Reduction of Compression Artifacts Using a Densely Cascading Image Restoration Network
Abstract
:1. Introduction
- ▪
- To reduce the coding artifacts of the compressed images, we propose a CNN based densely cascading image restoration network (DCRN) with two essential parts, densely cascading feature extractor and channel attention block.
- ▪
- Through a various ablation study, the proposed network is designed to guarantee the optimal trade-off between the PSNR and the network complexity.
- ▪
- Compared to the previous method, the proposed network is designed to obtain comparable AR performance while utilizing the small number of network parameters and memory size. In addition, it can provide the fastest inference speed, except for initial AR network [30].
- ▪
- Compared to the latest methods to show the highest AR performances (PSNR, SSIM, and PSNR-B), the proposed method can reduce the number of parameters and total memory size maximum by 2% and 5%, respectively.
2. Related Works
3. Proposed Method
3.1. Overall Architecture of DCRN
3.2. Network Training
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wallace, G. The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 1992, 38, 18–34. [Google Scholar] [CrossRef]
- Google. Webp—A New Image Format for the Web. Google Developers Website. Available online: https://developers.google.com/speed/webp/ (accessed on 16 August 2021).
- Sullivan, G.; Ohm, J.; Han, W.; Wiegand, T. Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 12, 1649–1668. [Google Scholar] [CrossRef]
- Aziz, S.; Pham, D. Energy Efficient Image Transmission in Wireless Multimedia Sensor Networks. IEEE Commun. Lett. 2013, 17, 1084–1087. [Google Scholar] [CrossRef]
- Lee, Y.; Jun, D.; Kim, B.; Lee, H. Enhanced Single Image Super Resolution Method Using Lightweight Multi-Scale Channel Dense Network. Sensors 2021, 21, 3351. [Google Scholar] [CrossRef]
- Kim, S.; Jun, D.; Kim, B.; Lee, H.; Rhee, E. Single Image Super-Resolution Method Using CNN-Based Lightweight Neural Networks. Appl. Sci. 2021, 11, 1092. [Google Scholar] [CrossRef]
- Peled, S.; Yeshurun, Y. Super resolution in MRI: Application to Human White Matter Fiber Visualization by Diffusion Tensor Imaging. Magn. Reason. Med. 2001, 45, 29–35. [Google Scholar] [CrossRef]
- Shi, W.; Caballero, J.; Ledig, C.; Zhang, X.; Bai, W.; Bhatia, K.; Marvao, A.; Dawes, T.; Regan, D.; Rueckert, D. Cardiac Image Super-Resolution with Global Correspondence Using Multi-Atlas PatchMatch. Med. Image Comput. Comput. Assist. Interv. 2013, 8151, 9–16. [Google Scholar]
- Thornton, M.; Atkinson, P.; Holland, D. Sub-pixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super-resolution pixel-swapping. Int. J. Remote Sens. 2006, 27, 473–491. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Shen, H.; Li, P. A super-resolution reconstruction algorithm for surveillance images. Signal Process. 2010, 90, 848–859. [Google Scholar] [CrossRef]
- Li, Y.; Guo, F.; Tan, R.; Brown, M. A Contrast Enhancement Framework with JPEG Artifacts Suppression. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 174–188. [Google Scholar]
- Tung, T.; Fuh, C. ICEBIM: Image Contrast Enhancement Based on Induced Norm and Local Patch Approaches. IEEE Access 2021, 9, 23737–23750. [Google Scholar] [CrossRef]
- Srinivas, K.; Bhandari, A.; Singh, A. Exposure-Based Energy Curve Equalization for Enhancement of Contrast Distorted Images. IEEE Trans. Circuits Syst. Video Technol. 2020, 12, 4663–4675. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Y. An Improved Enhancement Algorithm Based on CNN Applicable for Weak Contrast Images. IEEE Access 2020, 8, 8459–8476. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, Z.; Liu, H. An Adaptive and Robust Edge Detection Method Based on Edge Proportion Statistics. IEEE Trans. Image Process. 2020, 29, 5206–5215. [Google Scholar] [CrossRef]
- Ofir, N.; Galun, M.; Alpert, S.; Brandt, S.; Nadler, B.; Basri, R. On Detection of Faint Edges in Noisy Images. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 894–908. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Zhang, S.; Yang, M.; Shan, Y.; Huang, T. BDCN: Bi-Directional Cascade Network for Perceptual Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Kuo, J. Review of Postprocessing Techniques for Compression Artifact Removal. J. Vis. Commun. Image Represent. 1998, 9, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, R.; Woods, R. Digital Image Processing; Pearson Education: London, UK, 2002. [Google Scholar]
- List, P.; Joch, A.; Lainema, J.; Bjontegaard, G.; Karczewicz, M. Adaptive Deblocking Filter. IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 614–619. [Google Scholar] [CrossRef] [Green Version]
- Reeve, H.; Lim, J. Reduction of Blocking Effect in Image Coding. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Boston, MA, USA, 14–16 April 1983; pp. 1212–1215. [Google Scholar]
- Liew, A.; Yan, H. Blocking Artifacts Suppression in Block-Coded Images Using Overcomplete Wavelet Representation. IEEE Trans. Circuits Syst. Video Technol. 2004, 14, 450–461. [Google Scholar] [CrossRef] [Green Version]
- Foi, A.; Katkovnik, V.; Egiazarian, K. Pointwise Shape-Adaptive DCT for High-Quality Denoising and Deblocking of Grayscale and Coloe Images. IEEE Trans. Image Process. 2007, 16, 1–17. [Google Scholar] [CrossRef]
- Chen, K.H.; Guo, J.I.; Wang, J.S.; Yeh, C.W.; Chen, J.W. An Energy-Aware IP Core Design for the Variable-Length DCT/IDCT Targeting at MPEG4 Shape-Adaptive Transforms. IEEE Trans. Circuits Syst. Video Technol. 2005, 15, 704–715. [Google Scholar] [CrossRef]
- Lecun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Backpropagation Applied to handwritten Zip code Recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Hore, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Silpa, K.; Mastani, A. New Approach of Estimation PSNR-B for De-blocked Images. arXiv 2013, arXiv:1306.5293. [Google Scholar]
- Yim, C.; Bovik, A. Quality Assessment of Deblocked Images. IEEE Trans. Image Process. 2011, 20, 88–98. [Google Scholar]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Deng, Y.; Loy, C.; Tang, X. Compression Artifacts Reduction by a Deep Convolutional Network. In Proceedings of the International Conference on Computer Vision, Las Condes Araucano Park, Chile, 11–18 December 2015; pp. 576–584. [Google Scholar]
- Mao, X.; Shen, C.; Yang, Y. Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections. arXiv 2016, arXiv:1603.09056. [Google Scholar]
- Chen, Y.; Pock, T. Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1256–1272. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [Green Version]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural Networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323. [Google Scholar]
- Cavigelli, L.; Harger, P.; Benini, L. CAS-CNN: A Deep Convolutional Neural Network for Image Compression Artifact Suppression. In Proceedings of the International Joint Conference on Neural Networks, Anchorage, AK, USA, 14–19 May 2017; pp. 752–759. [Google Scholar]
- Guo, J.; Chao, H. One-to-Many Network for Visually Pleasing Compression Artifacts Reduction. In Proceedings of the Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 3038–3047. [Google Scholar]
- Tai, Y.; Yang, J.; Liu, X.; Xu, C. MemNet: A Persistent Memory Network for Image Restoration. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4549–4557. [Google Scholar]
- Dai, Y.; Liu, D.; Wu, F. A Convolutional Neural Network Approach for Post-Processing in HEVC Intra Coding. In Proceedings of the International Conference on Multimedia Modeling, Reykjavik, Iceland, 4–6 January 2017; pp. 28–39. [Google Scholar]
- Zhang, X.; Yang, W.; Hu, Y.; Liu, J. DMCNN: Dual-Domain Multi-Scale Convolutional Neural Network for Compression Artifact Removal. In Proceedings of the IEEE International Conference on Image Processing, Athens, Greece, 7–10 October 2018; pp. 390–394. [Google Scholar]
- Liu, P.; Zhang, H.; Zhang, K.; Lin, L.; Zuo, W. Multi-Level Wavelet-CNN for Image Restoration. In Proceedings of the Conference on Computer Vision and Pattern recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 886–895. [Google Scholar]
- Chen, H.; He, X.; Qing, L.; Xiong, S.; Nguyen, T. DPW-SDNet: Dual Pixel-Wavelet Domain Deep CNNs for Soft Decoding of JPEG-Compressed Images. In Proceedings of the Conference on Computer Vision and Pattern recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 824–833. [Google Scholar]
- Fu, X.; Zha, Z.; Wu, F.; Ding, X.; Paisley, J. JPEG Artifacts Reduction via Deep Convolutional Sparse Coding. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 2501–2510. [Google Scholar]
- Zheng, B.; Chen, Y.; Tian, X.; Zhou, F.; Liu, X. Implicit Dual-domain Convolutional Network for Robust Color Image Compression Artifact Reduction. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 3982–3994. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual Dense Network for Image Super-Resolution. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2480–2495. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Las Vegas, NY, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K. Densely Connected Convolutional Networks. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1–13. [Google Scholar]
- Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss Functions for Image Restoration with Neural Networks. IEEE Trans. Comput. Imaging 2017, 3, 47–57. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Redford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on Imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 13–16 December 2015; pp. 1026–1034. [Google Scholar]
- Agustsson, E.; Timofte, R. NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study. In Proceedings of the Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Yang, J.; Wright, J.; Huang, T.; Ma, Y. Image Super-Resolution Via Sparse Representation. IEEE Trans. Image Process. 2010, 19, 2861–2873. [Google Scholar] [CrossRef]
Method | AR Performance | Complexity |
---|---|---|
ARCNN [30] | Low PSNR | Low network complexity |
DnCNN [33] | Medium PSNR | Medium network complexity |
DCSC [42] | Medium PSNR (High PSNR-B) | Medium network complexity |
IDCN [43] | High PSNR and PSNR-B | High network complexity |
RDN [44] | High PSNR and PSNR-B | High network complexity |
Hyper Parameters | Options |
---|---|
Loss function | L1 loss |
Optimizer | Adam |
Batch size | 128 |
Num. of epochs | 50 |
Learning rate | 10−3 to 10−5 |
Initial weight | Xavier |
Activation function | Parametric ReLU |
Padding mode | Zero padding |
Category | PSNR (dB) | Num of Parameter | Total Memory Size (MB) |
---|---|---|---|
4 channel | 29.58 | 316 K | 33.56 |
8 channel | 29.61 | 366 K | 36.39 |
16 channel | 29.64 | 479 K | 42.10 |
32 channel | 29.68 | 770 K | 53.75 |
64 channel | 29.69 | 1600 K | 78.01 |
Category | PSNR (dB) | SSIM | PSNR-B (dB) |
---|---|---|---|
L1 loss | 29.64 | 0.825 | 29.35 |
MSE loss | 29.62 | 0.824 | 29.33 |
Experimental Environments | Options |
---|---|
Input size (FIn) | 40 × 40 × 1 |
Label size (FOut) | 40 × 40 × 1 |
CUDA version | 10.1 |
Linux version | Ubuntu 16.04 |
Deep learning frameworks | Pytorch 1.4.0 |
Dataset | Quality Factor | JPEG | ARCNN [30] | DnCNN [33] | DCSC [42] | RDN [44] | Ours |
---|---|---|---|---|---|---|---|
Classic5 | 10 | 27.82 | 29.03 | 29.40 | 29.25 | 30.00 | 29.64 |
20 | 30.12 | 31.15 | 31.63 | 31.43 | 32.15 | 31.87 | |
30 | 31.48 | 32.51 | 32.91 | 32.68 | 33.43 | 33.15 | |
LIVE1 | 10 | 27.77 | 28.96 | 29.19 | 29.17 | 29.67 | 29.34 |
20 | 30.07 | 31.29 | 31.59 | 31.48 | 32.07 | 31.74 | |
30 | 31.41 | 32.67 | 32.98 | 32.83 | 33.51 | 33.16 |
Dataset | Quality Factor | JPEG | ARCNN [30] | DnCNN [33] | DCSC [42] | RDN [44] | Ours |
---|---|---|---|---|---|---|---|
Classic5 | 10 | 0.780 | 0.793 | 0.803 | 0.803 | 0.819 | 0.825 |
20 | 0.854 | 0.852 | 0.861 | 0.860 | 0.867 | 0.880 | |
30 | 0.884 | 0.881 | 0.886 | 0.885 | 0.893 | 0.903 | |
LIVE1 | 10 | 0.791 | 0.808 | 0.812 | 0.815 | 0.825 | 0.830 |
20 | 0.869 | 0.873 | 0.880 | 0.880 | 0.888 | 0.895 | |
30 | 0.900 | 0.904 | 0.909 | 0.909 | 0.915 | 0.922 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Park, S.-h.; Rhee, E.; Kim, B.-G.; Jun, D. Reduction of Compression Artifacts Using a Densely Cascading Image Restoration Network. Appl. Sci. 2021, 11, 7803. https://doi.org/10.3390/app11177803
Lee Y, Park S-h, Rhee E, Kim B-G, Jun D. Reduction of Compression Artifacts Using a Densely Cascading Image Restoration Network. Applied Sciences. 2021; 11(17):7803. https://doi.org/10.3390/app11177803
Chicago/Turabian StyleLee, Yooho, Sang-hyo Park, Eunjun Rhee, Byung-Gyu Kim, and Dongsan Jun. 2021. "Reduction of Compression Artifacts Using a Densely Cascading Image Restoration Network" Applied Sciences 11, no. 17: 7803. https://doi.org/10.3390/app11177803
APA StyleLee, Y., Park, S. -h., Rhee, E., Kim, B. -G., & Jun, D. (2021). Reduction of Compression Artifacts Using a Densely Cascading Image Restoration Network. Applied Sciences, 11(17), 7803. https://doi.org/10.3390/app11177803