover, we only found one in these low-cost breast phantoms that has different layers of
breast tissue, but the lack of simulated tumors makes this phantom unsuitable for breast
biopsy training [26]. Our gelatin-based breast phantom is a low-cost and multilayered
breast phantom embedded with simulated benign tumors, malignant tumors and cysts
for breast biopsy simulation training. The total cost of our phantom including the mold
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fabrication was approximately USD 7. The price of our training phantom is thus extremely
low compared with that of the existing methods and commercially available ultrasound-
guided breast phantoms.

Environmental temperature control is crucial to maintaining the stability of a gelatin-
based phantom. The Young’s modulus of a gelatin-based phantom decreases as the tem-
perature increases. The indentation tests were conducted at 24 ◦C and the results showed
that the Young’s modulus of the components in the phantom fell reasonably within the
reported ranges. The temperature of the breast phantoms used in the validation workshop
could not be ideally controlled. Each phantom was kept in a cooler until being offered to a
participant to operate. In this scenario, the temperature of each phantom was measured
as 19 ◦C immediately before the operation. Based on the results of the indentation tests
and validation, we recommend that users handle the proposed gelatin-based phantom at
19 ◦C–24 ◦C. A gelatin sample with a low concentration, such as a fat-tissue-mimicking
sample, will start losing its original form when the sample temperature exceeds 25 ◦C.

This study certainly has limitations. Our participants were few and from a single
academic center. Moreover, some facets of real-world experience were not reproduced in
our simulation. For instance, the orientation of the patient cannot be adjusted as easily
as that of the small training phantom during the biopsy procedure. A gap between the
improved performance of participants’ biopsy skill level after simulation training and that
in the clinical setting may therefore appear. However, our findings can serve as a basis
for proving that an unmet clinical need exists and training involving our breast phantom
is efficient in improving the confidence and skill level of residents at performing needle
biopsy. A follow-up evaluation must be performed to determine whether the training
outcome is related to the performance of the participants in the real clinical setting.

5. Conclusions

This study provides a protocol for developing a low-cost and easy-to-fabricate mul-
tilayered gelatin-based breast phantom embedded with various types of lesions. The
mechanical properties of the gelatin phantom and embedded simulated tumors were stud-
ied to ensure that realistic needle-insertion haptic feedback is provided. The gelatin-based
phantom enabled residents to improve their confidence level in performing ultrasound-
guided needle biopsy. Simulation training on the breast phantom can enable residents
to master the needle biopsy skill before advancing to performing procedures on patients.
Complications can be reduced through training, especially when the ultrasound-guided
biopsy procedure is performed by an inexperienced resident. Acoustic properties and
ultrasound images for our simulated tumors are provided as a reference for future study.
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Appendix A Participant’s Experience Level Questionnaire

Please answer the following questions regarding your experience in using ultrasound
guided biopsy. We appreciate your feedback.

1. Have you received previous training in ultrasound guided biopsy?

# Yes, through training course/workshops
# Yes, as a part of surgical training
# No

2. How often do you perform office-based ultrasound in your practice?

# Frequently
# Rarely
# Never

3. How would you rate your experience in performing ultrasound guided biopsies?

# Frequently on patients
# Infrequently on patients
# Only on training phantoms
# Never performed one previously

Thank you for taking the time to answer this survey.

Appendix B Participant’s Core Needle Biopsy Skill Level Assessment

The practical test was evaluated by comparing the pre-instructional and post-instructional
scores of the participant.

(a) Pre-instructional practical test assessment

1. Is the participant able to obtain the radiologic evidence of a successful biopsy?

# Yes
# No

2. Is there any procurement of material from the simulated lesion on the biopsy
needle?

# Yes
# No

3. Is the successful biopsy without through-and-through puncture of the phantom
or penetration of the phantom backing?

# Yes
# No

(b) Post-instructional practical test assessment

1. Is the participant able to obtain the radiologic evidence of a successful biopsy?

# Yes
# No

2. Is there any procurement of material from the simulated lesion on the biopsy
needle?

# Yes
# No

3. Is the successful biopsy without through-and-through puncture of the phantom
or penetration of the phantom backing?

# Yes
# No
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Thank you for taking the time to answer this survey.

Appendix C Participant’s Self-Assessment Questionnaire

The purpose of this study is to assess the effectiveness of gelatin based breast phantom
in simulating challenging ultrasound guided core needle biopsy procedures. We would
specifically like to assess your subjective confidence levels of performing challenging breast
biopsy procedures before and after your simulation training on the breast phantoms. We
appreciate your feedback.

On a 1 to 10 scale (1 equals no confidence; 10 equals great confidence). Please rate
your pre-training and post-training confidence level in performing the ultrasound guided
breast biopsy procedures without causing chest wall injury.

(a) Pre-training self confidence level assessment

Successfully performing an ultrasound guided core needle biopsy without causing
chest wall injury.

1 2 3 4 5 6 7 8 9 10

(b) Post-training self confidence level assessment

1 2 3 4 5 6 7 8 9 10

Successfully performing an ultrasound guided core needle biopsy without causing
chest wall injury.

Thank you for taking the time to answer this survey.

Appendix D Gelatin Based Breast Phantom Satisfaction

1. With regards to your experience with the gelatin based phantom in this workshop,
how was the ultrasound image quality produced by the phantom?

# Very Poor
# Poor
# Average
# Good
# Excellent

2. With regards to your most recent experience with the gelatin based phantom, was the
haptic feedback of phantom you received during the placement of core needle into
the phantom was a realistic feel?

# Strongly Disagree
# Disagree
# Neutral
# Agree
# Strongly Agree

Please indicate the reason(s) if you strongly disagree or disagree.
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# Ease of use
# Other, please specify:

4. Taking into considerations of the features and benefits of the product itself, overall
how satisfied would you rate the product?

# Very Dissatisfied
# Dissatisfied
# Neutral
# Satisfied
# Very Satisfactory

Would you please take a few minutes to describe why you are not satisfied with the
product?
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1. With regards to your experience with the multilayered gelatin based phantom in this
workshop, was the ultrasound image produced by the phantom similar to the fat
tissue for real breast?
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