
applied
sciences

Article

Design and Implementation of an Ontology for Semantic
Labeling and Testing: Automotive Global Ontology (AGO)

Itziar Urbieta *, Marcos Nieto , Mikel García and Oihana Otaegui

����������
�������

Citation: Urbieta, I.; Nieto, M.;

García, M.; Otaegui, O. Design and

Implementation of an Ontology for

Semantic Labeling and Testing:

Automotive Global Ontology (AGO).

Appl. Sci. 2021, 11, 7782. https://

doi.org/10.3390/app11177782

Academic Editors: Miguel Clavijo,

Felipe Jiménez and Jose

Eugenio Naranjo

Received: 3 August 2021

Accepted: 22 August 2021

Published: 24 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Vicomtech, Parque Científico y Tecnológico de Gipuzkoa, Mikeletegi Pasealekua, 57, 20009 Donostia-San
Sebastian, Spain; mnieto@vicomtech.org (M.N.); mgarcia@vicomtech.org (M.G.); ootaegui@vicomtech.org (O.O.)
* Correspondence: iurbieta@vicomtech.org

Abstract: Modern Artificial Intelligence (AI) methods can produce a large quantity of accurate and
richly described data, in domains such as surveillance or automation. As a result, the need to
organize data at a large scale in a semantic structure has arisen for long-term data maintenance and
consumption. Ontologies and graph databases have gained popularity as mechanisms to satisfy this
need. Ontologies provide the means to formally structure descriptive and semantic relations of a
domain. Graph databases allow efficient and well-adapted storage, manipulation, and consumption
of these linked data resources. However, at present, there is no a universally defined strategy for
building AI-oriented ontologies for the automotive sector. One of the key challenges is the lack of
a global standardized vocabulary. Most private initiatives and large open datasets for Advanced
Driver Assistance Systems (ADASs) and Autonomous Driving (AD) development include their own
definitions of terms, with incompatible taxonomies and structures, thus resulting in a well-known
lack of interoperability. This paper presents the Automotive Global Ontology (AGO) as a Knowledge
Organization System (KOS) using a graph database (Neo4j). Two different use cases for the AGO
domain ontology are presented to showcase its capabilities in terms of semantic labeling and scenario-
based testing. The ontology and related material have been made public for their subsequent use by
the industry and academic communities.

Keywords: semantics; ontology; scenario-based testing; AD; ADAS; labeling; graph database; Neo4j

1. Introduction

Labeling, in the context of Artificial Intelligence (AI), is the process of adding de-
scriptive information to data; for example, collections of images, data series, or sensor
measurements. Labeling is a major bottleneck for machine learning (ML) progress, because
the current state of the art regarding deep learning (DL) implies creating massive training
datasets composed of data samples (e.g., images and point cloud scans). These samples are
labeled with descriptions that are learnt by the DL model (e.g., labels with the class name,
or the bounding box or shape of objects). As a consequence, better models are typically
obtained using larger and carefully crafted datasets, which encompass, as much as possible,
all the potential data variability of the domain of interest (e.g., all possible configurations
of complex driving scenes).

As a result, business models for labeling have emerged, in which label producers of-
fer services to create large datasets from raw data recordings. As an example, from 2018
to 2020, almost 20 very large open datasets were released for the development of Au-
tonomous Driving (AD) technologies (see nuScenes (https://www.nuscenes.org/ accessed on
14 March 2021), Lyft Level 5 (https://level5.lyft.com/dataset/ accessed on 14 March 2021),
H3D Honda Dataset (https://usa.honda-ri.com/H3D accessed on 14 March 2021), Waymo
(https://waymo.com/open/ accessed on 14 March 2021), Audi A2-D2 (https://www.a2
d2.audi/a2d2/en.html accessed on 14 March 2021), Berkeley Deep-Dive (BDD) (https://
bdd-data.berkeley.edu/ accessed on 14 March 2021), Apolloscape (http://apolloscape.auto/

Appl. Sci. 2021, 11, 7782. https://doi.org/10.3390/app11177782 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9879-0992
https://orcid.org/0000-0001-6069-8787
https://doi.org/10.3390/app11177782
https://doi.org/10.3390/app11177782
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.nuscenes.org/
https://level5.lyft.com/dataset/
https://usa.honda-ri.com/H3D
https://waymo.com/open/
https://www.a2d2.audi/a2d2/en.html
https://www.a2d2.audi/a2d2/en.html
https://bdd-data.berkeley.edu/
https://bdd-data.berkeley.edu/
http://apolloscape.auto/
https://doi.org/10.3390/app11177782
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11177782?type=check_update&version=1

Appl. Sci. 2021, 11, 7782 2 of 19

accessed on 14 March 2021), or Mapillary Vistas (https://www.mapillary.com/dataset/vistas
accessed on 14 March 2021)). These approaches solve the short-term need for labels in
DL training stages, but create new challenges for long-term operation: evolution of label
types, class taxonomies, and hierarchies; fusion or comparison of labels from heteroge-
neous sources; scene management and searching via complex queries, etc. Other problems
include the use of human languages and synonyms, different taxonomies (hierarchies of
classes), and different types of attributes and properties. In turn, this leads to the problem
of having to develop a new model for each dataset. Hence, dataset labeling approaches
require representation of the data linked to ontology-based semantics [1].

Analogously, scenario-based testing requires the ability to unambiguously describe
scenes from an imperative perspective, i.e., to command data generation or implementation
in testing methods such as simulation environments or field testing. Scenario representa-
tions must refer to terms that correspond to classes defined in a Knowledge Organization
System (KOS) to guarantee repeatability of the simulation and traceability of the results.
Large databases of scenarios must be explored via queries, to enable extraction of particular
data subsets of interest for their consumption for testing specific AD functions. Semantic
connection between elements of a scenario description can lead to semantic querying, i.e.,
the ability to find hidden or non-explicit information using rules or reasoning-enabled
query mechanisms.

Furthermore, data science has gained importance in recent years due to the steady
increase in the quantity of collected data. Data has evolved to become crucial for strate-
gic decision making or situation awareness-based systems. Similarly, data-driven DL
approaches are emerging in the automotive industry. These developments require higher-
level semantics to enhance the performance, functionality, and scope of trained models,
enabling reasoning mechanisms with action recognition or scene understanding.

In this paper we present our approach for the construction of the Automotive Global
Ontology (AGO) using graph databases to enable semantic services for the automotive
domain. The novelty of our approach in the proposed methodology is the construction
of such an ontology from diverse, heterogeneous data sources and taxonomies (e.g., from
large existing Advanced Driver Assistance Systems (ADASs) and AD open datasets).
The proposed method ensures a global list of concepts is created, which is linked to the
existing source concepts but also generalizes well for future datasets. AGO addresses
the need to provide meaning to labels and scenario descriptions by including high-level
semantics in the knowledge base. Thus, the format of data is detached from the meaning,
and standard practices can be safely used, such as the Video Content Description (VCD)
(http://vcd.vicomtech.org accessed on 23 August 2021) language or the upcoming ASAM
OpenLabel (https://www.asam.net/active-projects/ accessed on 14 June 2021) standard.
The VCD structure permits labeling an entire scene in a single file, including actions,
attributes, and relations, in the form of RDF triples [2], which makes it ideal for the
considered use cases.

This paper is organized as follows: existing semantic resources in the field are studied
in Section 2; Section 3 presents the terminology defined for this work, and Section 4
introduces the AGO domain model. Section 5 details the methodology and the ontology
construction process. Section 6 exemplifies AGO utilization for the two defined use cases,
with the produced results presented in Section 7.

2. State of the Art

Different works in the transportation field have identified the importance of domain-
knowledge structures for different purposes: to assess traffic scenes in real time applica-
tions [3], to provide automatic support for design and analysis of performance monitoring
systems for Public Transport Systems [4], or to infer knowledge to aid test management [5].

Several ontologies in the transportation domain can be found in the literature, e.g.,
the Ontology of Traffic Networks (OTN) [6], which is summarized as a direct encoding of

https://www.mapillary.com/dataset/vistas
http://vcd.vicomtech.org
https://www.asam.net/active-projects/

Appl. Sci. 2021, 11, 7782 3 of 19

geographic data files (GDF) in OWL, and the Transport Disruption ontology [7], which
provides a formal framework for modeling travel planning-related events.

In recent years, the focus has been on knowledge-based approaches representing
scenarios with the purpose of promoting the scenario-based evaluation of ADASs and
AD. Ontologies have become a key component for formalizing this knowledge. An
event-based scenario description for testing was presented [8] based on the three ab-
straction levels for scenario description: functional, logical, and concrete scenarios, as
described in [9] and adopted by the Pegasus project (https://www.pegasusprojekt.de/en/
accessed on 5 April 2021). The strategy was enhanced with a procedure that enabled
qualitative description for the generation of more concrete scenarios. This scenario-based
testing strategy entails the development of a structured knowledge and formal scenario
representation language for driving simulation environments, such as, OpenSCENARIO
(https://www.asam.net/project-detail/asam-openscenario-v1x/ accessed on 4 June 2021),
CommonRoad (https://commonroad.in.tum.de/ accessed on 4 June 2021), or the Safety
Pool’s scenario description language (https://www.safetypool.ai/ accessed on 20 June 2021).

Despite these advances, there is currently a lack of an open knowledge base in the
automotive domain that covers the needs of the testing and labeling applications. Therefore,
one of the aims of this paper is to present AGO. This was built with the purpose of
formalizing the terminology used for representing automotive scenarios and providing the
required knowledge layer to support semantic-labeling tools.

A small number of studies have been published related to ontology engineering
methodologies that present design and construction principles. However, to the best of
our knowledge, there is not yet a standardized approach or any formal requirement other
than the ontology languages defined by the W3C group [10,11] to define an ontology. In
the following, a selection of existing works is discussed. METHONTOLOGY [12], On-
To-Knowledge Methodology (OTKM) [13], and DILIGENT [14] constitute the basis for
many subsequent proposals. For instance, NeOn [2] emphasizes the reuse of existing
resources for building a collaborative ontology rather than starting from scratch, such as in
METHONTOLOGY [12].

In relation to the reusable resources related to the automotive domain, in 2018 a survey
of existing ontologies for transportation was carried out [15] in which several approaches
were studied and compared. Among these, the ontology for road traffic management [16]
presents bidirectional axioms (“doesAction” and “isActionDoneBy”) that relate classes to
driving actions. Other examples also consider attributes by introducing additional axioms
into the ontology.

UPON [17] was published in 2005 as a proposal that takes advantage of the Unified
Software Development Process and the Unified Modeling Language (UML). The proposed
methodology is based on the semantic languages created by the World Wide Web (W3C),
RDF, and OWL (see Section 5.2. for further information). These XML-based syntaxes allow
the representation of knowledge as triples, i.e., a three-entity statement in the form of
subject–predicate–object expressions. This atomic structure forms a directed graph; hence,
ontologies can be defined as graphs, in which each class is a node (vertex), and is connected
to other classes via properties or relations (edges). Some studies have considered the use of
graph databases to implement RDF stores [18] or to build an ontology for an automated
vehicle’s context model [19].

However, there is not yet a de jure standard for the construction or design of ontologies
in the automotive domain. Furthermore, the proposed methodology bases the construction
and representation of the ontologies in graph databases. Among the analyzed references,
to the best of our knowledge, sound developments based on graphs do not exist. Thus,
is no dominant, standardized methodology based on these databases. In this work, we
used Neo4j as the graph database to host the ontology and the Cypher query language to
interoperate with it. This database deploys the ontology as a database resource, fostering its
utilization to address the new challenges of the labeling industry, such as global networking

https://www.pegasusprojekt.de/en/
https://www.asam.net/project-detail/asam-openscenario-v1x/
https://commonroad.in.tum.de/
https://www.safetypool.ai/

Appl. Sci. 2021, 11, 7782 4 of 19

(e.g., using the Bolt network protocol for client–server communication), Big Data, advanced
algorithms (e.g., pathfinding), and visualization applications.

3. Terminology

In this work, the following definitions were adopted:

• Action: A class understood to be a situation with a semantic meaning, happening
in the scene typically related to Objects, which are either the subjects or the objects
of the Action. They occur during a specific time interval (frames). It is necessary
to distinguish between intransitive and transitive actions because they are semanti-
cally different.

◦ Intransitive action: Express status of Objects, and thus can be expressed as
adjectives or verbs in the present continuous form: “the car is parked”. In this
example, the object is not specified, but the “Car” is known to be the subject
and “Parked” is the predicate of the sentence.

◦ Transitive action: Can be naturally treated as triples, where there is a subject, a
predicate, and an object. For example, “a child is running in the park”, where
“Child” is the subject, “Park” is the object, and “Running” is the predicate or
the Action.

• Attribute: A quality or feature of a class element or axiom of the ontology.
• Axiom (Relationship): Statements that are asserted to be true in the domain being

described [20]. They structure the ontology and provide semantic information. They
are represented as relationships in the graph database.

• Class: Concept of the domain represented as a node in the graph database.
• Context: A class for elements that describe the general situation and circumstances of

the scenario. Contextualizing can involve any aspect that helps the user or application
define the surroundings and general conditions of the scenario.

• Event: A class to represent anything that happens in an instant of time (frame).
Therefore, any instantaneous change of state caused by an Object can be defined as an
Event. These changes usually cause a new occurrence and, depending on the duration,
this can be defined as a new Event or an Action.

• Individual: Instance of an ontology class. In the case of automotive scenarios, a named
class should be assigned to each individual of any scene. Hence, individuals of a class
are defined by a unique identifier (UID) and a unique name that is specific to each
analyzed case.

• Object: A class that represents anything tangible, i.e., a person or thing. They are the
main elements of the ontology and can be related to attributes or actions.

• Ontology: Formal description of concepts (Class) and their relations (Axioms) accord-
ing to a common understanding of experts in the domain. The definition of these
elements can be completed with properties or restrictions.

• Scenario: A quantitative and qualitative description of the situation (e.g., traffic
environment), as the sequence of Actions and Events performed by Objects.

4. The AGO Domain Model

AGO aims to cover the main elements required to support semantic labeling and the
description of automotive scenarios for testing environments. Hence, the core concepts
defined in the ontology correspond to those used to structure the information in VCD and
OpenLABEL. Its high-level structure can be seen in Figure 1. The main superclasses of the
ontology are Object, Context, Action, and Event. These elements form the first level of classes
and all other classes are derived from them. Furthermore, in VCD and OpenLABEL, the
Relation element is required to structure the domain knowledge and semantically enrich the
ontology. The RDF language model [10] defines several axioms for describing properties
and relationships among named terms: “rdfs: domain”, “rdfs: range”, “rdfs: subClassOf”.

Appl. Sci. 2021, 11, 7782 5 of 19

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 22

The main superclasses of the ontology are Object, Context, Action, and Event. These ele-
ments form the first level of classes and all other classes are derived from them. Further-
more, in VCD and OpenLABEL, the Relation element is required to structure the domain
knowledge and semantically enrich the ontology. The RDF language model [10] defines
several axioms for describing properties and relationships among named terms: “rdfs:
domain”, “rdfs: range”, “rdfs: subClassOf”.

Figure 1. Schema of the domain model of AGO showing core concepts and main relationship
types.

Additionally, some non-standard relations are proposed in AGO for the purpose of
covering the needs of the description of automotive scenarios.
• “isSubjectOfAction” and “isObjectOfAction”: these axioms are defined for actions

expressed with transitive verbs. Transitive actions can be naturally treated as triples
from a language perspective. Nevertheless, transitive triples do not allow relating the
action with other nodes of the ontology (because the action in a transitive triple is the
predicate or relation between subject and object, and thus it is not a class). Therefore,
transitive actions are unwrapped as two related RDF triples, where the action is a
class and the relations are “isSubjectOfAction” and “isObjectOfAction”. In the case
of the intransitive actions, a unique triple is generated relating the element that per-
forms the action and the Action itself.

• “isSubjectOfEvent” and “isObjectOfEvent”: as for the Actions, the Events can be also
distinguished as either transitive or intransitive. Therefore, the same type of relations
is defined in AGO for these elements. One describes “who” performs the Event and
the other “who/what” is affected by it.

• “causes”: Events are occurrences that happen in a time instant and usually trigger
another Event or Action. Therefore, this axiom is adopted to relate Events with Ac-
tions and represent this effect.
To provide the ontology with the capability of representing spatio-temporal infor-

mation by relating the different classes, two additions were performed. First, Allen’s tem-
poral relations [21] were adopted (e.g., “meets” as a relation used to define the timeline of
the scenario by relating Action and Events in temporal order).

Second, for defining the spatial relations among the elements (e.g., required to con-
struct a complete description of the road network):
• “isPartOf”: describes a spatial relation between the different Objects (i.e., “Lane”—

“isPartOf” -> “Road”)

Figure 1. Schema of the domain model of AGO showing core concepts and main relationship types.

Additionally, some non-standard relations are proposed in AGO for the purpose of
covering the needs of the description of automotive scenarios.

• “isSubjectOfAction” and “isObjectOfAction”: these axioms are defined for actions
expressed with transitive verbs. Transitive actions can be naturally treated as triples
from a language perspective. Nevertheless, transitive triples do not allow relating the
action with other nodes of the ontology (because the action in a transitive triple is the
predicate or relation between subject and object, and thus it is not a class). Therefore,
transitive actions are unwrapped as two related RDF triples, where the action is a class
and the relations are “isSubjectOfAction” and “isObjectOfAction”. In the case of the
intransitive actions, a unique triple is generated relating the element that performs the
action and the Action itself.

• “isSubjectOfEvent” and “isObjectOfEvent”: as for the Actions, the Events can be also
distinguished as either transitive or intransitive. Therefore, the same type of relations
is defined in AGO for these elements. One describes “who” performs the Event and
the other “who/what” is affected by it.

• “causes”: Events are occurrences that happen in a time instant and usually trigger
another Event or Action. Therefore, this axiom is adopted to relate Events with Actions
and represent this effect.

To provide the ontology with the capability of representing spatio-temporal informa-
tion by relating the different classes, two additions were performed. First, Allen’s temporal
relations [21] were adopted (e.g., “meets” as a relation used to define the timeline of the
scenario by relating Action and Events in temporal order).

Second, for defining the spatial relations among the elements (e.g., required to con-
struct a complete description of the road network):

• “isPartOf”: describes a spatial relation between the different Objects (i.e., “Lane”—
“isPartOf” -> “Road”)

• “isConnectedTo”: this relation is defined to relate all the spatial objects describing the
network of objects. Concatenating these static objects (i.e., “Road”—“isConnectedTo”
-> “Intersection”) is required to formally represent the road network in OpenDRIVE
(https://www.asam.net/standards/detail/opendrive/ accessed on 13 May 2021)
format.

Furthermore, spatial relations among objects in the scenario can be further specified
by “behindOf”, “inFrontOf”, “leftOf”, “rightOf”, and “middleOf”.

https://www.asam.net/standards/detail/opendrive/

Appl. Sci. 2021, 11, 7782 6 of 19

For the representation of the knowledge, in the OWL Reference documentation, the
W3C states that an OWL ontology is an RDF graph, which is in turn a set of RDF triples [11]
(subject–predicate -> object). Therefore, some notations from the data-modeling vocabulary
defined by the RDF Schema and the OWL language principles were adopted for the
purpose of this work [10]:

• Classes are identified by an Internationalized Resource Identifier (IRI). In addition,
each Class is represented by a lexically meaningful Uniform Resource Identifier (URI)
that is unique for each entity.

• The RDF/XML document includes an ontology header with the defined base URI.
• The set of all individuals is defined by the class extension of ”owl:Thing”.

All listed characteristics are automatically considered by Protégé when including new
Class entities in the hierarchy. To complete the description of the elements, a description
and a label are included as annotations, which results in a class representation, as depicted
in Figure 2.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 22

• “isConnectedTo”: this relation is defined to relate all the spatial objects describing
the network of objects. Concatenating these static objects (i.e., “Road”—“isConnect-
edTo” -> “Intersection”) is required to formally represent the road network in Open-
DRIVE (https://www.asam.net/standards/detail/opendrive/ accessed on 13 May
2021) format.
Furthermore, spatial relations among objects in the scenario can be further specified

by “behindOf”, “inFrontOf”, “leftOf”, “rightOf”, and “middleOf”.
For the representation of the knowledge, in the OWL Reference documentation, the

W3C states that an OWL ontology is an RDF graph, which is in turn a set of RDF triples
[11] (subject–predicate -> object). Therefore, some notations from the data-modeling vocab-
ulary defined by the RDF Schema and the OWL language principles were adopted for the
purpose of this work [10]:
• Classes are identified by an Internationalized Resource Identifier (IRI). In addition,

each Class is represented by a lexically meaningful Uniform Resource Identifier
(URI) that is unique for each entity.

• The RDF/XML document includes an ontology header with the defined base URI.
• The set of all individuals is defined by the class extension of ”owl:Thing”.

All listed characteristics are automatically considered by Protégé when including
new Class entities in the hierarchy. To complete the description of the elements, a descrip-
tion and a label are included as annotations, which results in a class representation, as de-
picted in

.

Figure 2. Example of an AGO Class definition in OWL.

5. Methodology: AGO Construction
This section presents the knowledge acquired during the process of constructing

AGO. Error! Reference source not found. shows the pipeline of the followed methodol-
ogy for the construction of the automotive domain ontology.

Figure 3. Pipeline of the methodology for ontology building.

5.1. First Phase: Definition of the Scope and Knowledge Acquisition
The first stage is an analysis phase and aims to establish the concrete scope of the use

case. This determines which objects are included in the taxonomy of classes. This step
requires having a deep knowledge of the domain of interest and can be the most expensive
phase in terms of person-hours. In this case, several large-scale open datasets for the de-
velopment of AD technologies and the Safety Pool taxonomy were analyzed for acquiring

Figure 2. Example of an AGO Class definition in OWL.

5. Methodology: AGO Construction

This section presents the knowledge acquired during the process of constructing
AGO. Figure 3 shows the pipeline of the followed methodology for the construction of the
automotive domain ontology.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 22

• “isConnectedTo”: this relation is defined to relate all the spatial objects describing
the network of objects. Concatenating these static objects (i.e., “Road”—“isConnect-
edTo” -> “Intersection”) is required to formally represent the road network in Open-
DRIVE (https://www.asam.net/standards/detail/opendrive/ accessed on 13 May
2021) format.
Furthermore, spatial relations among objects in the scenario can be further specified

by “behindOf”, “inFrontOf”, “leftOf”, “rightOf”, and “middleOf”.
For the representation of the knowledge, in the OWL Reference documentation, the

W3C states that an OWL ontology is an RDF graph, which is in turn a set of RDF triples
[11] (subject–predicate -> object). Therefore, some notations from the data-modeling vocab-
ulary defined by the RDF Schema and the OWL language principles were adopted for the
purpose of this work [10]:
• Classes are identified by an Internationalized Resource Identifier (IRI). In addition,

each Class is represented by a lexically meaningful Uniform Resource Identifier
(URI) that is unique for each entity.

• The RDF/XML document includes an ontology header with the defined base URI.
• The set of all individuals is defined by the class extension of ”owl:Thing”.

All listed characteristics are automatically considered by Protégé when including
new Class entities in the hierarchy. To complete the description of the elements, a descrip-
tion and a label are included as annotations, which results in a class representation, as de-
picted in

.

Figure 2. Example of an AGO Class definition in OWL.

5. Methodology: AGO Construction
This section presents the knowledge acquired during the process of constructing

AGO. Error! Reference source not found. shows the pipeline of the followed methodol-
ogy for the construction of the automotive domain ontology.

Figure 3. Pipeline of the methodology for ontology building.

5.1. First Phase: Definition of the Scope and Knowledge Acquisition
The first stage is an analysis phase and aims to establish the concrete scope of the use

case. This determines which objects are included in the taxonomy of classes. This step
requires having a deep knowledge of the domain of interest and can be the most expensive
phase in terms of person-hours. In this case, several large-scale open datasets for the de-
velopment of AD technologies and the Safety Pool taxonomy were analyzed for acquiring

Figure 3. Pipeline of the methodology for ontology building.

5.1. First Phase: Definition of the Scope and Knowledge Acquisition

The first stage is an analysis phase and aims to establish the concrete scope of the
use case. This determines which objects are included in the taxonomy of classes. This
step requires having a deep knowledge of the domain of interest and can be the most
expensive phase in terms of person-hours. In this case, several large-scale open datasets
for the development of AD technologies and the Safety Pool taxonomy were analyzed for
acquiring knowledge and defining the elements of the ontology. The number of elements is
summarized in Table 1. The goal was to define generic classes that cover as many elements
of the analyzed resources as possible to enhance interoperability, while maintaining a
sufficient level of detail for the applications. Thus, the desired output was a domain-
specific hierarchically structured knowledge graph.

Appl. Sci. 2021, 11, 7782 7 of 19

Table 1. Summary of the analyzed datasets for defining the taxonomy of the ontology.

Dataset Year Object Classes Action Classes

nuScenes 2019 23 5
H3D Honda 2019 8 -
LyftLevel5 2019 9 18

Waymo 2019 4 -
Apolloscape 2019 65 -

Berkeley Deep-Drive 2020 40 -
Audi A2-D2 2020 52 -

Mapillary-Vistas 2020 66 -
SafetyPool (Taxonomy) 2020 126 -

In general, these datasets do not define classes in a hierarchy but often constitute a
one-level list. In addition, only two of the listed datasets cover a few classes related to
maneuvers (Action classes in the AGO domain). However, actions are presented as special
attributes of the corresponding objects. Due to the manner in which they are defined, these
datasets do not consider the need of making a distinction between Action and Events.
Moreover, they do not present semantically relevant relations among these elements and
the objects. Taking into account that most of these datasets do not consider the traffic
maneuvers, the “ALKS Regulation UN R157” (https://undocs.org/ECE/TRANS/WP.29/2
020/81 accessed on 20 July 2021) was included in AGO so that the ontology gathers the
critical scenarios listed in the regulation as Actions, along with some additional Object
classes and properties. As a result, AGO is an ontology that offers flexibility for present
and future labeling needs, supported by the established mechanism to connect Objects,
Actions, and Events through Relations. AGO also includes, in its current form, a rich set
of object classes, which are easily extensible, and an equivalently wide number of actions
and maneuvers that can serve as a basis for multiple applications in the domain (e.g., test
coverage analysis, online data recording, and digital twins).

5.2. Second Phase: Build the Taxonomy of Classes
5.2.1. Technologies and Tool

The Semantic Web focuses on enabling machines with the capabilities of providing
formal structured information using the encoded knowledge from ontologies [22]. There
are several languages that enable formalizing and encoding knowledge. For the purpose of
this work, the chosen ontology representation language was the Web Ontology Language
(OWL) [11]. OWL was developed as a vocabulary extension of the Resource Description
Framework (RDF) specification. This linking structure forms a directed, labeled graph,
in which the edges represent the named link between two resources, represented by the
graph nodes [5].

There are several tools specifically designed to create and manage ontologies: Protégé,
Protégé Web, Fluent Editor (FE), OWLGrEd, etc. For this approach, the ontology was
defined with Protégé (https://protege.stanford.edu/ accessed on 11 March 2021) because
this tool enables intuitive construction of complete ontologies. Similarly, the ontology can
be exported into different ontology representation languages, including RDF and OWL.
This tool also provides the user with a Taxonomy Tree viewer (see Figure 4) and other
visualization tools, such as OWLViz, which generates a diagram of the selected elements in
different layouts.

https://undocs.org/ECE/TRANS/WP.29/2020/81
https://undocs.org/ECE/TRANS/WP.29/2020/81
https://protege.stanford.edu/

Appl. Sci. 2021, 11, 7782 8 of 19

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 22

(owl:versionInfo) is defined as a built-in annotation property of OWL [11]}. Furthermore,
some of the Dublin Core Metadata Initiative (DCMI) [23] terms are adopted: Contributor,
creator, description, title, date submitted, license, and publisher. In addition, to complete the
description of the classes, a brief description and a label are included as defined by the RDF
schema [10]: rdfs:comment and rdfs:label.

Figure 4. Taxonomy tree in Protégé showing the main hierarchy of classes in the ontology.

5.2.2. Ontology Construction
The AGO domain ontology was constructed with the common classes identified

among the datasets in the first phase, and the analysis was undertaken with the objective
of identifying the main terms and the related concepts. Thus, this phase involved the fol-
lowing tasks:
• Identification of the common classes among the datasets;
• Define upper-level classes for logically structuring the hierarchy;
• Include every class defined in the datasets (manage synonyms).

The defined ontology provides a shared understanding of common concepts (Clas-
ses) among the main automotive open datasets. Therefore, it can be considered to be a
domain ontology. The general classification of the classes was conducted according to the
element types defined in the AGO domain model description (Section Error! Reference
source not found.). Hence, the upper level consists of four core concepts, as depicted in
Error! Reference source not found.. In addition, it was constructed in a top-manner down
using the Containment Relationship Type [24] (“rdfs:subClassOf”) and according to the hi-
erarchy defined on the datasets. Consequently, most of the included classes appear in one
or more of the analyzed datasets. After this process, the hierarchy of classes evolves from
the simpler tree or plain lists defined in the source datasets into a more complex graph
structure in which each class may have several parent nodes.

5.2.3. Knowledge Representation Language and Knowledge Graph Structure

Figure 4. Taxonomy tree in Protégé showing the main hierarchy of classes in the ontology.

This tool also provides the means to include Annotation properties, which comprise
ontology metadata and general properties of the classes. For the metadata, the versionInfo
(owl:versionInfo) is defined as a built-in annotation property of OWL [11]}. Furthermore,
some of the Dublin Core Metadata Initiative (DCMI) [23] terms are adopted: Contributor,
creator, description, title, date submitted, license, and publisher. In addition, to complete the
description of the classes, a brief description and a label are included as defined by the RDF
schema [10]: rdfs:comment and rdfs:label.

5.2.2. Ontology Construction

The AGO domain ontology was constructed with the common classes identified
among the datasets in the first phase, and the analysis was undertaken with the objective
of identifying the main terms and the related concepts. Thus, this phase involved the
following tasks:

• Identification of the common classes among the datasets;
• Define upper-level classes for logically structuring the hierarchy;
• Include every class defined in the datasets (manage synonyms).

The defined ontology provides a shared understanding of common concepts (Classes)
among the main automotive open datasets. Therefore, it can be considered to be a domain
ontology. The general classification of the classes was conducted according to the element
types defined in the AGO domain model description (Section 4). Hence, the upper level
consists of four core concepts, as depicted in Figure 1. In addition, it was constructed in
a top-manner down using the Containment Relationship Type [24] (“rdfs:subClassOf”) and
according to the hierarchy defined on the datasets. Consequently, most of the included
classes appear in one or more of the analyzed datasets. After this process, the hierarchy
of classes evolves from the simpler tree or plain lists defined in the source datasets into a
more complex graph structure in which each class may have several parent nodes.

Appl. Sci. 2021, 11, 7782 9 of 19

5.2.3. Knowledge Representation Language and Knowledge Graph Structure

The proposed structure of AGO is a directed graph because this configuration provides
the means of representing high-order semantic relations as RDF triples with basic elements
of this non-SQL datasets. In terms of the triples, the subject and object are represented by
“Class” labelled nodes. Data properties (owl:DataProperty) are also included as nodes un-
der the “dataProperty” label. These serve as attributes to the classes according to the OWL
specification. To semantically cover a traffic scenario, several complex relationships are
required to link different elements. The user-defined axioms presented in Section 4 are in-
cluded as object properties (owl:ObjectProperty) which, according to the OWL (RDF/XML)
Structural Specification [20], is the construct defined to connect pairs of individuals with
user-defined relationships. Therefore, the graph is populated with them as nodes with the
“objectProperty” label to represent the predicate of the triples. Both property type nodes are
related using the “DOMAIN” and “RANGE” edges. This explanation is illustrated in the
graph snippet of Figure 5.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 22

The proposed structure of AGO is a directed graph because this configuration pro-
vides the means of representing high-order semantic relations as RDF triples with basic
elements of this non-SQL datasets. In terms of the triples, the subject and object are repre-
sented by “Class” labelled nodes. Data properties (owl:DataProperty) are also included as
nodes under the “dataProperty” label. These serve as attributes to the classes according
to the OWL specification. To semantically cover a traffic scenario, several complex rela-
tionships are required to link different elements. The user-defined axioms presented in
Section Error! Reference source not found. are included as object properties (owl:Ob-
jectProperty) which, according to the OWL (RDF/XML) Structural Specification [20], is the
construct defined to connect pairs of individuals with user-defined relationships. There-
fore, the graph is populated with them as nodes with the “objectProperty” label to repre-
sent the predicate of the triples. Both property type nodes are related using the “DOMAIN”
and “RANGE” edges. This explanation is illustrated in the graph snippet of Error! Refer-
ence source not found..

Figure 5. Object property and data property triple examples represented as a graph.

5.3. Third Phase: Database Building in Neo4j
The third stage implies building the knowledge-graph database and making the on-

tology available for its use via programmatic interfaces. For this purpose, a database to
store the data was selected. In this case, Neo4j (https://neo4j.com/neo4j-graph-database/
accessed on 24 July 2021) neo4j-community-4.2.0) was chosen as the database for storing
the ontology. To represent the ontology as a graph in Neo4j following the standards, the
neosemantics plugin (n10s) (https://github.com/neo4j-labs/neosemantics accessed on 4
August 2021) is required. This enables importing and exporting the ontology graph from
and into OWL files for further use. Using n10s Release 4.1.0, a Cypher query can be used
to import the OWL ontology from a local directory or a URL. In addition, the query can
be passed with some specific parameters that determine the names given to the elements
in the database. The specific query used to structure the ontology is presented in Error!
Reference source not found..

Figure 6. Main cypher query used to import the ontology.

The imported data are further processed by including specific Neo4j labels to classify
the nodes according to the core concepts. Grouping nodes with tags related to the first
level of classes in the hierarchy (i.e., Action, Object, etc.) helps optimization of the queries

Figure 5. Object property and data property triple examples represented as a graph.

5.3. Third Phase: Database Building in Neo4j

The third stage implies building the knowledge-graph database and making the
ontology available for its use via programmatic interfaces. For this purpose, a database to
store the data was selected. In this case, Neo4j (https://neo4j.com/neo4j-graph-database/
accessed on 24 July 2021) neo4j-community-4.2.0) was chosen as the database for storing
the ontology. To represent the ontology as a graph in Neo4j following the standards, the
neosemantics plugin (n10s) (https://github.com/neo4j-labs/neosemantics accessed on
4 August 2021) is required. This enables importing and exporting the ontology graph from
and into OWL files for further use. Using n10s Release 4.1.0, a Cypher query can be used to
import the OWL ontology from a local directory or a URL. In addition, the query can be
passed with some specific parameters that determine the names given to the elements in
the database. The specific query used to structure the ontology is presented in Figure 6.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 22

The proposed structure of AGO is a directed graph because this configuration pro-
vides the means of representing high-order semantic relations as RDF triples with basic
elements of this non-SQL datasets. In terms of the triples, the subject and object are repre-
sented by “Class” labelled nodes. Data properties (owl:DataProperty) are also included as
nodes under the “dataProperty” label. These serve as attributes to the classes according
to the OWL specification. To semantically cover a traffic scenario, several complex rela-
tionships are required to link different elements. The user-defined axioms presented in
Section Error! Reference source not found. are included as object properties (owl:Ob-
jectProperty) which, according to the OWL (RDF/XML) Structural Specification [20], is the
construct defined to connect pairs of individuals with user-defined relationships. There-
fore, the graph is populated with them as nodes with the “objectProperty” label to repre-
sent the predicate of the triples. Both property type nodes are related using the “DOMAIN”
and “RANGE” edges. This explanation is illustrated in the graph snippet of Error! Refer-
ence source not found..

Figure 5. Object property and data property triple examples represented as a graph.

5.3. Third Phase: Database Building in Neo4j
The third stage implies building the knowledge-graph database and making the on-

tology available for its use via programmatic interfaces. For this purpose, a database to
store the data was selected. In this case, Neo4j (https://neo4j.com/neo4j-graph-database/
accessed on 24 July 2021) neo4j-community-4.2.0) was chosen as the database for storing
the ontology. To represent the ontology as a graph in Neo4j following the standards, the
neosemantics plugin (n10s) (https://github.com/neo4j-labs/neosemantics accessed on 4
August 2021) is required. This enables importing and exporting the ontology graph from
and into OWL files for further use. Using n10s Release 4.1.0, a Cypher query can be used
to import the OWL ontology from a local directory or a URL. In addition, the query can
be passed with some specific parameters that determine the names given to the elements
in the database. The specific query used to structure the ontology is presented in Error!
Reference source not found..

Figure 6. Main cypher query used to import the ontology.

The imported data are further processed by including specific Neo4j labels to classify
the nodes according to the core concepts. Grouping nodes with tags related to the first
level of classes in the hierarchy (i.e., Action, Object, etc.) helps optimization of the queries

Figure 6. Main cypher query used to import the ontology.

The imported data are further processed by including specific Neo4j labels to classify
the nodes according to the core concepts. Grouping nodes with tags related to the first
level of classes in the hierarchy (i.e., Action, Object, etc.) helps optimization of the queries
to the ontology because the consultation is undertaken for a smaller subset of nodes. Con-
sequently, the ontology-based applications developed in later works should be optimized
in terms of ontology consultation.

https://neo4j.com/neo4j-graph-database/
https://github.com/neo4j-labs/neosemantics

Appl. Sci. 2021, 11, 7782 10 of 19

The resulting graphs’ main characteristics are summarized in Table 2. AGO has a
total of 523 nodes and 1365 relationships. Some of the class nodes have related properties
to provide the user with complete semantic information about each element. These are
known as property keys in Neo4j.

Table 2. Main characteristics of the ontology.

Ontology Name AGO

Version 1.1.0

Neo4j-labels Context, Object, Action, Event, dataProperty,
objectProperty, metadata

Number of Classes (Nodes) 390

Number of Objects 296

Number of Actions 42

Number of Events 24

Number of Contexts 33

Number of dataProperties 57

Number of objectProperties 64

Number of Relations 1367

Relationship types subClassOf, subPropertyOf, DOMAIN, RANGE

Number of subClassOf Relations 398

Number of subPropertyOf Relations 119

Number of DOMAIN Relations 364

Number of RANGE Relations 486

Property Keys label, name, comment, URI, type

When including the elements in Neo4j, the features of each element are added as
node properties. Table 3 summarizes the included property keys with the related OWL
syntax equivalence.

Table 3. Property key summary and OWL syntax equivalence.

Property Key Description OWL Syntax

Uid A unique identifier is included by default to each element. -

Label Human-friendly label. Defined for all elements. rdfs: label

name The name of each class is given in CamelCase. Defined for
all the elements -

comment
A brief description of the defined element nature. The user
should review the comment to understand how the
elements are understood in the automotive domain.

rdfs: comment

URI

URIs are used in OWL as object identifiers. Their structure is
formalized by the ontology language to be a valid URL where
the complete ontology is available and there is a unique name
for each class. In the case of AGO, the URI looks like:
http://vcd.vicomtech.org/ontology/automotive/# + {name}

rdf:about

Type

Represents the type of data that each dataProperty element
should have, which is related to the properties of the classes.
For example, the “color” attribute should be a string
whereas “height” should be an integer.

Datatypes

http://vcd.vicomtech.org/ontology/automotive/#

Appl. Sci. 2021, 11, 7782 11 of 19

The taxonomy tree for the main classes in Protégé and OpenLABEL differs because
the relations are not defined as a Class type in the graph representation. The user-defined
axioms are defined as object property nodes and connected with the required elements with
the “DOMAIN” and “RANGE” relationships to build the RDF triples. Hence, the subject
of the triple is represented by the domain and the object by the range terms. Figure 5
represents the “Lane”–“isPartOf” -> “Road” object property triple as a graph. In addition,
Figure 5 also depicts how the “curvature” attribute is related to the “Road” class following
the data property syntax definition.

6. Use Cases

This section summarizes two different but related use cases in the automotive domain.
The first proposes the utilization of the ontology to guide the creation of configuration
files for semantic labeling applications. The second relates to the creation of a database of
graphical scenario representations from real data labels and expert knowledge.

6.1. Semantic Labeling

Labeling is the process of creating descriptions of the content of some data. For images
or other sensorial data, labels are typically spatio-temporal entities that determine the
presence of objects or actions in the reality captured by the sensors [1]. With the emergence
of DL, labeling has become a major activity for automakers and providers of electronics.
With DL, a sufficiently large and rich dataset containing sensorial data and labels can be
used to train models that learn from the dataset and predict labels on previously unseen
data. This ability has triggered the creation of many ADAS and AD functions.

As a consequence, datasets have become a critical asset for players in the automotive
market. Labels are frequently defined using function-specific or customized taxonomies
and lacking a global or universal hierarchy. Datasets are usually non-compatible and
difficult to merge due to semantic inconsistencies between the used terms.

In this sense, AGO, as a domain ontology, can serve as the core of a data translation
function that maps relations between (otherwise non-interoperable) datasets. During the
development of the work, all the datasets were represented graphically, and it was verified
that the labels of the elements can be mapped to their respective synonyms in the ontology.
This translation function requires the definition of advanced search queries. The result may
be used to feed training models that need to be adapted for new tests that use different
datasets from those used for training. A diagram of the process is presented in Figure 7.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 22

6.1. Semantic Labeling
Labeling is the process of creating descriptions of the content of some data. For im-

ages or other sensorial data, labels are typically spatio-temporal entities that determine
the presence of objects or actions in the reality captured by the sensors [1]. With the emer-
gence of DL, labeling has become a major activity for automakers and providers of elec-
tronics. With DL, a sufficiently large and rich dataset containing sensorial data and labels
can be used to train models that learn from the dataset and predict labels on previously
unseen data. This ability has triggered the creation of many ADAS and AD functions.

As a consequence, datasets have become a critical asset for players in the automotive
market. Labels are frequently defined using function-specific or customized taxonomies
and lacking a global or universal hierarchy. Datasets are usually non-compatible and dif-
ficult to merge due to semantic inconsistencies between the used terms.

In this sense, AGO, as a domain ontology, can serve as the core of a data translation
function that maps relations between (otherwise non-interoperable) datasets. During the
development of the work, all the datasets were represented graphically, and it was veri-
fied that the labels of the elements can be mapped to their respective synonyms in the
ontology. This translation function requires the definition of advanced search queries. The
result may be used to feed training models that need to be adapted for new tests that use
different datasets from those used for training. A diagram of the process is presented in
Error! Reference source not found..

Figure 7. Using AGO ontology for translating of heterogeneous labels (e.g., from different datasets).

As an example of the above-mentioned process, Error! Reference source not found.
depicts a graphical representation of the classes defined in the “Waymo” dataset mapped
to their equivalent AGO classes. The equivalence among elements is defined by the
“owl:sameAs” relationship, which means that one can be replaced by the other without
altering the meaning and vice versa.

This type of application allows identifying the relations among different datasets and
translating the terms to the needed terminology. The translation can be performed auto-
matically or manually, with user interfaces showing a graph visualization and navigation
capabilities.

Furthermore, the ontology can be part of a knowledge management system and used
before the labels are created, at the annotation or labeling stage (see Error! Reference

Figure 7. Using AGO ontology for translating of heterogeneous labels (e.g., from different datasets).

Appl. Sci. 2021, 11, 7782 12 of 19

As an example of the above-mentioned process, Figure 8 depicts a graphical repre-
sentation of the classes defined in the “Waymo” dataset mapped to their equivalent AGO
classes. The equivalence among elements is defined by the “owl:sameAs” relationship,
which means that one can be replaced by the other without altering the meaning and
vice versa.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 22

source not found.). Specifically, the ontology can serve as a database with a formal defi-
nition of a unified understanding of the terminology related with the use case. In this
manner, the database can be used for generating structure or configuration files that can
guide a labeling application or process to produce labels not only in the expected format
(e.g., OpenLABEL), but also semantically compatible with the ontology as depicted in Er-
ror! Reference source not found.. Also related with these files, both the structure and the
terms defined using natural language can be validated with a content-checker application.
Thus, even if there are different users working with the tool or defining several use cases,
the terms are chosen from the ontology and remain the same for every use case. For in-
stance, in the case of web-based annotation tools [25], its functionality could be boosted
by including relations among the annotated objects. In addition, the previous annotations
and configuration files may be checked according to the vocabulary defined in the ontol-
ogy, enhancing interoperability by ensuring a common understanding of the domain con-
cepts.

Figure 8. Waymo dataset mapping to AGO example. Matched classes represent the common terms
among the different datasets and, thus, the translation can be undertaken by identifying these equiv-
alences.

Figure 8. Waymo dataset mapping to AGO example. Matched classes represent the common terms among the different
datasets and, thus, the translation can be undertaken by identifying these equivalences.

This type of application allows identifying the relations among different datasets
and translating the terms to the needed terminology. The translation can be performed
automatically or manually, with user interfaces showing a graph visualization and naviga-
tion capabilities.

Furthermore, the ontology can be part of a knowledge management system and used
before the labels are created, at the annotation or labeling stage (see Figure 9). Specifically,
the ontology can serve as a database with a formal definition of a unified understanding
of the terminology related with the use case. In this manner, the database can be used
for generating structure or configuration files that can guide a labeling application or
process to produce labels not only in the expected format (e.g., OpenLABEL), but also
semantically compatible with the ontology as depicted in Figure 9. Also related with these
files, both the structure and the terms defined using natural language can be validated
with a content-checker application. Thus, even if there are different users working with
the tool or defining several use cases, the terms are chosen from the ontology and remain

Appl. Sci. 2021, 11, 7782 13 of 19

the same for every use case. For instance, in the case of web-based annotation tools [25],
its functionality could be boosted by including relations among the annotated objects. In
addition, the previous annotations and configuration files may be checked according to
the vocabulary defined in the ontology, enhancing interoperability by ensuring a common
understanding of the domain concepts.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 22

Figure 9. Using AGO to specify taxonomies and configuration files before the labeling stage to pro-
duce semantically compliant content.

6.2. Graphical Scenario Representation
Scenario representation is also a key aspect of ADAS/AD development and testing.

Rich and realistic scenario representations can lead to the generation of simulated envi-
ronments that can be utilized in virtual testing procedures (e.g., Hardware-in-the-Loop
simulations). Scenarios may include description of the participants of a road or driving
scene, including their interactions, spatio-temporal relations, etc.

Scenarios can be generated from expert knowledge, i.e., from high-level descriptions
of how the situation should be, or from real data, i.e., from semantic labels obtained from
annotation processes.

In this use case, both approaches were implemented, creating synthetic scenarios
from the ALKS regulation, and real scenarios from the KITTI dataset
(http://www.cvlibs.net/datasets/kitti/eval_tracking.php accessed on 4 June 2021). These
scenarios were created by first using the VCD toolkit to create the RDF entries in the
OpenLABEL format, which is flexible enough to host high-level actions and relations (for
the ALKS scenario), and to abstract high-level information from detailed labels (for the
KITTI annotations).

Second, these VCD payloads were imported into Neo4j to build a scenario database.
In the graph, each scenario is represented by a primary node with the following metadata:
• cnl_text: textual description of the scenario in a Controlled Natural Language (CNL);
• date_db: date and time of the latest update of the node;
• scenario_uid: is composed by the information source and a numerical id;
• schema_version: the VCD version used to represent the imported information.

The working example presented in this section is represented by the schematic dia-
gram in Error! Reference source not found.. Additionally, the scenario is graphically de-
picted in Error! Reference source not found.. The depicted example includes some indi-
viduals and these nodes have the following information included as node properties:
• frame_intervals: the start and end frames for each node;
• name: the name of the individual in CamelCase given as the class name plus a num-

ber used to list the individuals with the same type;
• type: the name of the corresponding ontology class.

Figure 9. Using AGO to specify taxonomies and configuration files before the labeling stage to produce semantically
compliant content.

6.2. Graphical Scenario Representation

Scenario representation is also a key aspect of ADAS/AD development and testing.
Rich and realistic scenario representations can lead to the generation of simulated envi-
ronments that can be utilized in virtual testing procedures (e.g., Hardware-in-the-Loop
simulations). Scenarios may include description of the participants of a road or driving
scene, including their interactions, spatio-temporal relations, etc.

Scenarios can be generated from expert knowledge, i.e., from high-level descriptions
of how the situation should be, or from real data, i.e., from semantic labels obtained from
annotation processes.

In this use case, both approaches were implemented, creating synthetic scenarios from
the ALKS regulation, and real scenarios from the KITTI dataset (http://www.cvlibs.net/
datasets/kitti/eval_tracking.php accessed on 4 June 2021). These scenarios were created
by first using the VCD toolkit to create the RDF entries in the OpenLABEL format, which
is flexible enough to host high-level actions and relations (for the ALKS scenario), and to
abstract high-level information from detailed labels (for the KITTI annotations).

Second, these VCD payloads were imported into Neo4j to build a scenario database.
In the graph, each scenario is represented by a primary node with the following metadata:

• cnl_text: textual description of the scenario in a Controlled Natural Language (CNL);
• date_db: date and time of the latest update of the node;
• scenario_uid: is composed by the information source and a numerical id;
• schema_version: the VCD version used to represent the imported information.

The working example presented in this section is represented by the schematic di-
agram in Figure 10. Additionally, the scenario is graphically depicted in Figure 11. The
depicted example includes some individuals and these nodes have the following informa-
tion included as node properties:

• frame_intervals: the start and end frames for each node;

http://www.cvlibs.net/datasets/kitti/eval_tracking.php
http://www.cvlibs.net/datasets/kitti/eval_tracking.php

Appl. Sci. 2021, 11, 7782 14 of 19

• name: the name of the individual in CamelCase given as the class name plus a number
used to list the individuals with the same type;

• type: the name of the corresponding ontology class.
Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 22

Figure 10. Diagram of the KITTI example scenario elements and relations illustrated over time.

Continuing with the scenario representation illustrated in Error! Reference source
not found., the upper nodes represent the core static elements that correspond to the up-
per items of the VCD JSON schema. Hence, the metadata information is included as the
node properties of the center node of the representation.

The individuals are presented with the semantically meaningful relations among
them. These relations can be easily translated into the form of RDF triples, taking into
account the pre-defined “subClassOf” containment relationship.

Figure 10. Diagram of the KITTI example scenario elements and relations illustrated over time.

Continuing with the scenario representation illustrated in Figure 11, the upper nodes
represent the core static elements that correspond to the upper items of the VCD JSON
schema. Hence, the metadata information is included as the node properties of the center
node of the representation.

The individuals are presented with the semantically meaningful relations among them.
These relations can be easily translated into the form of RDF triples, taking into account
the pre-defined “subClassOf” containment relationship.

In addition, considering the AGO domain axioms, the list of the extracted triples
for the example in Figure 11 can be extended. Taking all these triples into account, a
translation into a NL textual description can be easily undertaken. Both the list of triples
and the NL textual description are presented in Table 4. At this stage of the pipeline, the
resulting data correspond to a functional scenario [9], which can be extended to obtain a
logical scenario by considering the data properties defined in the ontology and included
with the “hasAttribute” relation to the scenario representation.

Appl. Sci. 2021, 11, 7782 15 of 19
Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 22

Figure 11. Part of the representation as a graph of the KITTI dataset example scenarios’ static ele-
ments.

In addition, considering the AGO domain axioms, the list of the extracted triples for
the example in Error! Reference source not found. can be extended. Taking all these tri-
ples into account, a translation into a NL textual description can be easily undertaken.
Both the list of triples and the NL textual description are presented in

Figure 11. Part of the representation as a graph of the KITTI dataset example scenarios’ static elements.

Appl. Sci. 2021, 11, 7782 16 of 19

Table 4. RDF triples converted into NL textual description for the KITTI dataset example scenario.

Scenario UID vcd430_kitti_tracking_0000_actions_static

RDF Triples
(“subClasssOf”)

“EgoVehicle” -subClassOf-> “Object”
“Car2” -subClassOf-> “Object”
“Road1” -subClassOf-> “Object”
“Lane1” -subClassOf-> “Object”
“Lane2” -subClassOf-> “Object”
“Pass1” -subClassOf-> “Event”
“DrivingStraight1” -subClassOf-> “Action”
“Lane Changing1” -subClassOf-> “Action”

RDF Triples
(User-defined axioms)

“Lane1” -isPartOf-> “Road1”
“Lane2” -isPartOf-> “Road1”
“EgoVehicle” -isSubjectOfAction-> “DrivingStraight1”
“Lane2” -isObjectOfAction-> “DrivingStraight1”
“Car2” -isSubjectOfEvent-> “Pass1”
“EgoVehicle” -isObjectOfEvent-> “Pass1”
“EgoVehicle” -isSubjectOfAction-> “LaneChanging1”
“Lane1” -isObjectOfEvent-> “LaneChanging1”
“Pass1 -causes-> “LaneChanging1”
“DrivingStraight1” -meets-> “Pass1” -meets->
“LaneChanging1”

NL Description

The ego-vehicle is driving straight in lane1, which is part
of a single-way two-lane road. When another car passes
the ego-vehicle, then it starts lane changing into the other
lane of the same road, lane2.

7. Results

The example ontology produced following the proposed methodology is available
online (https://vcd.vicomtech.org/ontology/automotive accessed on 23 August 2021) in
RDF format. The automotive ontology is composed of 390 class elements classified into
three main groups using Neo4j labels: “Object”, “Context”, “Action” and “Event”. The
definition of each element is completed with annotation properties. In addition, the file
contains 1367 relationships, of which 398 represent hierarchical relations among the classes
(and so defining a graph hierarchy). AGO can be used as a top-level ontology and reused
as a starting point to build new domain or application ontologies. Furthermore, SWRL
(Semantic Web Rule Language (https://www.w3.org/Submission/SWRL/ accessed on
10 May 2021)) rules are included in the ontology file to extend the axioms of the scenarios by
inferring knowledge. They can be also used to validate that the inclusion of the individuals
is correct. Nevertheless, these rules are not imported into Neo4j and, therefore, their
usability is not further extended in this paper.

The scripts used to build the ontology and scenario databases in Neo4j and other
additional material, such as ALKS and KITTI functional scenario files, can be found at the
GitHub repository (https://github.com/Vicomtech/video-content-description-VCD/tree/
master/ontologies accessed on 23 August 2021).

Comparison with Existing Ontologies

Different available ontologies related to the automotive domain were analyzed (sum-
mary presented in Table 5) to identify the gaps that need to be addressed for semantic
labelling and scenario representation. Starting with the Transport Disruption Ontology [7]
mentioned in Section 2, an exhaustive list of hierarchically classified events that may cause
disturbances in traffic scenarios is presented. “Agent” is defined to be the subject of the
events; however, the only objects defined as its subclasses are “Person”, “Group”, and
“Organization”. The scope of the Transport Disruption Ontology differs from the interests
of AGO; consequently, this ontology does not cover the whole range of actions and objects
related to traffic scenarios. Nevertheless, it may be used to extend the classes by reusing

https://vcd.vicomtech.org/ontology/automotive
https://www.w3.org/Submission/SWRL/
https://github.com/Vicomtech/video-content-description-VCD/tree/master/ontologies
https://github.com/Vicomtech/video-content-description-VCD/tree/master/ontologies

Appl. Sci. 2021, 11, 7782 17 of 19

existing developments. Further, the listed “event” classes have related temporal objects
based on the OWL-Time ontology, which allows the distinctions to be made among occur-
rences that happen instantaneously or during a time range. This means that, although they
have somehow identified the need to make a distinction between Action and Events, this is
implemented implicitly rather than explicitly. Hence, some object properties defined in
relation to the “time” classes work as in the same manner as Allen’s temporal relations.

Table 5. Comparison of AGO with existing ontologies.

Name Description Access Spatio-Temporal
Relations

Action
Support

Event
Support

Automotive Global
Ontology (AGO)

Automotive domain ontology for traffic
scenario representation and semantic

labeling applications.
Open Yes Yes Yes

The Transport Disruption
Ontology

A formal framework for modeling
travel- and transport-related events
that have a disruptive impact on an

agent’s planned travel.

Open No No No

Ontology for scenarios for
the assessment of AVs

An ontology for describing scenarios in
the context of the assessment of the

performance of an AV.
Private Yes Yes Yes

TTI Core

A machine understandable knowledge
base for autonomous driving vehicles

constructed using three core ontologies:
map, control, and car ontology.

Under
License No No No

Most of the published approaches cover completely different scopes within the auto-
motive domain; therefore, they lack many classes and properties to fulfill the requirements
of scenario representation and semantic labelling. One example is The Automotive Ontol-
ogy (AUTO) [26] created by the W3C Automotive Ontology Community Group, which
only covers classes related to popular cars, buses, and motorcycles. Continuing with TTI
Core [27], this is a layered approach presented as three core ontologies for safe autonomous
driving: car, control, and map ontologies. Each of these covers a minimum portion of
the domain-related classes and, despite not covering space–time relationships, it presents
elements in order to relate objects to map elements

In contrast, the ontology for scenarios for the assessment of autonomous vehicles [28]
is the method that most resembles AGO because it makes a clear distinction between Action
and Event classes. However, the relationships defined to relate classes are not clear because
the ontology is not publicly accessible and the information about it is scarce.

8. Discussion

Most existing ontology building approaches in the automotive domain do not use
graph-based tools as part of their pipeline. The presented methodology is based on Neo4j, a
graph database that provides flexibility to easily modify and update the ontology with new
information. This is a key feature when developing ontology-based approaches, because
new scenarios will generate new individuals and, in turn, these elements should be updated
for each case. In addition, graph-based data representation models are especially effective
for the expression of highly related data, such as hierarchical classification or mappings
between concepts. A graph database is also an interesting tool to provide interoperability
to the ontology, because it is compatible with numerous services and languages. Therefore,
it is easy to use with different applications.

In this work, the area of interest was the automotive applications of semantic labeling
and scenario-based testing. Hence, a formal description of the ontology that covers as
many driving scenes as possible was presented. The pipeline is based on the taxonomical
structure of classes presented in the main automotive datasets, with expressivity and

Appl. Sci. 2021, 11, 7782 18 of 19

semantic load added via the inclusion of new relations. As result a reusable top-level
automotive domain ontology, named AGO, was defined.

The methodology is defined with accessible tools and steps that do not require a
significant technical background. The objective was to provide the means to construct and
take advantage of the ontologies of as many user profiles as possible.

The knowledge regarding the construction of a domain ontology presented in this
paper, and the two selected use cases, has been made available to the ASAM standard-
ization group (https://www.asam.net/ accessed on 5 June 2021) for the development of
the OpenLABEL and OpenXOntology standardization projects (https://www.asam.net/
project-detail/asam-openxontology/ accessed on 5 June 2021) (to appear 2021–2022), to
contribute to the automotive industry and the scientific community.

Author Contributions: Investigation, M.N., I.U.; writing—original draft preparation, M.N., I.U.;
writing—review and editing, M.N., I.U.; data preparation M.N., M.G., I.U.; supervision M.N., O.O.;
project administration M.N., O.O.; funding acquisition M.N., O.O. All authors have read and agreed
to the published version of the manuscript.

Funding: This work has received funding from the European Union’s H2020 research and innovation
program (grant agreement no 824309, project HEADSTART).

Data Availability Statement: The final version of the defined ontology is available online and
can be accessed through the URL (https://vcd.vicomtech.org/ontology/automotive) or from the
GitHub repository (https://github.com/Vicomtech/video-content-description-VCD/tree/master/
ontologies). The files necessary for the construction of the ontology and the scenario-database have
also been included.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nieto, M.; Senderos, O.; Otaegui, O. Boosting AI applications: Labeling format for complex datasets. SoftwareX 2021, 13, 100653.

[CrossRef]
2. Suárez-Figueroa, M.C.; Gómez-Pérez, A.; Fernández-López, M. The NeOn Methodology framework: A scenario-based methodol-

ogy for ontology development. Appl. Ontol. 2015, 10, 107–145. [CrossRef]
3. Bagschik, G.; Menzel, T.; Maurer, M. Ontology based scene creation for the development of automated vehicles. In Proceedings of

the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1813–1820. [CrossRef]
4. Benvenuti, F.; Diamantini, C.; Potena, D.; Storti, E. An ontology-based framework to support performance monitoring in public

transport systems. Transp. Res. Part C Emerg. Technol. 2017, 81, 188–208. [CrossRef]
5. RDF Working Group. Resource Description Framework (RDF). 2014. Available online: https://www.w3.org/RDF/ (accessed on

23 July 2021).
6. Lorenz, B.; Ohlbach, H.; Yang, L. Ontology of Traffic Networks (OTN). REWERSE Proj. Publ. 2005. Available online: http:

//rewerse.net/publications/rewerse-description/REWERSE-DEL-2005-A1-D4.html (accessed on 25 July 2021).
7. Corsar, D.; Markovic, M.; Edwards, P.; Nelson, J.D. The transport disruption ontology. In The Semantic Web—ISWC 2015. Lecture

Notes in Computer Science; Arenas, M., Ed.; Springer: Cham, Switzerland, 2015; Volume 9367, pp. 329–336. [CrossRef]
8. Menzel, T.; Bagschik, G.; Isensee, L.; Schomburg, A.; Maurer, M. From functional to logical scenarios: Detailing a keyword-based

scenario description for execution in a simulation environment. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium
(IV), Paris, France, 9–12 June 2019; pp. 2383–2390. [CrossRef]

9. Menzel, T.; Bagschik, G.; Maurer, A.M. Scenarios for development, test and validation of automated vehicles. In Proceedings of
the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1821–1827. [CrossRef]

10. Brickley, D.; Guha, R.V. RDF Schema 1.1. 2014. Available online: https://www.w3.org/TR/rdf-schema/ (accessed on
10 March 2021).

11. Bechhofer, S.; van Harmelen, F.; Hendler, J.; Horrocks, I.; McGuinness, D.L.; Patel-Schneider, P.F.; Stein, L.A. OWL Web Ontology
Language Reference. W3C Recommendation. 2004. Available online: https://www.w3.org/TR/owl2-overview/ (accessed on
5 May 2021).

12. Fernandez, M.; Gomez-Perez, A.; Juristo, N. METHONTOLOGY: From ontological art towards ontological engineering. In
Proceedings of the AAAI97 Spring Symposium, Stanford, CA, USA, 24–26 March 1997; pp. 33–40.

13. Sure, Y.; Staab, S.; Studer, R. Handbook on ontologies. In On-To-Knowledge Methodology (OTKM); Springer: Berlin/Heidelberg,
Germany, 2013.

https://www.asam.net/
https://www.asam.net/project-detail/asam-openxontology/
https://www.asam.net/project-detail/asam-openxontology/
https://vcd.vicomtech.org/ontology/automotive
https://github.com/Vicomtech/video-content-description-VCD/tree/master/ontologies
https://github.com/Vicomtech/video-content-description-VCD/tree/master/ontologies
http://doi.org/10.1016/j.softx.2020.100653
http://doi.org/10.3233/AO-150145
http://doi.org/10.1109/IVS.2018.8500632
http://doi.org/10.1016/j.trc.2017.06.001
https://www.w3.org/RDF/
http://rewerse.net/publications/rewerse-description/REWERSE-DEL-2005-A1-D4.html
http://rewerse.net/publications/rewerse-description/REWERSE-DEL-2005-A1-D4.html
http://doi.org/10.1007/978-3-319-25010-6_22
http://doi.org/10.1109/ivs.2019.8814099
http://doi.org/10.1109/ivs.2018.8500406
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl2-overview/

Appl. Sci. 2021, 11, 7782 19 of 19

14. Pinto, H.S.; Staab, S.; Tempich, C. DILIGENT: Towards a fine-grained methodology for Distributed, Loosely-controlled and
evolving Engineering of oNTologies. In Proceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004),
Valencia, Spain, 22–27 August 2004; pp. 393–397.

15. Katsumi, M.; Fox, M. Ontologies for transportation research: A survey. Transp. Res. Part C Emerg. Technol. 2018, 89, 53–82.
[CrossRef]

16. Bermejo, A.J.; Villadangos, J.; Astrain, J.J.; Cordoba, A. Ontology based road traffic management. In Intelligent Distributed
Computing VI Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2013; Volume 446, pp. 103–108.
[CrossRef]

17. De Nicola, A.; Missikoff, M.; Navigli, R. A Proposal for a Unified Process for Ontology Building: UPON. Lect. Notes Comput. Sci.
2005, 3588, 655–664. [CrossRef]

18. Bellini, P.; Bruno, I.; Nesi, P.; Rauch, N. Graph databases methodology and tool supporting index/store versioning. J. Vis. Lang.
Comput. 2015, 31, 222–229. [CrossRef]

19. Ulbrich, S.; Nothdurft, T.; Maurer, M.; Hecker, P. Graph-based context representation, environment modeling and information
aggregation for automated driving. In Proceedings of the 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI,
USA, 8–11 June 2014. [CrossRef]

20. Bock, C.; Fokoue, A.; Haase, P.; Hoekstra, R.; Horrocks, I.; Ruttenberg, A.; Scattler, U.; Smith, M. OWL 2 Web Ontology Language.
Structural Specification and Functional-Style Syntax (Second Edition). W3C. 2012. Available online: https://www.w3.org/TR/
owl2-syntax/ (accessed on 10 March 2021).

21. Batsakis, S.; Petrakis, E.G.; Tachmazidis, I.; Antoniou, G. Temporal representation and reasoning in OWL 2. Semant. Web 2017, 8,
981–1000. [CrossRef]

22. Karbe, T. State of the Art for Automotive Ontology. CRYSTAL Project. Deliverable Patent Number D308.010, 5 June 2014.
23. DCMI Usage Board. DCMI Metadata Terms. 2020. Available online: http://dublincore.org/specifications/dublin-core/dcmi-

terms/2020-01-20/ (accessed on 28 June 2021).
24. Wang, S.; Tanaka, K.; Zhou, S.; Ling, T.W.; Guan, J.; Yang, D.; Grandi, F.; Mangina, E.; Song, I.-Y.; Mayr, H.C. Conceptual modeling

for advanced application domains: ER 2004 Workshops CoMoGIS, CoMWIM, ECDM, CoMoA, DGOV, and ECOMO. In Lecture
Notes in Computer Science; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005; pp. 402–414. Available online:
https://books.google.es/books?id=NkgBCAAAQBAJ (accessed on 15 May 2021).

25. Mujika, A.; Fanlo, A.D.; Tamayo, I.; Senderos, O.; Barandiaran, J.; Aranjuelo, N.; Nieto, M.; Otaegui, O. Web-based Video-Assisted
Point Cloud Annotation for ADAS validation. In Proceedings of the 24th International Conference on 3D Web Technology,
Los Angeles, CA, USA, 26–28 July 2019. [CrossRef]

26. Hepp, M.; Kuzinski, D.; Trypuz, R.; Szczepański, K. Markup for Autos. 2021. Available online: https://schema.org/docs/
automotive.html (accessed on 7 May 2021).

27. Zhao, L.; Ichise, R.; Mita, S.; Sasiki, Y. Core ontologies for safe autonomous driving. In Proceedings of the International Semantic
Web Conference (Posters & Demos), Bethlehem, PA, USA, 11–15 October 2015.

28. De Gelder, E.; Paardekooper, J.P.; Saberi, A.K.; Elrofai, H.; Ploeg, J.; Friedmann, L.; De Schutter, B. Ontology for scenarios for the
assessment of automated vehicles. arXiv 2020, arXiv:2001.11507.

http://doi.org/10.1016/j.trc.2018.01.023
http://doi.org/10.1007/978-3-642-32524-3_14
http://doi.org/10.1007/11546924_64
http://doi.org/10.1016/j.jvlc.2015.10.018
http://doi.org/10.1109/IVS.2014.6856556
https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/owl2-syntax/
http://doi.org/10.3233/SW-160248
http://dublincore.org/specifications/dublin-core/dcmi-terms/2020-01-20/
http://dublincore.org/specifications/dublin-core/dcmi-terms/2020-01-20/
https://books.google.es/books?id=NkgBCAAAQBAJ
http://doi.org/10.1145/3329714.3338128
https://schema.org/docs/automotive.html
https://schema.org/docs/automotive.html

	Introduction
	State of the Art
	Terminology
	The AGO Domain Model
	Methodology: AGO Construction
	First Phase: Definition of the Scope and Knowledge Acquisition
	Second Phase: Build the Taxonomy of Classes
	Technologies and Tool
	Ontology Construction
	Knowledge Representation Language and Knowledge Graph Structure

	Third Phase: Database Building in Neo4j

	Use Cases
	Semantic Labeling
	Graphical Scenario Representation

	Results
	Discussion
	References

