The Impact of Geographical Location on the Chemical Compositions of Pimpinella lutea Desf. Growing in Tunisia
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Plant Material
2.2. Extraction Method
2.3. GC–FID and GC–MS Analyses of Essential Oils Extracted by Hydrodistillation
2.3.1. Gas Chromatography–Flame Ionization Detector (GC–FID)
2.3.2. Gas Chromatography–Mass Spectrometry (GC–MS)
2.3.3. Identification of the Constituents
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Türk, D.; Hall, M.D.; Chu, B.F.; Ludwig, J.A.; Fales, H.M.; Gottesman, M.M.; Szakács, G. Identification of Compounds Selectively Killing Multidrug-Resistant Cancer Cells. Cancer Res. 2009, 69, 8293–8301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavela, R.; Maggi, F.; Iannarelli, R.; Benelli, G. Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta Trop. 2019, 193, 236–271. [Google Scholar] [CrossRef] [PubMed]
- Benellia, G.; Pavelab, R.; Zorzettoc, C.; Sánchez-Mateoc, C.C.; Santinid, G.; Canalea, A.; Maggid, F. Insecticidal activity of the essential oil from Schizogyne sericea (Asteraceae) on four insect pests and two non-target species. Èntomol. Gen. 2019, 39, 9–18. [Google Scholar] [CrossRef]
- Raskin, I.; Ribnicky, D.M.; Komarnytsky, S.; Ilic, N.; Poulev, A.; Borisjuk, N.; Brinker, A.; Moreno, D.A.; Ripoll, C.; Yakoby, N.; et al. Plants and human health in the twenty-first century. Trends Biotechnol. 2002, 20, 522–531. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Hammami, S.; Jmii, H.; El Mokni, R.; Khmiri, A.; Faidi, K.; Dhaouadi, H.; El Aouni, M.H.; Aouni, M.; Joshi, R.K. Essential Oil Composition, Antioxidant, Cytotoxic and Antiviral Activities of Teucrium pseudochamaepitys Growing Spontaneously in Tunisia. Molecules 2015, 20, 20426–20433. [Google Scholar] [CrossRef]
- Snene, A.; El Mokni, R.; Jmii, H.; Jlassi, I.; Jaïdane, H.; Falconieri, D.; Piras, A.; Dhaouadi, H.; Porcedda, S.; Hammami, S. In vitro antimicrobial, antioxidant and antiviral activities of the essential oil and various extracts of wild (Daucus virgatus (Poir.) Maire) from Tunisia. Ind. Crop. Prod. 2017, 109, 109–115. [Google Scholar] [CrossRef]
- Riahi, L.; Elferchichi, M.; Ghazghazi, H.; Jebali, J.; Ziadi, S.; Aouadhi, C.; Chograni, H.; Zaouali, Y.; Zoghlami, N.; Mliki, A. Phytochemistry, antioxidant and antimicrobial activities of the essential oils of Mentha rotundifolia L. in Tunisia. Ind. Crop. Prod. 2013, 49, 883–889. [Google Scholar] [CrossRef]
- Debbabi, H.; El Mokni, R.; Jlassi, I.; Falconieri, D.; Piras, A.; Mastouri, M.; Porcedda, S.; Hammami, S. Gas chromatography combined with mass spectrometry and flame ionization detection for identifying the organic volatiles from Stachys arvensis, S. marrubiifolia and S. ocymastrum. Int. J. Mass Spectrom. 2018, 432, 59–64. [Google Scholar] [CrossRef]
- Tripathi, P.; Dubey, N. Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol. Technol. 2004, 32, 235–245. [Google Scholar] [CrossRef]
- Mittal, R.P.; Rana, A.; Jaitak, V. Essential Oils: An Impending Substitute of Synthetic Antimicrobial Agents to Overcome Antimicrobial Resistance. Curr. Drug Targets 2019, 20, 605–624. [Google Scholar] [CrossRef]
- Delfine, S.; Marrelli, M.; Conforti, F.; Formisano, C.; Rigano, D.; Menichini, F.; Senatore, F. Variation of Malva sylvestris essential oil yield, chemical composition and biological activity in response to different environments across Southern Italy. Ind. Crop. Prod. 2017, 98, 29–37. [Google Scholar] [CrossRef]
- Girardi, F.M.; Barra, M.B.; Zettler, C.G. Papillary thyroid carcinoma: Does the association with Hashimoto’s thyroiditis affect the clinicopathological characteristics of the disease? Braz. J. Otorhinolaryngol. 2015, 81, 283–287. [Google Scholar] [CrossRef] [Green Version]
- Ben Farhat, M.; Sotomayor, J.A.; Jordán, M.J. Salvia verbenaca L. essential oil: Variation of yield and composition according to collection site and phenophase. Biochem. Syst. Ecol. 2019, 82, 35–43. [Google Scholar] [CrossRef]
- Cassel, E.; Vargas, R.M.F. Experiments and modeling of the Cymbopogonwinterianus essential oil extraction by steam distilla-tion. J. Mexican Chem. Soc. 2006, 50, 126–129. [Google Scholar]
- Lira, P.D.L.; Retta, D.; Tkacik, E.; Ringuelet, J.; Coussio, J.; van Baren, C.M.; Bandoni, A. Essential oil and by-products of distillation of bay leaves (Laurus nobilis L.) from Argentina. Ind. Crop. Prod. 2009, 30, 259–264. [Google Scholar] [CrossRef]
- Hunter, M. Essential Oils: Art, Agriculture, Science, Industry and Entrepreneurship: (A Focus on the Asia-Pacific Region); Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2009; pp. 179–180. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Şanli, A.; Karadoğan, T. Geographical Impact on Essential Oil Composition of Endemickundmannia Anatolica HUB.-Mor. (Apiaceae). Afr. J. Tradit. Complement. Altern. Med. 2016, 14, 131–137. [Google Scholar] [CrossRef]
- Lim, X.Y.; Teh, B.P.; Tan, T.Y.C. Medicinal Plants in COVID-19: Potential and Limitations. Front. Pharmacol. 2021, 12, 611408. [Google Scholar] [CrossRef]
- Christensen, L.P.; Brandt, K. Bioactive polyacetylenes in food plants of the Apiaceae family: Occurrence, bioactivity and analysis. J. Pharm. Biomed. Anal. 2006, 41, 683–693. [Google Scholar] [CrossRef]
- Downie, S.R.; Katz-Downie, D.S.; Spalik, K. A phylogeny of Apiaceae tribe Scandiceae: Evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Am. J. Bot. 2000, 87, 76–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pottier-Alapetite, G. Flore de la Tunisie: Angiospermes-Dicotylédones. Apétales-Dialypétales; Ministère de l’Enseignement Supé-rieur et de la Recherche Scientifique & Ministère de l’Agriculture: Tunis, Tunisia, 1979; p. 651.
- Makhloufi, E.; Akkal, S.; Medjroubi, K.; Elomri, A.; Laouer, H.; Verité, P.; Seguin, E. Chemical constituents of the extract Algerian Reutera lutea (Desf.) Maire, (Apiaceae). Pharmacogn. Commun. 2013, 3, 41–44. [Google Scholar]
- Djeddi, N.; Benahmed, M.; Akkal, S.; Laouer, H.; Makhloufi, E.; Gherraf, N. Study on methylene dichloride and butanolic extracts of Reutera lutea (Desf.) Maire (Apiaceae) as effective corrosion inhibitions for carbon steel in HCl solution. Res. Chem. Intermed. 2014, 41, 4595–4616. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Zhang, Y.-R. Variations in compositions and antioxidant activities of essential oils from leaves of Luodian Blumea balsamifera from different harvest times in China. PLoS ONE 2020, 15, e0234661. [Google Scholar] [CrossRef]
- Joshi, R.K. Terpenoids of Blumea oxyodonta Essential Oil. Chem. Nat. Compd. 2018, 54, 377–379. [Google Scholar] [CrossRef]
- Joshi, R.K. Chemical Composition of Leucas Stelligera. Chem. Nat. Compd. 2015, 51, 579–580. [Google Scholar] [CrossRef]
- Joshi, R.K. GC-MS analysis of the volatile constituents of Orthosiphon pallidus Royle, ex Benth. Nat. Prod. Res. 2019, 34, 441–444. [Google Scholar] [CrossRef]
- Joshi, R.K. GC/MS Analysis of the Essential Oil of Vernonia cinerea. Nat. Prod. Commun. 2015, 10, 1319–1320. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Pub Corp.: Carol Stream, IL, USA, 2007. [Google Scholar]
- Salehi, B.; Upadhyay, S.; Orhan, I.E.; Jugran, A.K.; Jayaweera, S.L.; Dias, D.A.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef] [Green Version]
- Rebey, I.B.; Bourgou, S.; Wannes, W.A.; Selami, I.H.; Tounsi, M.S.; Marzouk, B.; Fauconnier, M.L.; Ksouri, R. Comparative assessment of phytochemical profiles and antioxidant properties of Tunisian and Egyptian anise (Pimpinella anisum L.) seeds. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2017, 152, 971–978. [Google Scholar] [CrossRef] [Green Version]
- Franco, C.; Ferreira, O.; de Moraes, Â.A.B.; Varela, E.; Nascimento, L.; Percário, S.; de Oliveira, M.; Andrade, E. Chemical Composition and Antioxidant Activity of Essential Oils from Eugenia patrisii Vahl, E. punicifolia (Kunth) DC., and Myrcia tomentosa (Aubl.) DC., Leaf of Family Myrtaceae. Molecules 2021, 26, 3292. [Google Scholar] [CrossRef]
Locality | Coordinates | Altitude | Substrate (Soil) | Voucher Specimens |
---|---|---|---|---|
Bizerta North (Northeast of Tunisia) | Lat. 37°17′13′ N Long. 09°47′44″ E | 143 | Calcareous marley | (API/Reu.lu; 0027/2017) |
Bizerta south (Northeast of Tunisia) | Lat. 36°55′14″ N Long. 09°23′40″ E | 417 | Clay-loamy | (API/Reu.lu; 0141/2017) |
Tabarka (Northwest of Tunisia) | Lat. 36°56′55″ N Long. 08°46′39″ E | 04 | Sandy | (API/Reu.lu; 0334/2017) |
No | Compound | RI | AI | Content (%) | ||
---|---|---|---|---|---|---|
NBEO | SBEO | TEO | ||||
1 | α-Thujene | 943 | 930 | - | 0.1 | 0.3 |
2 | α-pinene | 947 | 939 | Tr | 0.5 | 0.1 |
3 | trans-Pinene | 968 | 975 | 0.5 | - | - |
4 | Sabinene | 977 | 976 | 0.7 | - | - |
5 | β-pinene | 981 | 980 | - | 1.1 | 18.2 |
6 | Myrcene | 993 | 979 | - | - | 0.1 |
7 | dehydro-1,8-Cineol | 995 | 991 | - | Tr | tr |
8 | α-Phellandrene | 1007 | 1002 | - | - | tr |
9 | α-Terpinene | 1018 | 1017 | - | 0.7 | 0.5 |
10 | p-Cymene | 1026 | 1024 | 0.2 | Tr | 1.7 |
11 | Limonene | 1030 | 1029 | 0.1 | 0.1 | 0.2 |
12 | 1,8-Cineol | 1031 | 1031 | Tr | - | - |
13 | γ-Terpinene | 1061 | 1059 | - | 0.3 | 0.4 |
14 | Cis-Sabinene hydrate | 1070 | 1070 | - | 0.2 | 0.9 |
15 | m-Cresol | 1080 | 1076 | 0.8 | - | 0.5 |
16 | Terpinolene | 1093 | 1088 | - | 0.1 | 0.3 |
17 | Linalool | 1104 | 1096 | 0.1 | 0.5 | 0.8 |
18 | cis-p-Menth-2-en-1-ol | 1130 | 1121 | - | 0.9 | 0.5 |
19 | trans-p-Menth-2-en-1-ol | 1151 | 1140 | - | 0.5 | 1.1 |
20 | Geijerene | 1153 | 1143 | 0.9 | - | tr |
21 | (Z)-Tagetone | 1163 | 1152 | - | - | 0.3 |
22 | Sabina ketone | 1173 | 1159 | - | 0.9 | 0.6 |
23 | Menthofuran | 1176 | 1164 | 0.1 | - | 0.1 |
24 | Terpin-4-ol | 1197 | 1177 | 0.1 | 1.9 | 5.9 |
25 | p-Cymen-8-ol | 1205 | 1182 | - | 0.6 | 1.2 |
26 | α-Terpineol | 1212 | 1188 | - | Tr | 0.2 |
27 | Myrtenal | 1215 | 1195 | - | 0.3 | - |
28 | cis-Piperitol | 1217 | 1196 | - | - | 0.3 |
29 | trans-Piperitol | 1232 | 1208 | - | 0.3 | 0.7 |
30 | cis-Sabinene hydrate acetate | 1244 | 1221 | 0.5 | - | 0.1 |
31 | Coahuilensol, methyl ether | 1269 | 1221 | - | - | 0.5 |
32 | trans-Sabinene hydrate acetate | 1285 | 1256 | - | - | 0.1 |
33 | (E)-Anethole | 1326 | 1284 | - | 0.5 | 0.4 |
34 | Pregeijerene | 1330 | 1287 | - | - | 0.5 |
35 | p-Cymene-7-ol | 1332 | 1290 | - | 0.9 | 0.8 |
36 | Carvacrol | 1346 | 1299 | 0.1 | 6.1 | 0.1 |
37 | δ-Elemene | 1388 | 1338 | 0.2 | 0.7 | - |
38 | Piperitenone | 1391 | 1343 | Tr | - | - |
39 | α-Cubebene | 1402 | 1351 | Tr | 0.5 | 0.6 |
40 | α-Copaene | 1434 | 1376 | 0.5 | 0.8 | 0.2 |
41 | Daucene | 1437 | 1381 | - | 0.3 | - |
42 | β-Cubenene | 1451 | 1388 | - | - | tr |
43 | Acora-3,7(14)-dien | 1478 | 1408 | 3.4 | 4.7 | 29.1 |
44 | β-Cedrene | 1490 | 1420 | 8.9 | 0.2 | 0.6 |
45 | α-trans-Bergamotene | 1502 | 1433 | 18.1 | 6.4 | 1.5 |
46 | α-Humulene | 1525 | 1452 | - | - | 0.7 |
47 | (E)-β-Farnesene | 1529 | 1456 | 0.3 | 0.9 | 0.5 |
48 | cis-Muurola-4(14),5-diene | 1544 | 1466 | 3.1 | 1.3 | 0.2 |
49 | Germacrene D | 1555 | 1480 | - | - | 5.9 |
50 | ar-Curcumene | 1556 | 1483 | 0.7 | - | - |
51 | β-Selinene | 1564 | 1490 | - | - | 6.5 |
52 | α-Selinene | 1573 | 1492 | - | - | 4.1 |
53 | α-Alaskene | 1593 | 1512 | 1.0 | 4.7 | 1.6 |
54 | cis-Calamene | 1601 | 1522 | 6.1 | 4.5 | - |
55 | δ-Cadinene | 1604 | 1523 | - | - | 0.8 |
56 | trans-Calamene | 1615 | 1529 | 3.1 | 3.2 | 0.6 |
57 | α-Calacorene | 1626 | 1545 | 1.5 | - | - |
58 | cis-Cadinene ether | 1638 | 1553 | - | - | 0.5 |
59 | Elemicin | 1639 | 1557 | Tr | - | - |
60 | trans-Cadinene ether | 1647 | 1558 | - | 2.5 | 0.9 |
61 | Spathulenol | 1664 | 1578 | 1.2 | 5.9 | - |
62 | Fokienol | 1687 | 1596 | 0.5 | 9.1 | - |
63 | β-Atlantol | 1696 | 1608 | 1.3 | 5.6 | - |
64 | 2-epi-α-Cedren-3-one | 1710 | 1627 | - | 5.5 | - |
65 | Muurola-4,10(14)-dien-1-β-ol | 1719 | 1631 | 8.9 | 10.1 | - |
66 | Cedr-8(15)-en-9-α-ol | 1743 | 1651 | 2.5 | 1.0 | - |
67 | epi-Zizanone | 1768 | 1670 | 6.5 | 7.5 | - |
68 | α-Bisabolol | 1778 | 1685 | 1.4 | - | - |
69 | epi-Nootkatol | 1784 | 1699 | 0.8 | 1.5 | - |
70 | 10-nor-Calamenene-10-one | 1806 | 1702 | 0.3 | - | - |
71 | (Z)-α-Atlantone | 1810 | 1718 | 1.0 | 1.2 | - |
72 | Zerumbone | 1819 | 1733 | 0.8 | - | 5.6 |
73 | Cyclocolorenone | 1844 | 1760 | - | - | 0.3 |
Oxygenated Monoterpenes | 0.7 | 6.1 | 12.7 | |||
Sesquiterpene Hydrocarbons | 46.9 | 28.2 | 52.9 | |||
Oxygenated Sesquiterpenes | 25.2 | 49.9 | 7.3 | |||
monoterpene Hydrocarbons | 1.5 | 2.9 | 21.8 | |||
Phenyl derivatives | 1.9 | 7.5 | 2.9 | |||
Total identified | 76.2 | 94.6 | 97.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AL-Hmadi, H.; El Mokni, R.; Joshi, R.K.; Ashour, M.L.; Hammami, S. The Impact of Geographical Location on the Chemical Compositions of Pimpinella lutea Desf. Growing in Tunisia. Appl. Sci. 2021, 11, 7739. https://doi.org/10.3390/app11167739
AL-Hmadi H, El Mokni R, Joshi RK, Ashour ML, Hammami S. The Impact of Geographical Location on the Chemical Compositions of Pimpinella lutea Desf. Growing in Tunisia. Applied Sciences. 2021; 11(16):7739. https://doi.org/10.3390/app11167739
Chicago/Turabian StyleAL-Hmadi, Hekmat, Ridha El Mokni, Rajesh K. Joshi, Mohamed L. Ashour, and Saoussen Hammami. 2021. "The Impact of Geographical Location on the Chemical Compositions of Pimpinella lutea Desf. Growing in Tunisia" Applied Sciences 11, no. 16: 7739. https://doi.org/10.3390/app11167739
APA StyleAL-Hmadi, H., El Mokni, R., Joshi, R. K., Ashour, M. L., & Hammami, S. (2021). The Impact of Geographical Location on the Chemical Compositions of Pimpinella lutea Desf. Growing in Tunisia. Applied Sciences, 11(16), 7739. https://doi.org/10.3390/app11167739