Radiomics Analysis in Ovarian Cancer: A Narrative Review
Abstract
:1. Introduction
2. How Is a Radiomic Analysis Performed?
2.1. Feature Extraction
- −
- Statistical features;
- −
- Shape-based features;
- −
- Textural features.
2.2. Feature Selection
2.3. Model Construction
2.4. Performance Assessment of the Algorithm
3. Ovarian Cancer
4. Methods
5. Ultrasound
6. Magnetic Resonance Imaging
7. Computed Tomography CT
- FD_max_25HUgl;
- GLRLM_SRLGLE_LLL_25HUgl;
- (NGTDM_Contra_HLL_25HUgl;
- FOS_Imedian_LHH (coefficient: 0.250).
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Timmeren, J.E.; Leijenaar, R.T.H.; van Elmpt, W.; Reymen, B.; Lambin, P. Feature selection methodology for longitudinal cone-beam CT radiomics. Acta Oncol. 2017, 56, 1537–1543. [Google Scholar] [CrossRef]
- Lin, G.; Lai, C.H.; Yen, T.C. Emerging MOLECULAR Imaging Techniques in Gynecologic Oncology. PET Clin. 2018, 13, 289–299. [Google Scholar] [CrossRef]
- Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef] [PubMed]
- Venerito, V.; Angelini, O.; Cazzato, G.; Lopalco, G.; Maiorano, E.; Cimmino, A.; Iannone, F. A convolutional neural network with transfer learning for automatic discrimination between low and high-grade synovitis: A pilot study. Intern. Emerg. Med. 2021. Epub Ahead of Print. [Google Scholar] [CrossRef]
- Venerito, V.; Angelini, O.; Fornaro, M.; Cacciapaglia, F.; Lopalco, G.; Iannone, F. A Machine Learning Approach for Predicting Sustained Remission in Rheumatoid Arthritis Patients on Biologic Agents. JCR J. Clin. Rheumatol. 2021. Epub Ahead of Print. [Google Scholar] [CrossRef]
- Kumar, V.; Gu, Y.; Basu, S.; Berglund, A.; Eschrich, S.A.; Schabath, M.B.; Forster, K.; Aerts, H.J.; Dekker, A.; Fenstermacher, D.; et al. Radiomics: The process and the challenges. Magn. Reson. Imaging 2012, 30, 1234–1248. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Xiao, Y.; Suo, J.; Shi, J.; Yu, J.; Guo, Y.; Wang, Y.; Zheng, H. Sonoelastomics for Breast Tumor Classification: A Radiomics Approach with Clustering-Based Feature Selection on Sonoelastography. Ultrasound Med. Biol. 2017, 43, 1058–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, X.; Xia, W.; Xie, P.; Zhang, R.; Li, W.; Wang, M.; Xiong, F.; Liu, Y.; Fan, X.; Xie, Y.; et al. Preoperative radiomic signature based on multiparametric magnetic resonance imaging for noninvasive evaluation of biological characteristics in rectal cancer. Eur. Radiol. 2019, 29, 3200–3209. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Q.; Liang, C.H.; He, L.; Tian, J.; Liang, C.S.; Chen, X.; Ma, Z.L.; Liu, Z.Y. Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer. J. Clin. Oncol. 2016, 34, 2157–2164. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Z.; He, L.; Chen, X.; Pan, D.; Ma, Z.; Liang, C.; Tian, J.; Liang, C. Radiomics Signature: A Potential Biomarker for the Prediction of Disease-Free Survival in Early-Stage (I or II) Non-Small Cell Lung Cancer. Radiology 2016, 281, 947–957. [Google Scholar] [CrossRef]
- Li, H.; Zhu, Y.; Burnside, E.S.; Drukker, K.; Hoadley, K.A.; Fan, C.; Conzen, S.D.; Whitman, G.J.; Sutton, E.J.; Net, J.M.; et al. MR Imaging Radiomics Signatures for Predicting the Risk of Breast Cancer Recurrence as Given by Research Versions of MammaPrint, Oncotype DX, and PAM50 Gene Assays. Radiology 2016, 281, 382–391. [Google Scholar] [CrossRef] [Green Version]
- Arezzo, F.; La Forgia, D.; Venerito, V.; Moschetta, M.; Tagliafico, A.S.; Lombardi, C.; Loizzi, V.; Cicinelli, E.; Cormio, G. A Machine Learning Tool to Predict the Response to Neoadjuvant Chemotherapy in Patients with Locally Advanced Cervical Cancer. Appl. Sci. 2021, 11, 823. [Google Scholar] [CrossRef]
- Nie, K.; Shi, L.; Chen, Q.; Hu, X.; Jabbour, S.K.; Yue, N.; Niu, T.; Sun, X. Rectal Cancer: Assessment of Neoadjuvant Chemoradiation Outcome based on Radiomics of Multiparametric MRI. Clin. Cancer Res. 2016, 22, 5256–5264. [Google Scholar] [CrossRef] [Green Version]
- Elhalawani, H.; Lin, T.A.; Volpe, S.; Mohamed, A.S.R.; White, A.L.; Zafereo, J.; Wong, A.J.; Berends, J.E.; AboHashem, S.; Williams, B.; et al. Machine Learning Applications in Head and Neck Radiation Oncology: Lessons From Open-Source Radiomics Challenges. Front. Oncol. 2018, 8, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaehler, E.; Zwanenburg, A.; de Jong, J.R.; Boellaard, R. RaCaT: An open source and easy to use radiomics calculator tool. PLoS ONE 2019, 14, e0212223. [Google Scholar] [CrossRef] [Green Version]
- Gotz, M.; Nolden, M.; Maier-Hein, K. MITK Phenotyping: An open-source toolchain for image-based personalized medicine with radiomics. Radiother Oncol. 2019, 131, 108–111. [Google Scholar] [CrossRef] [Green Version]
- Veeraraghavan, H.; Dashevsky, B.Z.; Onishi, N.; Sadinski, M.; Morris, E.; Deasy, J.O.; Sutton, E.J. Appearance Constrained Semi-Automatic Segmentation from DCE-MRI is Reproducible and Feasible for Breast Cancer Radiomics: A Feasibility Study. Sci. Rep. 2018, 8, 4838. [Google Scholar] [CrossRef] [Green Version]
- van Heeswijk, M.M.; Lambregts, D.M.; van Griethuysen, J.J.; Oei, S.; Rao, S.X.; de Graaff, C.A.; Vliegen, R.F.; Beets, G.L.; Papanikolaou, N.; Beets-Tan, R.G. Automated and Semiautomated Segmentation of Rectal Tumor Volumes on Diffusion-Weighted MRI: Can It Replace Manual Volumetry? Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 824–831. [Google Scholar] [CrossRef]
- Fung, Y.L.; Ng, K.E.T.; Vogrin, S.J.; Meade, C.; Ngo, M.; Collins, S.J.; Bowden, S.C. Comparative Utility of Manual versus Automated Segmentation of Hippocampus and Entorhinal Cortex Volumes in a Memory Clinic Sample. J. Alzheimers Dis. 2019, 68, 159–171. [Google Scholar] [CrossRef]
- Kikinis, R.; Pieper, S.D.; Vosburgh, K.G. 3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support. In Intraoperative Imaging and Image-Guided Therapy; Jolesz, F.A., Ed.; Springer: New York, NY, USA, 2014; pp. 277–289. [Google Scholar] [CrossRef]
- Vallieres, M.; Zwanenburg, A.; Badic, B.; Cheze Le Rest, C.; Visvikis, D.; Hatt, M. Responsible Radiomics Research for Faster Clinical Translation. J. Nucl. Med. 2018, 59, 189–193. [Google Scholar] [CrossRef]
- Kuo, M.D.; Jamshidi, N. Behind the numbers: Decoding molecular phenotypes with radiogenomics--guiding principles and technical considerations. Radiology 2014, 270, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Parmar, C.; Grossmann, P.; Bussink, J.; Lambin, P.; Aerts, H. Machine Learning methods for Quantitative Radiomic Biomarkers. Sci. Rep. 2015, 5, 13087. [Google Scholar] [CrossRef] [PubMed]
- Kakino, R.; Nakamura, M.; Mitsuyoshi, T.; Shintani, T.; Kokubo, M.; Negoro, Y.; Fushiki, M.; Ogura, M.; Itasaka, S.; Yamauchi, C.; et al. Application and limitation of radiomics approach to prognostic prediction for lung stereotactic body radiotherapy using breath-hold CT images with random survival forest: A multi-institutional study. Med. Phys. 2020, 47, 4634–4643. [Google Scholar] [CrossRef] [PubMed]
- Antonacci, Y.; Toppi, J.; Mattia, D.; Pietrabissa, A.; Astolfi, L. Single-trial Connectivity Estimation through the Least Absolute Shrinkage and Selection Operator. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2019, 2019, 6422–6425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Currie, G.; Iqbal, B.; Kiat, H. Intelligent Imaging: Radiomics and Artificial Neural Networks in Heart Failure. J. Med. Imaging Radiat. Sci. 2019, 50, 571–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Yang, P.; Liang, W.; Liu, W.; Wang, W.; Luo, C.; Wang, J.; Peng, Z.; Xing, L.; Huang, M.; et al. A radiomics approach based on support vector machine using MR images for preoperative lymph node status evaluation in intrahepatic cholangiocarcinoma. Theranostics 2019, 9, 5374–5385. [Google Scholar] [CrossRef]
- Radovic, M.; Ghalwash, M.; Filipovic, N.; Obradovic, Z. Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinform. 2017, 18, 9. [Google Scholar] [CrossRef] [Green Version]
- Delzell, D.A.P.; Magnuson, S.; Peter, T.; Smith, M.; Smith, B.J. Machine Learning and Feature Selection Methods for Disease Classification With Application to Lung Cancer Screening Image Data. Front. Oncol. 2019, 9, 1393. [Google Scholar] [CrossRef] [Green Version]
- Nougaret, S.; McCague, C.; Tibermacine, H.; Vargas, H.A.; Rizzo, S.; Sala, E. Radiomics and radiogenomics in ovarian cancer: A literature review. Abdom. Radiol. (N. Y.) 2020, 46, 2308–2322. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Loizzi, V.; Leone, L.; Camporeale, A.; Resta, L.; Selvaggi, L.; Cicinelli, E.; Cormio, G. Neoadjuvant Chemotherapy in Advanced Ovarian Cancer: A Single-Institution Experience and a Review of the Literature. Oncology 2016, 91, 211–216. [Google Scholar] [CrossRef]
- Forstner, R. Early detection of ovarian cancer. Eur. Radiol. 2020, 30, 5370–5373. [Google Scholar] [CrossRef]
- Loizzi, V.; Selvaggi, L.; Leone, L.; Latorre, D.; Scardigno, D.; Magazzino, F.; Cormio, G. Borderline epithelial tumors of the ovary: Experience of 55 patients. Oncol. Lett. 2015, 9, 912–914. [Google Scholar] [CrossRef] [Green Version]
- Cormio, G.; Loizzi, V.; Carriero, C.; Putignano, G.; Selvaggi, L. Spleen involvement in women with ovarian cancer. Eur. J. Gynaecol. Oncol. 2009, 30, 384–386. [Google Scholar]
- Hillman, R.T.; Chisholm, G.B.; Lu, K.H.; Futreal, P.A. Genomic Rearrangement Signatures and Clinical Outcomes in High-Grade Serous Ovarian Cancer. J. Natl. Cancer Inst. 2018, 110, 265–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruning, A.; Mylonas, I. New emerging drugs targeting the genomic integrity and replication machinery in ovarian cancer. Arch. Gynecol. Obstet. 2011, 283, 1087–1096. [Google Scholar] [CrossRef]
- Ortiz-Ramon, R.; Larroza, A.; Ruiz-Espana, S.; Arana, E.; Moratal, D. Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: A feasibility study. Eur. Radiol. 2018, 28, 4514–4523. [Google Scholar] [CrossRef]
- She, Y.; Zhang, L.; Zhu, H.; Dai, C.; Xie, D.; Xie, H.; Zhang, W.; Zhao, L.; Zou, L.; Fei, K.; et al. The predictive value of CT-based radiomics in differentiating indolent from invasive lung adenocarcinoma in patients with pulmonary nodules. Eur. Radiol. 2018, 28, 5121–5128. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Ma, Z.; Yan, L.; Ye, W.; Liu, Z.; Liang, C. Radiomics nomogram outperforms size criteria in discriminating lymph node metastasis in resectable esophageal squamous cell carcinoma. Eur. Radiol. 2019, 29, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, C.J.; Bao, M.L.; Zhang, J.; Wang, X.N.; Zhang, Y.D. Machine learning-based analysis of MR radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer. Eur. Radiol. 2017, 27, 4082–4090. [Google Scholar] [CrossRef]
- Chiappa, V.; Bogani, G.; Interlenghi, M.; Salvatore, C.; Bertolina, F.; Sarpietro, G.; Signorelli, M.; Castiglioni, I.; Raspagliesi, F. The Adoption of Radiomics and machine learning improves the diagnostic processes of women with Ovarian MAsses (the AROMA pilot study). J. Ultrasound 2020, 28, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Patel-Lippmann, K.K.; Sadowski, E.A.; Robbins, J.B.; Paroder, V.; Barroilhet, L.; Maddox, E.; McMahon, T.; Sampene, E.; Wasnik, A.P.; Blaty, A.D.; et al. Comparison of International Ovarian Tumor Analysis Simple Rules to Society of Radiologists in Ultrasound Guidelines for Detection of Malignancy in Adnexal Cysts. AJR Am. J. Roentgenol 2020, 214, 694–700. [Google Scholar] [CrossRef]
- Abramowicz, J.S.; Timmerman, D. Ovarian mass-differentiating benign from malignant: The value of the International Ovarian Tumor Analysis ultrasound rules. Am. J. Obstet Gynecol 2017, 217, 652–660. [Google Scholar] [CrossRef]
- Timmerman, D.; Van Calster, B.; Testa, A.; Savelli, L.; Fischerova, D.; Froyman, W.; Wynants, L.; Van Holsbeke, C.; Epstein, E.; Franchi, D.; et al. Predicting the risk of malignancy in adnexal masses based on the Simple Rules from the International Ovarian Tumor Analysis group. Am. J. Obstet Gynecol 2016, 214, 424–437. [Google Scholar] [CrossRef] [Green Version]
- Dakhly, D.M.R.; Gaafar, H.M.; Sediek, M.M.; Ibrahim, M.F.; Momtaz, M. Diagnostic value of the International Ovarian Tumor Analysis (IOTA) simple rules versus pattern recognition to differentiate between malignant and benign ovarian masses. Int. J. Gynaecol Obstet 2019, 147, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, D.; Testa, A.C.; Bourne, T.; Ferrazzi, E.; Ameye, L.; Konstantinovic, M.L.; Van Calster, B.; Collins, W.P.; Vergote, I.; Van Huffel, S.; et al. Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: A multicenter study by the International Ovarian Tumor Analysis Group. J. Clin. Oncol. 2005, 23, 8794–8801. [Google Scholar] [CrossRef] [PubMed]
- Sladkevicius, P.; Valentin, L. Intra- and interobserver agreement when describing adnexal masses using the International Ovarian Tumor Analysis terms and definitions: A study on three-dimensional ultrasound volumes. Ultrasound Obstet. Gynecol. 2013, 41, 318–327. [Google Scholar] [CrossRef]
- Levine, D.; Brown, D.L.; Andreotti, R.F.; Benacerraf, B.; Benson, C.B.; Brewster, W.R.; Coleman, B.; Depriest, P.; Doubilet, P.M.; Goldstein, S.R.; et al. Management of asymptomatic ovarian and other adnexal cysts imaged at US: Society of Radiologists in Ultrasound Consensus Conference Statement. Radiology 2010, 256, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Amor, F.; Vaccaro, H.; Alcazar, J.L.; Leon, M.; Craig, J.M.; Martinez, J. Gynecologic imaging reporting and data system: A new proposal for classifying adnexal masses on the basis of sonographic findings. J. Ultrasound Med. 2009, 28, 285–291. [Google Scholar] [CrossRef]
- Andreotti, R.F.; Timmerman, D.; Strachowski, L.M.; Froyman, W.; Benacerraf, B.R.; Bennett, G.L.; Bourne, T.; Brown, D.L.; Coleman, B.G.; Frates, M.C.; et al. O-RADS US Risk Stratification and Management System: A Consensus Guideline from the ACR Ovarian-Adnexal Reporting and Data System Committee. Radiology 2020, 294, 168–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nougaret, S.; Tardieu, M.; Vargas, H.A.; Reinhold, C.; Vande Perre, S.; Bonanno, N.; Sala, E.; Thomassin-Naggara, I. Ovarian cancer: An update on imaging in the era of radiomics. Diagn. Interv. Imaging 2019, 100, 647–655. [Google Scholar] [CrossRef]
- Kumbhare, D.; Shaw, S.; Ahmed, S.; Noseworthy, M.D. Quantitative ultrasound of trapezius muscle involvement in myofascial pain: Comparison of clinical and healthy population using texture analysis. J. Ultrasound 2020, 23, 23–30. [Google Scholar] [CrossRef]
- Yeh, A.C.; Li, H.; Zhu, Y.; Zhang, J.; Khramtsova, G.; Drukker, K.; Edwards, A.; McGregor, S.; Yoshimatsu, T.; Zheng, Y.; et al. Radiogenomics of breast cancer using dynamic contrast enhanced MRI and gene expression profiling. Cancer Imaging 2019, 19, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazurowski, M.A. Radiogenomics: What it is and why it is important. J. Am. Coll. Radiol. 2015, 12, 862–866. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Zhu, H.; Zhang, J.; Ai, Y.; Zhang, J.; Teng, Y.; Xie, C.; Jin, X. Multiple U-Net-Based Automatic Segmentations and Radiomics Feature Stability on Ultrasound Images for Patients With Ovarian Cancer. Front. Oncol. 2020, 10, 614201. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; Available online: https://ui.adsabs.harvard.edu/abs/2015arXiv150504597R (accessed on 10 January 2021).
- Kurman, R.J.; Shih Ie, M. The origin and pathogenesis of epithelial ovarian cancer: A proposed unifying theory. Am. J. Surg. Pathol. 2010, 34, 433–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, J.W.; Rha, S.E.; Oh, S.N.; Park, M.Y.; Byun, J.Y.; Lee, A. Diffusion-weighted MRI of epithelial ovarian cancers: Correlation of apparent diffusion coefficient values with histologic grade and surgical stage. Eur. J. Radiol. 2015, 84, 590–595. [Google Scholar] [CrossRef]
- Higano, S.; Yun, X.; Kumabe, T.; Watanabe, M.; Mugikura, S.; Umetsu, A.; Sato, A.; Yamada, T.; Takahashi, S. Malignant astrocytic tumors: Clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology 2006, 241, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chu, C.; Cui, Y.; Zhang, P.; Zhu, M. Diffusion-weighted MRI: A useful technique to discriminate benign versus malignant ovarian surface epithelial tumors with solid and cystic components. Abdom. Imaging 2012, 37, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, G.F.; He, Z.Y.; Li, Z.Y.; Zhang, G.X. Prospective evaluation of 3T MRI findings for primary adnexal lesions and comparison with the final histological diagnosis. Arch. Gynecol. Obstet. 2014, 289, 357–364. [Google Scholar] [CrossRef]
- Thomassin-Naggara, I.; Balvay, D.; Aubert, E.; Darai, E.; Rouzier, R.; Cuenod, C.A.; Bazot, M. Quantitative dynamic contrast-enhanced MR imaging analysis of complex adnexal masses: A preliminary study. Eur. Radiol. 2012, 22, 738–745. [Google Scholar] [CrossRef] [PubMed]
- Arezzo, F.; Venerito, V.; Fornaro, M.; Cacciapaglia, F.; Lopalco, G.; Iannone, F. Complete Hydatidiform Mole Mimicking Sacroiliitis. J. Clin. Rheumatol. 2021, 27, e122. [Google Scholar] [CrossRef]
- Kovac, J.D.; Terzic, M.; Mirkovic, M.; Banko, B.; Dikic-Rom, A.; Maksimovic, R. Endometrioid adenocarcinoma of the ovary: MRI findings with emphasis on diffusion-weighted imaging for the differentiation of ovarian tumors. Acta Radiol. 2016, 57, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Thomassin-Naggara, I.; Aubert, E.; Rockall, A.; Jalaguier-Coudray, A.; Rouzier, R.; Darai, E.; Bazot, M. Adnexal masses: Development and preliminary validation of an MR imaging scoring system. Radiology 2013, 267, 432–443. [Google Scholar] [CrossRef]
- Thomassin-Naggara, I.; Poncelet, E.; Jalaguier-Coudray, A.; Guerra, A.; Fournier, L.S.; Stojanovic, S.; Millet, I.; Bharwani, N.; Juhan, V.; Cunha, T.M.; et al. Ovarian-Adnexal Reporting Data System Magnetic Resonance Imaging (O-RADS MRI) Score for Risk Stratification of Sonographically Indeterminate Adnexal Masses. JAMA Netw. Open. 2020, 3, e1919896. [Google Scholar] [CrossRef]
- Yazbek, J.; Raju, S.K.; Ben-Nagi, J.; Holland, T.K.; Hillaby, K.; Jurkovic, D. Effect of quality of gynaecological ultrasonography on management of patients with suspected ovarian cancer: A randomised controlled trial. Lancet. Oncol. 2008, 9, 124–131. [Google Scholar] [CrossRef]
- Kinkel, K.; Lu, Y.; Mehdizade, A.; Pelte, M.F.; Hricak, H. Indeterminate ovarian mass at US: Incremental value of second imaging test for characterization—Meta-analysis and Bayesian analysis. Radiology 2005, 236, 85–94. [Google Scholar] [CrossRef]
- Tsili, A.C.; Tsampoulas, C.; Argyropoulou, M.; Navrozoglou, I.; Alamanos, Y.; Paraskevaidis, E.; Efremidis, S.C. Comparative evaluation of multidetector CT and MR imaging in the differentiation of adnexal masses. Eur. Radiol. 2008, 18, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, Y.; Zhou, Y.; Liu, C.; Xie, L.; Zhou, Z.; Liang, D.; Shen, Y.; Yao, Z.; Liu, J. Comparison between types I and II epithelial ovarian cancer using histogram analysis of monoexponential, biexponential, and stretched-exponential diffusion models. J. Magn. Reson. Imaging 2017, 46, 1797–1809. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Mao, Y.; Chen, X.; Wu, G.; Liu, X.; Zhang, P.; Bai, Y.; Lu, P.; Yao, W.; Wang, Y.; et al. Magnetic resonance imaging radiomics in categorizing ovarian masses and predicting clinical outcome: A preliminary study. Eur. Radiol. 2019, 29, 3358–3371. [Google Scholar] [CrossRef] [PubMed]
- Song, X.L.; Ren, J.L.; Zhao, D.; Wang, L.; Ren, H.; Niu, J. Radiomics derived from dynamic contrast-enhanced MRI pharmacokinetic protocol features: The value of precision diagnosis ovarian neoplasms. Eur. Radiol. 2021, 31, 368–378. [Google Scholar] [CrossRef]
- Jian, J.; Li, Y.; Pickhardt, P.J.; Xia, W.; He, Z.; Zhang, R.; Zhao, S.; Zhao, X.; Cai, S.; Zhang, J.; et al. MR image-based radiomics to differentiate type Iota and type IotaIota epithelial ovarian cancers. Eur. Radiol. 2021, 31, 403–410. [Google Scholar] [CrossRef]
- Forstner, R.; Sala, E.; Kinkel, K.; Spencer, J.A.; European Society of Urogenital, R. ESUR guidelines: Ovarian cancer staging and follow-up. Eur. Radiol. 2010, 20, 2773–2780. [Google Scholar] [CrossRef]
- Coakley, F.V.; Choi, P.H.; Gougoutas, C.A.; Pothuri, B.; Venkatraman, E.; Chi, D.; Bergman, A.; Hricak, H. Peritoneal metastases: Detection with spiral CT in patients with ovarian cancer. Radiology 2002, 223, 495–499. [Google Scholar] [CrossRef]
- Tempany, C.M.; Zou, K.H.; Silverman, S.G.; Brown, D.L.; Kurtz, A.B.; McNeil, B.J. Staging of advanced ovarian cancer: Comparison of imaging modalities—report from the Radiological Diagnostic Oncology Group. Radiology 2000, 215, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Javitt, M.C. ACR Appropriateness Criteria on staging and follow-up of ovarian cancer. J. Am. Coll. Radiol. 2007, 4, 586–589. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Kyriazi, S.; Collins, D.J.; Messiou, C.; Pennert, K.; Davidson, R.L.; Giles, S.L.; Kaye, S.B.; Desouza, N.M. Metastatic ovarian and primary peritoneal cancer: Assessing chemotherapy response with diffusion-weighted MR imaging--value of histogram analysis of apparent diffusion coefficients. Radiology 2011, 261, 182–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzo, S.; Botta, F.; Raimondi, S.; Origgi, D.; Buscarino, V.; Colarieti, A.; Tomao, F.; Aletti, G.; Zanagnolo, V.; Del Grande, M.; et al. Radiomics of high-grade serous ovarian cancer: Association between quantitative CT features, residual tumour and disease progression within 12 months. Eur. Radiol. 2018, 28, 4849–4859. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Liu, Z.; Rong, Y.; Zhou, B.; Bai, Y.; Wei, W.; Wang, S.; Wang, M.; Guo, Y.; Tian, J. A Computed Tomography-Based Radiomic Prognostic Marker of Advanced High-Grade Serous Ovarian Cancer Recurrence: A Multicenter Study. Front. Oncol. 2019, 9, 255. [Google Scholar] [CrossRef]
- Himoto, Y.; Veeraraghavan, H.; Zheng, J.; Zamarin, D.; Snyder, A.; Capanu, M.; Nougaret, S.; Vargas, H.A.; Shitano, F.; Callahan, M.; et al. Computed Tomography-Derived Radiomic Metrics Can Identify Responders to Immunotherapy in Ovarian Cancer. JCO Precis. Oncol. 2019, 3, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Vargas, H.A.; Veeraraghavan, H.; Micco, M.; Nougaret, S.; Lakhman, Y.; Meier, A.A.; Sosa, R.; Soslow, R.A.; Levine, D.A.; Weigelt, B.; et al. A novel representation of inter-site tumour heterogeneity from pre-treatment computed tomography textures classifies ovarian cancers by clinical outcome. Eur. Radiol. 2017, 27, 3991–4001. [Google Scholar] [CrossRef]
- Veeraraghavan, H.; Vargas, H.A.; Sanchez, A.J.; Micco, M.; Mema, E.; Lakhman, Y.; Crispin-Ortuzar, M.; Huang, E.P.; Levine, D.A.; Grisham, R.N.; et al. Integrated Multi-Tumor Radio-Genomic Marker of Outcomes in Patients with High Serous Ovarian Carcinoma. Cancers (Basel) 2020, 12, 3403. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Arshad, M.; Thornton, A.; Avesani, G.; Cunnea, P.; Curry, E.; Kanavati, F.; Liang, J.; Nixon, K.; Williams, S.T.; et al. A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer. Nat. Commun. 2019, 10, 764. [Google Scholar] [CrossRef]
Author | Year | Population Number | Radiomic Platform | Radiomic Features | ML Algorithms | Outcome | Study Design |
---|---|---|---|---|---|---|---|
Chiappa et al. [42] | 2020 | 241 | TRACE4© | 319 | Ensemble | Benign/malignant Oms | Retrospective |
Jin et al. [56] | 2021 | 127 | Python 3.7.0 and package Pyradiomics 2.2.0 | 97 | U-net | Segmentation (U-net vs. human) | Retrospective |
Author | Year | Population Number | Radiomic Platform | Radiomics Features | ML Algorithms | Outcome | Study Design |
---|---|---|---|---|---|---|---|
Zhang et al. [72] | 2018 | 286 | MATLAB software | 1714 | LASSO | Benign/malignant OMs Type I/type II subtypes | Retrospective |
Song et al. [73] | 2020 | 104 | ITK-SNAP software (version 4.7.2) | 960 | Logistic regression | Benign/borderline/malignant OMs | Prospective |
Jian et al. [74] | 2020 | 294 | ITK-SNAP software (version 4.7.2) | 851 | LASSO | Type I/type II subtypes | Retrospective |
Author | Year | Population Number | Radiomic Platform | Radiomics Features | ML Algorithm | Outcome | Study Design |
---|---|---|---|---|---|---|---|
Rizzo et al. [81] | 2017 | 101 | IBEX tool (Imaging Biomarker Explorer Software, v. 1.0β) | 516 | Logistic regression | RT, PD12 | Retrospective |
Wei et al. [82] | 2019 | 142 | ITK-SNAP | 620 | LASSO | 18 months-PFS, 3 years-PFS | Retrospective |
Himoto et al. [83] | 2019 | 75 | ITK-SNAP-MATLAB | 7 | Cox proportional hazard regressions, LASSO | PFS > 24 weeks | Prospective |
Vargas et al. [84] | 2017 | 38 | 3D Slicer | 12 | LASSO | CSR, OS | Retrospective |
Veeraraghavan et al. [85] | 2020 | 75 | Computational environment for radiological research (CERR) | 75 | Support vector machine, Cox proportional hazard regressions | PFS, platinum resistance | Retrospective |
Lu et al. [86] | 2019 | 364 | TextLAB 2.0 | 657 | Cox proportional hazard regressions | OS | Retrospective |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arezzo, F.; Loizzi, V.; La Forgia, D.; Moschetta, M.; Tagliafico, A.S.; Cataldo, V.; Kawosha, A.A.; Venerito, V.; Cazzato, G.; Ingravallo, G.; et al. Radiomics Analysis in Ovarian Cancer: A Narrative Review. Appl. Sci. 2021, 11, 7833. https://doi.org/10.3390/app11177833
Arezzo F, Loizzi V, La Forgia D, Moschetta M, Tagliafico AS, Cataldo V, Kawosha AA, Venerito V, Cazzato G, Ingravallo G, et al. Radiomics Analysis in Ovarian Cancer: A Narrative Review. Applied Sciences. 2021; 11(17):7833. https://doi.org/10.3390/app11177833
Chicago/Turabian StyleArezzo, Francesca, Vera Loizzi, Daniele La Forgia, Marco Moschetta, Alberto Stefano Tagliafico, Viviana Cataldo, Adam Abdulwakil Kawosha, Vincenzo Venerito, Gerardo Cazzato, Giuseppe Ingravallo, and et al. 2021. "Radiomics Analysis in Ovarian Cancer: A Narrative Review" Applied Sciences 11, no. 17: 7833. https://doi.org/10.3390/app11177833
APA StyleArezzo, F., Loizzi, V., La Forgia, D., Moschetta, M., Tagliafico, A. S., Cataldo, V., Kawosha, A. A., Venerito, V., Cazzato, G., Ingravallo, G., Resta, L., Cicinelli, E., & Cormio, G. (2021). Radiomics Analysis in Ovarian Cancer: A Narrative Review. Applied Sciences, 11(17), 7833. https://doi.org/10.3390/app11177833