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Abstract: Since high quality realistic media are widely used in various computer vision applications,
image compression is one of the essential technologies to enable real-time applications. Image
compression generally causes undesired compression artifacts, such as blocking artifacts and ringing
effects. In this study, we propose a densely cascading image restoration network (DCRN), which
consists of an input layer, a densely cascading feature extractor, a channel attention block, and an
output layer. The densely cascading feature extractor has three densely cascading (DC) blocks,
and each DC block contains two convolutional layers, five dense layers, and a bottleneck layer.
To optimize the proposed network architectures, we investigated the trade-off between quality
enhancement and network complexity. Experimental results revealed that the proposed DCRN can
achieve a better peak signal-to-noise ratio and structural similarity index measure for compressed
joint photographic experts group (JPEG) images compared to the previous methods.

Keywords: computer vision; deep learning; convolutional neural network; image processing; image
restoration; single image artifacts reduction; dense networks; residual networks; channel atten-
tion networks

1. Introduction

As realistic media are widespread in various image processing areas, image compres-
sion is one of the key technologies to enable real-time applications with limited network
bandwidth. While image compression techniques, such as joint photographic experts
group (JPEG) [1], web picture [2], and high-efficiency video coding main still picture [3],
can achieve significant compression performances for efficient image transmission and
storage [4], they lead to undesired compression artifacts due to lossy coding because
of quantization. These artifacts generally affect the performance of image restoration
methods in terms of super-resolution [5–10], contrast enhancement [11–14], and edge
detection [15–17].

Reduction methods for compression artifacts were initially studied by developing
a specific filter inside the compression process [18]. Although these approaches can effi-
ciently remove ringing artifacts [19], the improvement in image regions is limited at high
frequencies. Examples of such approaches include deblocking-oriented approaches [20,21],
wavelet transforms [22,23], and shape-adaptive discrete cosine transforms [24]. Recently,
artifacts reduction (AR) networks using deep learning have been developed with various
deep neural networks (DNNs), such as convolutional neural networks (CNNs), recurrent
neural networks (RNNs), long short-term memory (LSTM), and generative adversarial
networks (GANs). Because CNN [25] can efficiently extract feature maps with deep and
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cascading structures, CNN-based artifact reduction (AR) methods can achieve visual en-
hancement in terms of peak signal-to-noise ratio (PSNR) [26], PSNR including blocking
effects (PSNR-B) [27,28], and structural similarity index measures (SSIM) [29].

Despite the developments of AR, most CNN-based approaches tend to design the
heavy network architecture by increasing the number of network parameters and opera-
tions. Because it is difficult to deploy such heavy models on hand-held devices operated
on low complexity environments, it is necessary to design the lightweight AR networks.
In this paper, we propose a lightweight CNN-based artifacts reduction model to reduce
the memory capacity as well as network parameters. The main works of this study are
summarized as follows:
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To reduce the coding artifacts of the compressed images, we propose a CNN based
densely cascading image restoration network (DCRN) with two essential parts,
densely cascading feature extractor and channel attention block.
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Through a various ablation study, the proposed network is designed to guarantee the
optimal trade-off between the PSNR and the network complexity.
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and memory size. In addition, it can provide the fastest inference speed, except for
initial AR network [30].
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Compared to the latest methods to show the highest AR performances (PSNR, SSIM,
and PSNR-B), the proposed method can reduce the number of parameters and total
memory size maximum by 2% and 5%, respectively.

The remainder of this paper is organized as follows: in Section 2, we review previous
studies related to CNN-based artifact reduction methods. In Section 3, we describe the
proposed method. Finally, in Sections 4 and 5, we present the experimental results and
conclusions, respectively.

2. Related Works

Due to the advancements in deep learning technologies, research of low-level com-
puter vision, such as super-resolution (SR) and image denoising, has been combined with a
variety of CNN architectures to provide higher image restoration than that of conventional
image processing. Dong et al. proposed an artifact reduction convolutional neural net-
work (ARCNN) [30], which consists of four convolutional layers and trains an end-to-end
mapping from a compressed image to a reconstructed image. After the advent of ARCNN,
Mao et al. [31] proposed a residual encoder–decoder network, which conducts encoding
and decoding processes with symmetric skip connections in stacking convolutional and
deconvolutional layers. Chen et al. [32] proposed a trainable nonlinear reaction diffusion,
which is simultaneously learned from training data through a loss-based approach with
all parameters, including filters and influence functions. Zhang et al. [33] proposed a
denoising convolutional neural network (DnCNN), which is composed of a combination
of 17 convolutional layers with a rectified linear unit (ReLU) [34] activation function and
batch normalization for removing white Gaussian noise. Cavigelli et al. [35] proposed a
deep CNN for image compression artifact suppression, which consists of 12 convolutional
layers with hierarchical skip connections and a multi-scale loss function.

Guo et al. [36] proposed a one-to-many network, which is composed of many stacked
residual units, with each branch containing five residual units and the aggregation sub-
network comprising 10 residual units. Each residual unit uses batch normalization, ReLU
activation function, and convolutional layer twice. The architecture of residual units is
found to improve the recovery quality. Tau et al. [37] proposed a very deep persistent
memory network with a densely recursive residual architecture-based memory block that
adaptively learns the different weights of various memories. Dai et al. [38] proposed a
variable-filter-size residual-learning CNN, which contains six convolutional layers and
concatenates variable-filter-size convolutional layers. Zhang et al. [39] proposed a dual-
domain multi-scale CNN with an auto-encoder, dilated convolution, and discrete cosine
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transform (DCT) unit. Liu et al. [40] designed a multi-level wavelet CNN that builds a
u-net architecture with a four-layer fully convolutional network (FCN) without pooling
and takes all sub-images as inputs. Each layer of a CNN block is composed of 3 × 3 kernel
filters, batch normalization, and ReLU. A dual-pixel-wavelet domain deep CNN-based soft
decoding network for JPEG-compressed images [41] is composed of two parallel branches,
each serving as the pixel domain soft decoding branch and wavelet domain soft decoding
branch. Fu et al. [42] proposed a deep convolutional sparse coding (DCSC) network that
has dilated convolutions to extract multi-scale features with the same filter for three differ-
ent scales. The implicit dual-domain convolutional network (IDCN) for robust color image
compression AR [43] consists of a feature encoder, correction baseline and feature decoder.
Zhang et al. [44] proposed a residual dense network (RDN), which consists of 16 residual
dense blocks, and each dense block contains eight dense layers with local residual learning.

Although most of the aforementioned methods demonstrate better AR performance,
they tend to possess more complicated network structures on account of the large number
of network parameters needed and heavy memory consumption. Table 1 lists the properties
of the various AR networks and compares their advantages and disadvantages.

Table 1. Properties among the artifact reduction networks.

Method AR Performance Complexity

ARCNN [30] Low PSNR Low network complexity

DnCNN [33] Medium PSNR Medium network complexity

DCSC [42] Medium PSNR
(High PSNR-B) Medium network complexity

IDCN [43] High PSNR and PSNR-B High network complexity

RDN [44] High PSNR and PSNR-B High network complexity

For the network component, a residual network [45] was designed for shortcut con-
nections to simplify identity mapping, and outputs were added to the outputs of the
stacked layers. A densely connected convolutional network [46] directly connects all lay-
ers with one another based on equivalent feature map sizes. The squeeze-and-excitation
(SE) network [47] is composed of global average pooling and a 1 × 1 convolutional layer.
These networks use the weights of previous feature maps, and such weights are applied to
previous feature maps to generate the output of the SE block, which can be provided to
subsequent layers of the network. In this study, we propose an AR network to combine
with those networks [45–47] for better image restoration performance than the previous
methods.

3. Proposed Method
3.1. Overall Architecture of DCRN

Figure 1 shows the overall architecture of the proposed DCRN to remove compression
artifacts caused by JPEG compression. The DCRN consists of the input layer, a densely
cascading feature extractor, a channel attention block, and the output layer. In particular,
the densely cascading feature extractor contains three densely cascading blocks to exploit
the intermediate feature maps within sequential dense networks. In Figure 1, W × H and
C are the spatial two-dimensional filter size and the number of channels, respectively. The
convolution operation of the i-th layer is denoted as Hi and calculates the output feature
maps (Fi) from the previous feature maps (Fi−1), as shown in Equation (1):

Fi = Hi(Fi−1) = δ(Wi ∗ Fi−1 + Bi), (1)

where δ, Wi, Bi, and ∗ represent the parametric ReLU function as an activation function,
filter weights, biases, and the notation of convolution operation, respectively. After extract-
ing the feature maps of the input layer, densely cascading feature extractor generates F5,
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as expressed in Equation (2). As shown in Figure 2, a densely cascading (DC) block has
two convolutional layers, five dense layers, and a bottleneck layer. To train the network
effectively and reduce overfitting, we designed dense layers that consist of a variable
number of channels. Dense layers 1 to 4 consist of 16 channels and the final dense layer
consists of 64 channels. The DC block operation HDC

i is presented in Equation (2):

F3 = HDC
3 (F2) = HDC

3 (HDC
2 (HDC

1 (F0)). (2)
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Then, each DC block output is concatenated with the output of the input layer feature
map operations. After concatenating both the output feature maps from all DC blocks and
the input layer, the bottleneck layer calculates F5 to reduce the number of channels of F4, as
in Equation (3):

F5 = H5(F4) = H5([F3, F2, F1, F0]). (3)

As shown in Figure 3, a channel attention (CA) block performs the global average
pooling (GAP) followed by two convolutional layers and the sigmoid function after the
output from the densely cascading feature extractor is passed to it. The CA block can
discriminate the more important feature maps, and it assigns different weights to each
feature map in order to adapt feature responses. After generating F6 through the CA block,
an output image is generated from the element-wise sum between the skip connection (F0)
and the feature maps (F6).
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3.2. Network Training

In the proposed DCRN, we set the filter size as 3 × 3 except for the CA block, whose
kernel size is 1 × 1. Table 2 shows the selected hyper parameters in the DCRN. We used
zero padding to allow all feature maps to have the same spatial resolution between the
different convolutional layers. We defined L1 loss [48] as the loss function using Adam
optimizer [49] with a batch size of 128. The learning rate was decreased from 10−3 to 10−5

for 50 epochs.

Table 2. Hyper parameters of the proposed DCRN.

Hyper Parameters Options

Loss function L1 loss
Optimizer Adam
Batch size 128

Num. of epochs 50
Learning rate 10−3 to 10−5

Initial weight Xavier
Activation function Parametric ReLU

Padding mode Zero padding

To design a lightweight architecture, we first studied the relationship between network
complexity and performance according to the number of dense layer feature maps within
the DC block. Second, we checked the performance of various activation functions. Third,
we studied the performance of loss functions. Fourth, we investigated the relationship
between network complexity and performance based on the number in each dense layers
of DC block and the number of DC blocks. Finally, we studied the performance of the
tool-off test (skip connection, channel attention block).

Table 3 lists the PSNR obtained according to the number of concatenated feature
maps within the DC block. We set the optimal number of concatenated feature maps to
16 channels. Moreover, we conducted verification tests to determine the most suitable
activation function for the proposed network, the results of which are shown in Figure 4.
After measuring the PSNR and SSIM obtained via various activation functions, such as
ReLU [34], leaky ReLU [50], and parametric ReLU [51], parametric ReLU was chosen for
the proposed DCRN. Table 4 summarizes the results of the verification tests concerning
loss functions, in terms of the L1 and mean square error (MSE) losses. As shown in
Table 4, the L1 loss exhibits marginally improved PSNR, SSIM, and PSNR-B compared
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to those exhibited by the MSE loss. In addition, we verified the effectiveness the of skip
connection and channel attention block mechanisms. Through the results of tool-off tests
on the proposed DCRN, which are summarized in Figure 5, we confirmed that both skip
connection and channel attention block affect the AR performance of the proposed method.

Table 3. Verification test on the number of concatenated feature maps within the DC block.

Category PSNR (dB) Num of Parameter Total Memory Size (MB)

4 channel 29.58 316 K 33.56
8 channel 29.61 366 K 36.39

16 channel 29.64 479 K 42.10
32 channel 29.68 770 K 53.75
64 channel 29.69 1600 K 78.01
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Table 4. Verification tests for loss functions.

Category PSNR (dB) SSIM PSNR-B (dB)

L1 loss 29.64 0.825 29.35
MSE loss 29.62 0.824 29.33
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Note that the higher the number of DC blocks and dense layers, the more the memory
required to store the network parameters. Finally, we performed a variety of verification
tests on the validation dataset to optimize the proposed method. In this paper, we denote
the number of DC blocks and the number of dense layers per DC block as DC and L,
respectively. The performance comparison between the proposed and existing methods
in terms of the AR performance (i.e., PSNR), model size (i.e., number of parameters), and
total memory size is displayed in Figures 6 and 7. We set the value of DC and L to three
and five, respectively.
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4. Experimental Results

We used 800 images from DIV2K [52] as the training images. After they were converted
into YUV color format, only Y components were encoded and decoded by the JPEG codec
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under three image quality factors (10, 20, and 30). Through this process, we collected
1,364,992 patches of a 40 × 40 size from the original and reconstructed images. To evaluate
the proposed method, we used Classic5 [24] (five images) and LIVE1 [53] (29 images) as
the test datasets and Classic5 as the validation dataset.

All experiments were performed on an Intel Xeon Gold 5120 (14 cores @ 2.20 GHz)
with 177 GB RAM and two NVIDIA Tesla V100 GPUs under the experimental environment
described in Table 5.

Table 5. Experimental environments.

Experimental Environments Options

Input size (FIn) 40 × 40 × 1
Label size (FOut) 40 × 40 × 1
CUDA version 10.1
Linux version Ubuntu 16.04

Deep learning frameworks Pytorch 1.4.0

In terms of the performance of image restoration, we compared the proposed DCRN
with JPEG, ARCNN [30], DnCNN [33], DCSC [42], IDCN [43] and RDN [44]. In terms of the
AR performance (i.e., PSNR and SSIM), the number of parameters and total memory size,
the performance comparisons between the proposed and existing methods are depicted in
Figure 8.
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Tables 6–8 enumerate the results of PSNR, SSIM, and PSNR-B, respectively, for each
of the methods studied. As per the results in Table 7, it is evident that the proposed
method is superior to the others in terms of SSIM. However, RDN [44] demonstrate higher
PSNR values. While DCRN shows a better PSNR-B compared to that of DnCNN, it has
comparable performance with DCSC in terms of PSNR-B using the Classic5 dataset. While
the RDN was likely to improve AR performance by increasing the number of network
parameters, the proposed method was focused to design the lightweight network with the
small number of network parameters.
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Table 6. PSNR (dB) comparisons on the test datasets. The best results of dataset are shown in bold.

Dataset Quality Factor JPEG ARCNN [30] DnCNN [33] DCSC [42] RDN [44] Ours

Classic5
10 27.82 29.03 29.40 29.25 30.00 29.64
20 30.12 31.15 31.63 31.43 32.15 31.87
30 31.48 32.51 32.91 32.68 33.43 33.15

LIVE1
10 27.77 28.96 29.19 29.17 29.67 29.34
20 30.07 31.29 31.59 31.48 32.07 31.74
30 31.41 32.67 32.98 32.83 33.51 33.16

Table 7. SSIM comparisons on the test datasets. The best results of dataset are shown in bold.

Dataset Quality Factor JPEG ARCNN [30] DnCNN [33] DCSC [42] RDN [44] Ours

Classic5
10 0.780 0.793 0.803 0.803 0.819 0.825
20 0.854 0.852 0.861 0.860 0.867 0.880
30 0.884 0.881 0.886 0.885 0.893 0.903

LIVE1
10 0.791 0.808 0.812 0.815 0.825 0.830
20 0.869 0.873 0.880 0.880 0.888 0.895
30 0.900 0.904 0.909 0.909 0.915 0.922

Table 8. PSNR-B (dB) comparisons on the test datasets. The best results of dataset are shown in bold.

Dataset Quality Factor JPEG ARCNN [30] DnCNN [33] DCSC [42] Ours

Classic5
10 25.20 28.78 29.10 29.24 29.35
20 27.50 30.60 31.19 31.41 31.40
30 28.93 32.00 32.36 32.66 32.52

LIVE1
10 25.33 28.77 28.91 29.17 29.03
20 27.56 30.79 31.08 31.47 31.21
30 28.92 32.22 32.35 32.81 32.43

Table 9 classifies the network complexity in terms of the number of network parame-
ters and total memory size (MB). The proposed DCRN reduced the number of parameters
to as low as 72%, 5% and 2% of those needed in DnCNN, IDCN and RDN, respectively. In
addition, the total memory size was as low as 91%, 41%, 17% and 5% of that required for
DnCNN, DCSC, IDCN and RDN, respectively. Since the same network parameters were
repeated 40 times in DCSC, the total memory size was large even though the number of
network parameters was smaller than that of the other methods. As shown in Figure 9,
the inference speed of the proposed method is greater than that of all networks, except for
ARCNN. Although the proposed method is slower than ARCNN, it is clearly better than
ARCNN in terms of PSNR, SSIM, and PSNR-B, as per the results in Tables 6–8. Figure 10
shows examples of the visual results of DCRN and the other methods on the test datasets.
Based on the results, we were able to confirm that DCRN can recover more accurate textures
than other methods.

Table 9. Comparisons of the network complexity between the proposed DCRN and the previous
methods.

Category Number of Parameters Total Memory Size (MB)

ARCNN [30] 106 K 3.16
DnCNN [33] 667 K 46.31

DCSC [42] 93 K 102.34
IDCN [43] 11 M 254.13
RDN [44] 22 M 861.97

Ours 479 K 42.10
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5. Conclusions

Image compression leads to undesired compression artifacts due to the lossy coding
that occurs through quantization. These artifacts generally degrade the performance of
image restoration techniques, such as super-resolution and object detection. In this study,
we propose a DCRN, which consists of the input layer, a densely cascading feature extractor,
a channel attention block, and the output layer. The DCRN aims to recover compression
artifacts. To optimize the proposed network architecture, we extracted 800 training images
from the DIV2K dataset and investigated the trade-off between the network complexity
and quality enhancement achieved. Experimental results showed that the proposed DCRN
can lead to the best SSIM for compressed JPEG images compared to that of other existing
methods, except for IDCN. In terms of network complexity, the proposed DCRN reduced
the number of parameters by as low as 72%, 5% and 2% compared to DnCNN, IDCN
and RDN, respectively. In addition, the total memory size was as low as 91%, 41%, 17%
and 5% of that required for DnCNN, DCSC, IDCN and RDN, respectively. Even though
the proposed method was slower than ARCNN, it’s PSNR, SSIM, and PSNR-B are clearly
better than those of ARCNN.
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