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Abstract: In this research, we applied deep learning to rank the effectiveness of candidate drug
compounds in combating viral cells, in particular, SARS-Cov-2 viral cells. For this purpose, two
different datasets from Recursion Pharmaceuticals, a siRNA image dataset (RxRx1), which were used
to build and calibrate our model for feature extraction, and a SARS-CoV-2 dataset (RxRx19a) was
used to train our model for ranking efficacy of candidate drug compounds. The SARS-CoV-2 dataset
contained healthy, uninfected control or “mock” cells, as well as “active viral” cells (cells infected
with COVID-19), which were the two cell types used to train our deep learning model. In addition, it
contains viral cells treated with different drug compounds, which were the cells not used to train but
test our model. We devised a new cascade transfer learning strategy to construct our model. We
first trained a deep learning model, the DenseNet, with the siRNA set, a dataset with characteristics
similar to the SARS-CoV-2 dataset, for feature extraction. We then added additional layers, including
a SoftMax layer as an output layer, and retrained the model with active viral cells and mock cells
from the SARS-CoV-2 dataset. In the test phase, the SoftMax layer outputs probability (equivalently,
efficacy) scores which allows us to rank candidate compounds, and to study the performance of each
candidate compound statistically. With this approach, we identified several compounds with high
efficacy scores which are promising for the therapeutic treatment of COVID-19. The compounds
showing the most promise were GS-441524 and then Remdesivir, which overlapped with these
reported in the literature and with these drugs that are approved by FDA, or going through clinical
trials and preclinical trials. This study shows the potential of deep learning in its ability to identify
promising compounds to aid rapid responses to future pandemic outbreaks.

Keywords: COVID-19; drug discovery; deep learning; cascade transfer learning; DenseNet

1. Introduction

In Wuhan, China, following an unknown form of pneumonia outbreak, a new coron-
avirus emerged, dubbed the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
with the current outbreak being dubbed COVID-19 and promptly declared a “Public Health
Emergency of International Concern”. As of the time of writing, there are 200 M coron-
avirus cases worldwide, with the United States alone being responsible for around 33.6 M
cases. The worldwide recorded deaths have surpassed 3.85 M. There are now several
different vaccines, and a singular therapeutic drug labeled GS-5734 has passed FDA trials,
however its efficacy is contested [1–4].

In the last decades, the cost of drug discovery has increased exponentially, with the
median cost of finding an FDA-approved drug at around USD 19 million when writing
this article. Due to this, it is prohibitively expensive to evaluate the potential for the
treatment of even a proactively curated set of drugs like the one provided by Recursion
Pharmaceuticals [5]. Standard preclinical trials involve manual assessment of drug efficacy,

Appl. Sci. 2021, 11, 7772. https://doi.org/10.3390/app11177772 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11177772
https://doi.org/10.3390/app11177772
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11177772
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11177772?type=check_update&version=1


Appl. Sci. 2021, 11, 7772 2 of 11

which is hugely time and labor-intensive, while also subject to human error. Due to the
time constraints of such a process, the number of drugs that may be analyzed is limited.
As such, for a situation such as COVID-19, which both spreads rapidly and has a risk of
mutation, any method of streamlining drug discovery can serve to save countless lives.
A viable approach in such a case is to use a deep learning model to identify promising
compounds and to validate these compounds through clinical trials [6].

Drug discovery using machine learning methods such as support vector machines and
neural networks has been proven effective in attempting to lower the prohibitive cost and
speed up the process, as opposed to the extensive process of human experimentation [7–11].
In this research, we attempt to demonstrate the potential of deep learning [12,13], a
neural network-based machine learning technique, to determine promising drug com-
pounds, using COVID-19 as a proof of concept in order to produce a response for future
outbreaks [6,11,12].

Currently, the drug selection process involves target identification and validation,
which aims to identify which molecules vary based on the viral status of the cells in order
to identify possible gauges for the change caused by drugs [9,14]. Target identification also
aims to predict the druggability of a target molecule, or the extent to which the activity of
the target compound may be changed through therapeutics. The drug then faces compound
screening and lead discovery, which aims to identify promising compounds and drugs
through determining which compounds result in the most significant variability of the
resultant cells and identifying the most promising compounds as leads, which then proceed
to the preclinical and clinical development trials. In this paper, we explore the ability of
neural networks to accelerate the first two stages of target identification and validation,
as well as compound screening and lead verification. Machine learning has various
applications in medicine, with one of the most significant benefits being drug discovery.
Biological systems are incredibly complex and contain an immense amount of densely
stored information, with the new forms of data allow for even more data for pharmaceutical
companies to access and organize. The decision process of the neural network relies on
its ability to identify specific characteristics of viral cells and healthy control cells, known
as “features,” allowing it to analyze new data and classify the data as “healthy” or “viral,”
while relative values of these features associated with each class allow the model to provide
a probability score indicating its “confidence” in its classification [5–7,12].

In addition, the broader availability of more powerful computers and deep learning
algorithms helps increase the accessibility of deep neural networks (DNNs) [12,13,15,16],
and allows for an increasingly robust variety of applications for deep learning within
the pharmaceutical industry. There are various effective methods of machine learning,
which can be divided into supervised and unsupervised learning techniques. Supervised
learning is valuable in its ability to predict labels of data samples, while unsupervised
learning is valuable in its ability to categorize and cluster data in ways that the creator
may not be aware of. Our model is based on supervised learning, specifically a type of
artificial neural network known as a convolutional neural network (CNN). It is well known
that different forms of neural networks are suitable in modeling and analyzing different
types of data. For example, recurrent neural networks are more capable of analyzing
time-variable neural networks, while deep CNNs [3] excel at image processing. Deep
learning is useful in its ability to identify biomarkers and build predictive models on the
possible effectiveness of a drug, mainly through its ability to identify which drugs lead to
the most significant changes.

Despite their apparent value in rapidly accelerating the drug discovery process, it
must be noted that neural networks still face challenges in selecting suitable architectures
and in data preparation. In order to effectively identify and test targets and compounds,
data must be standardized, comprehensive, and of sufficient quantity. Even then, the
model is subject to overfitting, where it begins to recognize the noise of the training data,
resulting in reduced performance. Overfitting can be combated with techniques such as
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regularization, which places a penalty on more complex models, and may also be helped
by further processing and cleaning of data [6].

Our focus in this paper is to identify or validate promising compounds and leads for
combating viral cells, particularly SARS-CoV-2 viral cells. In the literature, researchers have
presented a wide selection of methods for the analysis of Recursion’s dataset, with most
methods arriving at the same conclusion on the most effective drugs, some of which have
also been under clinical trials. For the RxRx19a dataset, there have been several research
studies that utilized said dataset. In Recursion’s in-house analysis, they concluded that
GS-441524 was the clear front runner in terms of preventing cell damage, with Remdesivir,
Cx-4945, and Alimitrine all being relatively close to each other in terms of efficacy score [5].
Another study by researchers from the Simon Frasier University and the University of
British Columbia found the leading candidates for viral suppression were Remdesivir,
GS-441524, and Aloxistatin, as well as the drugs Mebendazole, Oxibendazole, and Alben-
dazole [17]. This group of researchers proposed to use support vector machines to identify
potential lead compounds, while our model relies on transfer learning. Our analysis, Re-
cursion’s analysis, and analysis from the researchers at Simon Frasier University arrive at
similar compounds identified as the most promising, though our approach uses probability
as an equivalent efficacy score for each candidate compound.

In this study, we applied transfer learning, a technique that refines a deep learning
model pre-trained in one domain for a specific application in another domain, to identify
promising compounds and leads for COVID-19. A deep learning model, DenseNet, was
first trained with the siRNA image dataset with the transfer learning strategy [18–21].
The trained DenseNet was then refined, retrained, and experimented on the SARS-CoV-2
dataset with 1752 different compounds, also provided by Recursion. In the process, transfer
learning is applied twice; therefore, we call the approach “cascade transfer learning.” The
results obtained by the deep learning model were then compared with those obtained by
other models and with those approved by FDA and under clinical trials. The experimen-
tal study shows that the cascade transfer learning approach is promising in identifying
promising compounds and leads. The remainder of the paper is organized in the following
manner. Section 2 introduces the SARS-CoV-2 dataset from Recursion. Section 3 details the
deep learning strategy adopted in this research. Section 4 presents the experimental results
with discussions. The paper ends with concluding remarks.

2. Dataset

In order to work as efficiently as possible, we utilized a morphological imaging dataset
from Recursion Pharmaceuticals with 305,520, 5-channel images. In April of 2020, Recursion
developed the dataset, where cells were treated in 1536 various microplates, with fixation
through 5% paraformaldehyde, permeabilization through 0.25% Triton, and staining with
a variety of different dyes. Three different cell treatments were involved, with mock cells,
which served as a control, cells with irradiated and, therefore, deactivated SARS-CoV-2
virons, and cells infected with active SARS-CoV-2 at a ratio of 4 virons to 10 cells. These
cells were then treated with a large number of candidate compounds, which came from
a library of drugs including FDA approved drugs, European Medicines Agency (EMA)
approved drugs, and compounds in clinical trials for SARS, which were compiled into the
RxRx19a dataset [17]. Each compound was given in concentrations, varying in 6 different
concentrations, each separated by half-log increments, with each concentration of each
compound being repeated 6 times. The SARS-CoV-2 virus targets human kidney cells,
with EM observations indicating the presence of virus-like particles within the kidney cells
of coronavirus infected patients. The cytopathic nature of the SARS-CoV-2 virus suggests
direct tubular damage through cytotoxicity. This knowledge is applied through the usage
of continuous renal replacement therapies on COVID-19 patients due to the observation of
acute kidney injury in patients, but was also crucial in the creation of the RxRx19a dataset,
as tubule damage meant that the infected kidney cells of a COVID-19 patient possess
characteristics that would distinguish them from mock cells. Recursion used human renal
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cortical epithelial cells, or HRCE cells from proximal and distal tubules, as well as VERO
cells from the kidney cells of the African green monkey as a control in the dataset. An
example of the images described above can be found in Figure 1 [5].

Recursion also released another set of data with the same treatment conditions named
RxRx1, but with a 384-well plate density, as opposed to the 1536 plate density of RxRx19,
an image resolution of 512 × 512 with 6 channels instead of the image resolution of
1024 × 1024 with 5 channels of RxRx19, and 1138 classes of siRNA as opposed to the
1672 compounds of RxRx19. The cells used in the previous experiment were treated
with siRNA instead of target compounds. The siRNA dataset shared similar features
to the SARS-CoV-2 dataset, but with 1139 classes of siRNA applications instead of the
1672 molecules and three viral conditions of the RxRx19a dataset. This allows us to use the
siRNA dataset, a relatively larger dataset, to train the classification model first, and then
use the viral/mock cells in the SARS-CoV-2 dataset to retrain the model [5]. Details on this
will be given in Sections 3.3 and 4.

(a) Active COVID-19 cell (b) Mock cell

Figure 1. An active-viral cell image and a mock cell image.

3. Transfer Learning

Most classification tasks can be divided into feature extraction and classification
stages, where feature extraction determines the meaningful and non-redundant features of
a dataset. In this study, we used the strategy of transfer learning for feature extraction.

3.1. Introduction to Transfer Learning

Transfer learning is a method where a model and its weights developed for one
task is used as a primary building block for another related task [18]. An illustration of
transfer learning is provided in Figure 2. Transfer learning is notably valuable for image
identification and other related tasks due to the training time required [19–21]. The core
steps for transfer learning are taking layers from another model, freezing said layers,
adding classification layers, and training the new layers on the specified dataset. There is
also an optional step for training after the classification layers, where the weights for the
transferred model are unfrozen and retrained on the dataset for an additional improvement
in performance. This process is known as fine-tuning [2].
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Figure 2. Transfer learning concept.

3.2. Convolutional Neural Networks

CNNs, proven to be some of the best tools in image analysis [22], are often used in
transfer learning. An activation function like ReLu is used to take the complex values from
the network and simplify it into an output. An illustration of CNN is provided in Figure 3.

Figure 3. General architecture of a convolutional neural network.

Inputs to CNNs are first fed into the convolution layers, which uses groups of ad-
justable filters, with the most common parameters being convolution kernel size, step,
and filter quantity in order to detect specific patterns inside of an input layer [3]. Activation
functions, as well as batch normalizations before or after the activation functions, are
applied in order to simplify the outputs from the convolution, and finally, a pooling and
fully connected or SoftMax layers are applied in order to synthesize the outputs of the
convolution layers. In CNNs, the convolution kernels and filters can be adjusted along
with the weights and biases through backpropagation and gradient descent [3]

In this study, we used a pre-trained CNN, the DenseNet-161 architecture [23]. It
connected every layer to every other layer to capitalize on the fact that models perform
better at the beginning and end of the model. For each layer in the DenseNet architecture,
the feature maps of previous layers were used as inputs for the layers that follow them.
DenseNets reduces problems such as the vanishing gradient issue, improves feature propa-
gation, and encourages feature reuse while requiring much less computational power with
relatively high performance.
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The DenseNet 161 architecture we adopted for the study was trained with the 1139-
class dataset of siRNA images. It featured an input layer, with an input and output size
of 512 × 512 × 6 [23]. It was followed by a convolution layer, which used a convolution
filter, a max pool layer, a dense block, and a transition layer. This structure was repeated
four times and then followed by a pooling layer and fully connected layer with SoftMax
primarily for feature extraction. The fully-connected and batch normalization layers
were used to standardize the layer inputs and coordinate layer updates to streamline the
training process.

3.3. Cascade Transfer Learning

We used the cascade transfer learning strategy to classify the five input channels
from the RxRx19a dataset to mock cells and active SARS-CoV-2 viral cells, as shown in
Figure 4. First, the pre-trained DenseNet was trained with the siRNA images, as shown
at the top of the figure. From the figure, it can be seen that the DenseNet acted as a
feature extractor. Next, the last three layers of the trained DenseNet, a batch normalization
(BN) layer, a fully connected (FC) layer, and a SoftMax layer (shown in the top-right of
the figure), were replaced by a FC layer, a BN layer, another FC layer, another BN layer,
a third FC layer, and then finally a SoftMax layer (shown in the bottom-right of the figure).
The number of neurons in the added layers was mainly constrained by the input and
output sizes. It must be noted that the size of the SARS-CoV-2 images in the RxRx19a
dataset was 1024 × 1024, therefore, a down-sampling procedure was applied to these
images so they can be processed by the feature extraction model, i.e., the trained DenseNet
in the first stage. The scoring model shown at the bottom of the figure was then retrained
with the RxRx19a dataset. After the layers in the scoring model were trained with the
COVID-19 dataset, we fine-tuned the entire classification model by unfreezing the weights
of the DenseNet. The Adam Optimizer, an optimization algorithm for stochastic gradient
descent provided by MATLAB, was used to train the deep learning model in both stages.
Additional illustration of the idea is given in Figure 4.

Figure 4. Architecture of the COVID-19 drug development model.

The data from the RxRx1 dataset shared many characteristics with the RxRx19a dataset,
which was suitable for transfer learning. As such, we pre-trained the DenseNet model for
feature extraction and dropped the classification layers, instead opting for classification
layers that would classify the cells into “healthy” and “viral/active,” with a normalized
exponential function to provide an efficacy score for each of the candidate compounds.
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A healthy cell is assigned a score of “0”, and a viral cell with no treatment is assigned a
score of “1”. Therefore, mock cells are labeled “0,” and active viral cells are labeled “1”.
A viral cell treated by a compound is scored between 0 and 1, indicating the degree of
effectiveness of the compound in treating COVID-19. Thus, with our method, we could
take the mean of the outputs for each compound, which could give us a more informative
measure for the perceived impact of each compound instead of a binary “healthy/active”
output. This method allows us to select the compounds with the most promising leads for
further investigation.

4. Experimental Study

The experiments were implemented using the MATLAB software on a computer server
Nvidia DGX Workstation with 256 GB of RAM. First, we created a model to classify siRNA
images based on the DenseNet161, and we then compared this model with different pre-
trained models, such as VGG10, AlexNet, and GoogleNet. Table 1 shows the classification
results of different models using siRNA image datasets. It is clear from the table that the
DenseNet produced the best accuracy performance.

Table 1. Experimental results with different pre-trained models on siRNA dataset.

Deep Learning Model Accuracy

VGG16 81.2%
GoogleNet 83.1%
VGG19 83.3%
AlexNet 77.4%
DenseNet 96.4%

We applied a 5-fold validation procedure to check the performance of the model,
as shown in Figure 5. In this procedure, 80% of the data were randomly chosen for
training and the remaining 20% for validation. This step was repeated five times until all
mock/active viral cell images in the dataset were validated once. The results from these
five tests were averaged. It must be stressed that in the training dataset, there were only
active viral cells and mock cells. There were viral cells treated with different compounds in
the test dataset, such as Remdesivir and GS-44152. We compare the effectiveness of our
model with other well-known pre-trained models in classifying mock and active viral cells.
Table 2 shows the results produced by these models in classifying mock/active viral cells.

Figure 5. Simplified model test procedure based on the USFDA MAQC II protocol [24].

Sensitivity serves as a benchmark for the accuracy of a test’s positive prediction,
while specificity measures the accuracy of a test’s null prediction [25]. In the context of
our study, sensitivity is the ability of a particular model to determine active viral cells,
while specificity is its ability to determine mock/control cells. The F1 score statistically
measures the balance of sensitivity and specificity, indicating the ability of the model in
preventing both false positives and false negatives [26]. Finally, the Kappa score is a way
of statistically measuring the agreement throughout all the tested cases on a scale of less
than and equal to 1, with less than 0 implying little agreement while 1 indicates perfect
agreement [27]. Referencing Table 2, the cascade model outperformed other popular deep
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neural network architectures. In comparison to the two popular deep learning models for
the RxRx19 dataset, our cascade transfer learning model had the highest performance in
terms of the given metrics. It must be noted that the vgg19 and GoogleNet models were
pre-trained on the ImageNet dataset instead of the siRNA dataset before being retrained on
the SARS-CoV-2 dataset. To further study the model’s performance, its receiver operating
characteristic (ROC) curve is plotted (refer to Figure 6). The area under the curve (AUC)
is 0.98.

Table 2. Experimental results with different pre-trained models on SARS-CoV-2 dataset.

Deep Learning Model Sensitivity Specificity F1-Score Kappa

vgg19 0.86 0.98 0.90 0.74
GoogleNet 0.84 0.97 0.84 0.70
Cascade Transfer Learning 0.97 0.99 0.97 0.87

Figure 6. ROC curve of the cascade transfer learning model. The AUC is 0.98.

We then tested the cascade transfer learning model by using it to rank the efficacy
of the compounds used to treat COVID-19, as shown in the last block of Figure 5, with a
score less than 0.5 indicating the promise of the drug as a lead. These test results are given
in Tables 3 and 4 and Figure 7. In the figure, a low probability value, or equivalently a
high efficacy score obtained by 1-probability, indicates that the corresponding compound
effectively combats active viral cells. In each plot, the histograms of one high efficacy
compound and one low efficacy compound are provided. The drugs identified to have the
greatest impact on cell health are GS-441524, Remdesivir, CX-4945, Aloxistatin, and Cal-
cipotriene. Of these drugs, two are anti-viral drugs, specifically GS-441524 and Remdesivir,
with GS-441524 being a primary component of Remdesivir, explaining their similarly low
probability (or high efficacy) scores. In terms of the histograms shown in Figure 7, GS-
441524 provides more consistent performance. The next two lowest probability scores were
CX-4945 and Aloxistatin, which were both protein inhibitors. The drugs with the highest
probability of classifying as Active SARS-Cov-2 were corticosteroids and regulatory drugs,
which had little relation to the Cytopathic nature of COVID-19. The drugs identified in this
research are similar to the drugs identified by Recursion in their study [5] and by the study
reported in [17], as all resulted in GS-441524 and Remdesivir being isolated as clear outliers
in our probability scores and also their efficacy scores. Notably, our CX-4945 probability
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score is much more noticeable for the same compound, although all results share the same
four most effective drugs, albeit in different rankings and orders of magnitude [28]. Of the
identified compounds, CX-4945 and Aloxistatin have entered the observational clinical
pretrial phase, while Remdesivir (and by association GS-441524) has been approved by the
FDA as the first treatment for COVID-19.

Figure 7. Histograms of probability scores for different compounds. In each plot, for each compound,
the horizontal axis is divided in to 7 bins. The vertical axis shows the number of samples in each bin.

Table 3. List of compounds with low probability scores (classified as mock).

Compound Probability

GS-441524 0.08
Remdesivir (GS-5734) 0.08
CX-4945 0.13
Aloxistatin 0.18
Calcipotriene 0.21

Table 4. List of Compounds with High Probability Scores (Classified as Active Virus).

Compound Probability

Sertaconazole 0.98
PKC 412 0.97
L-Adrenaline 0.97
Isoetharine 0.96
desoximetasone 0.95

5. Conclusions

This paper presents the preliminary results of an exploratory research on the feasibility
of deep learning to predict the efficacy of compounds for drug discovery, using COVID-19
as a case study. A transfer learning approach was adopted for this task.

One novelty of the proposed approach is the way the transfer learning strategy is
implemented. We first trained the DenseNet, a pre-trained deep neural network, with the
siRNA dataset, larger than the SARS-CoV-2 dataset with similar characteristics. The result-
ing model is then used to extract features from mock cells and active viral cells provided in
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the SARS-CoV-2 dataset. Thus, we used transfer learning twice from the ImageNet to the
siRNA image dataset and then from the siRNA dataset to the SARS-CoV-2 dataset. This
cascade transfer learning approach produced superior results for the case study. Another
novelty of the approach is using a SoftMax layer as the output layer for the classifier, which
produces probability (equivalently efficacy) scores for classifying viral cells treated with
different compounds, which allows users to analyze test results with a statistical method.
Experimental results demonstrated that the model was able to identify highly promising
compounds, which were consistent with those identified in the literature and the drugs
that are now under clinical trials.

It must be noted that though the proposed transfer learning strategy is more explain-
able compared with a classification approach that outputs a hard binary decision, owing
to the fact that it produces efficacy scores for candidate compounds in treating viral cells,
the model on the whole is not yet transparent. For example, we have not yet been able to
explain the properties of the features linked to either viral cells or mock cells. A way to im-
prove the model’s explainability is to link the features extracted by the model to biomarkers
of mock and viral cells with a functional relationship which may also be realized by a
data-driven model.

Although this paper is limited in its applicability due to the requirements of obtaining
a dataset to train the deep learning model, this research encourages us. The deep learning
model trained only on the infected and healthy cells was then able to rank candidate
compounds, among which some promising ones were under clinical trials. In theory,
transfer learning serves to accelerate a drug discovery process significantly. It produces a
list of compounds relatively effective on viral cells, thus providing a baseline for speeding
up preclinical trials. With cases growing exponentially in a pandemic, the longer treatments
and preventative measures develop, the more the situation worsens. Deep learning is a
viable tool to combat future COVID-19-like outbreaks.
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