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Abstract: Active infrared thermography is an attractive and reliable technique used for the non-
destructive evaluation of various materials and structures, because it enables non-contact, large area,
high-speed, quantitative, and qualitative inspection. However, the defect detectability is significantly
deteriorated due to the excitation of a non-uniform heat source and surrounding environmental
noise, requiring additional signal processing and image characterization. The lock-in infrared
thermography technique has been proven to be an effective method for quantitative evaluation by
extracting amplitude and phase images from a 2D thermal sequence, but it still involves a lot of noise,
providing difficulties in detection. Therefore, this study explored the possibility of improving the
signal-to-noise ratio by applying filtering to a stainless-steel plate with circular defects. Thereafter,
automated defect detection was performed based on the threshold value through the binary images.
In addition, a comparative analysis was performed to evaluate the detectability according to the
presence or absence of a filtering application.

Keywords: lock-in signal process; Otsu algorithm; de-noising; automatic detection; detectability
comparative; stainless steel

1. Introduction

The importance of non-destructive testing (NDT) in industry occupies a large part of
the inspection of machines or structures in various fields such as shipbuilding, automobiles,
construction, civil engineering, and nuclear power [1–3]. Structural steel used for these
elements must maintain the strength range required, but the presence of defects causes
changes in local mechanical properties and has a fatal impact on stability and lifespan [4,5].
Therefore, it is necessary to inspect for defects in order to reduce effects such as fractures.

Stainless steel (STS) has excellent formability, corrosion resistance and heat resistance.
In particular, austenitic stainless steel has high mechanical properties and corrosion re-
sistance; therefore, it can be applied in a wide temperature range and various operating
conditions, from cryogenic to high temperature [6–8]. In general, it is used in various fields
such as interior and exterior materials for construction, automobile parts, aircraft fuselages,
and medical devices. However, defects can occur during manufacturing and maintenance
steps [9]. Therefore, NDT techniques for detecting defects present on the surface or inside
are very important.

A variety of NDT studies have been performed, such as eddy current testing [10–13],
ultrasonic [14,15], acoustic emission [16,17], radiographic [18], liquid penetrant testing [9],
magnetic-particle inspection [19,20], and infrared thermography. Magnetic particle inspec-
tion, liquid penetrate test, and ultrasonic have typically used as NDT inspection techniques
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applied to STS material inspection. Recently, infrared thermography (IRT) techniques
capable of quantitative evaluation have been applied in many fields.

IRT for non-destructive testing and evaluation (NDT&E) is mainly applied to detect
subsurface features (backside defect, anomalies, etc.) [5,21,22]. IRT is a technology that
analyzes and acquires thermal response signals using a non-contact thermal imaging
device [23]. IRT detects radiation energy emitted from objects in the infrared range of the
electromagnetic spectrum. The infrared range corresponds to wavelengths longer than the
visible portion of the spectrum. Therefore, IRT can be utilized to detect defects inside the
surface of metal plates. Based on these characteristics of IRT, it is possible to effectively
detect a backside defect.

In this study, lock-in infrared thermography, one of the active IRT techniques, was
applied to automatically detect defects on the backside of STS304 metal plates. For clear
defect detection, binarization processing using grayscale-based histograms and first, second
de-noising were performed. Automatic defect detection was performed based on the
threshold value using the metric roundness equation. Finally, a detectability analysis
according to filtering was performed.

The reminder of the paper is composed as follows. In Section 2, The theory of lock-in
signal processing and the Otsu algorithm is provided. Section 3 describes the information
of STS304 and experimental process. Section 4 presents experimental data, and Section 5
concludes the paper.

2. Theory
2.1. Image Processing

Lock-in infrared thermography (LIT) is a technique in which a heat source in the form
of a harmonic function is incident on an object and the response signal generated at this
time is processed to obtain changes in phase and amplitude [8,24]. Many previous studies
on LIT techniques have been conducted [25–29]. Therefore, image processing for automatic
defect detection was performed based on this technique.

Figure 1 shows the overall process of this study. The study process is as follows:

1. Step 1: 2D thermal images were acquired using two halogen lamps for heat source
excitation. Then, phase and amplitude images were acquired by applying the lock-in
signal processing technique;

2. Step 2: Contrast evaluation was performed to analyze the optimum frequency of
phase and amplitude images at the excitation frequency set in this study;

3. Step 3: Filtering (mean, median, NLmean, Gaussian) for the first de-noising was
applied, and the signal-to-noise ratio (SNR) was calculated to perform comparative
analysis with non-filtering images;

4. Step 4: Utilizing a grayscale-based histogram to find the optimal threshold value that
can be classified as ‘class 1’ and ‘class 2’ for the binary image;

5. Step 5: There was still noise in the binary image; therefore, the second de-noising
was performed. After tracing the boundary line of the defect in the image, the metric
equation was introduced to analyze the automatic defect detection based on the
threshold value.
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Figure 1. Flowchart of the overall research process of this study.

The main core of the image processing performed in this study is the binarization
image processing, which is discussed in the next section.

2.2. Optimum Threshold Value

There are many techniques to analyze an image. Among them, the simplest and easiest
method is binarization of an image using a threshold value. This is used in many pre-
processing steps of image processing, such as separating the background from an object in
an image, extracting only pixels with a brightness value above a certain level, or simplifying
the overall information of the image. The Otsu algorithm is the most representative method
for calculating the threshold value of an image.

The Otsu algorithm is a technology which calculates the optimal threshold value that
can classify images into two classes by using a histogram based on a grayscale level. In
the binary image, [0, k] is classified as ‘class 0’, and [k, 1] is classified as ‘class 1’ based on
the threshold value k. Through this process, binary images can be acquired based on a
threshold value. In general, converting a 2D thermal image to a binary image can clearly
characterize the characteristics of the defects [30–32].

In order to classify into two binary images, it is necessary to calculate an optimal
threshold value. If it is an M × N image with L intensity levels such as 0, 1, 2, . . . , L − 1,
pixels with intensity values within [0, k] are classified as class 1, and intensity values within
[k + 1, L + 1] are classified as class 2. The probability that a pixel is classified into class 1 or
2 is as follows [33,34]:

P1(k) =
k

∑
i=0

pi (1)

P2(k) = 1− P1(k) (2)

The average intensity values of pixels classified into classes 1 and 2 are as follows:

m1(k) =
1

P1(k)

k

∑
i=0

iPi (3)

m2(k) =
1

P2(k)

L−1

∑
i=k+1

iPi (4)
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There are mean intensity values up to the k level, which of all images is

mG = P1m1 + P2m2 (5)

In order to calculate the optimal threshold value, the Otsu algorithm should allow the
concept of between-class variance. The equation of between-class variance is as follows:

σ2
b =

(mGP1 −m)2

P1(1− P1)
(6)

Calculating the optimal k value is a simple principle, although the optimal k value
can be calculated only by substituting all k values in the intensity range [0, L − 1]. The k
value was calculated using MATLAB software, and the principle of the Otsu algorithm is
to classify the image based on the k value obtained in this way.

3. Experimental Configuration
3.1. STS304 Reference Specimen

In this study, a specimen made of STS304 with a flat surface was used. This STS304
reference specimen was provided the Korea Research Institute of Standards and Science
(KRISS) in Korea [3]. Artificial defects with various aspect ratios exist, with the same depth
on the row axis and the same diameter on the column axis. Figure 2 shows the dimensions
of the edges and each defect in the specimen. It is a square plate with a thickness of 10 mm
and dimensions 180 × 180 mm. Artificial defects with various aspect ratios were processed
on the subsurface of the plate to analyze the defect detectability of the technique. Referring
to Figure 2, defects on each row axis were indexed as A, B, C, and D, and defects on the
column axis were indexed as 1, 2, 3, and 4. Accordingly, the 16 defects present in the plate
were indexed with unique marks. For example, the indexing of the deepest and widest
defects among existing defects was ‘A4’. The front of the plate was coated with KRYLON
black paint to maintain an emissivity of 0.95 or more. Figure 3 shows the front and back of
the specimen, and Table 1 shows the material properties of STS304.

Figure 2. Schematic illustration of the STS304 plate providing depth and diameter information of
each defect.
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Figure 3. The picture of the specimen used in the study: (a) front side coated with black paint, and
(b) back side with flat-bottomed holes.

Table 1. The material properties of the STS304 plate.

Thermal Conductivity (k) 16.2 W/m·K
Density 8000 kg/m3

Heat Capacity 500 J/kg·K
Initial Temperature 23 ◦C

3.2. Experimental Setup of LIT

The LIT experimental device used in this study consisted of an STS304 specimen,
infrared camera, function generator, power amplifier, and halogen lamps, and is shown in
Figure 4. The experiments in this study were conducted in an isolated dark room containing
the inspector and all equipment. Two 1 kW halogen lamps was used as excitation heat
sources, and were controlled by a function generator (Agilent 33210A, Petaling Jaya,
Malaysia) and power amplifier. For uniform heat source excitation, the thermal contrast
between both ends of the specimen was set not to exceed 0.2 ◦C. An SC645 IR camera
(un-cooled, 640 × 480 pixels, 7.5~13 µm) model was used to measure the thermal response
of the specimen surface [3,26]. The FOV (field of view) of the lens attached to the IR camera
was 25◦ (H) × 19◦ (V) and focal length was 24.6 mm. The distance between the specimen
and IR camera was set to 800 mm to match the size of the specimen to the 2D thermal image
output to the PC in real time. The thermal image was acquired using FLIR R&D commercial
software, and the frame rate of the IR camera for image acquisition was set to 50 Hz.

Figure 4. Experimental configuration of lock-in infrared thermography system.
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4. Results and Discussion
4.1. Lock-In Signal Images

After excitation on the specimen of a halogen lamp, which is an external heat source,
the thermal response of the surface was obtained by converting it into a 2D image. Then,
amplitude and phase images were acquired; Figure 5 shows the amplitude and Figure 6
shows the phase image. Each image was scaled for qualitatively clear defect detection. The
use of two halogen lamps caused non-uniform thermal responses of the specimen surface.
Therefore, it can be visually confirmed that there was a lot of noise.

Figure 5. Amplitude images from the lock-in signal processing: (a) 0.01 Hz, (b) 0.02 Hz, (c) 0.03 Hz, (d) 0.04 Hz, (e) 0.05 Hz,
(f) 0.06 Hz, (g) 0.07 Hz, (h) 0.08 Hz, (i) 0.09 Hz and (j) 0.1 Hz.

Figure 6. Phase images from the lock-in signal processing: (a) 0.01 Hz, (b) 0.02 Hz, (c) 0.03 Hz, (d) 0.04 Hz, (e) 0.05 Hz, (f)
0.06 Hz, (g) 0.07 Hz, (h) 0.08 Hz, (i) 0.09 Hz and (j) 0.1 Hz.

The optimum frequencies of amplitude and phase images were calculated at the
excitation frequency set in this study. To calculate the optimum frequency, two ROIs of
5 × 5 pixels (one at the center of defective area and another in the adjacent sound area)
were considered. Then, contrast evaluation was performed using Equation (7) [28]:

∆c = ∅DROImean −∅SROImean (7)

where ∅DROImean and ∅SROImean are the average values of the defective area and sound
area, respectively.



Appl. Sci. 2021, 11, 7870 7 of 12

Figure 7 shows the ROI contrasts of amplitude and phase for each excitation frequency.
An amplitude of 0.02 Hz and a phase of 0.01 Hz were evaluated. In both images, it can be
seen that the higher the frequency, the lower the contrast. This can be regarded as a result
of insufficient heat being supplied because the excitation frequency is higher. It can be seen
that the higher the excitation frequency, the lower the defect detectability.

Figure 7. Plot of ROI contrast for optimum excitation frequency: (a) amplitude and (b) phase.

4.2. Filtering

After calculating the optimum frequency for the first de-noising, filtering was applied
to each image. The applied filtering was mean, median, NLmean and Gaussian. A total
of five images, which were the filtered and non-filtering images, were compared and
analyzed. The SNR was calculated to evaluate the improvement of the defect detectability
of the de-noising image. The SNR is defined as the ratio of the signal strength to the noise
strength that disturbs the signal. The defect area was considered as ‘signal’ and the sound
area as ‘noise’. The ROI area was the same as the area where the contrast evaluation was
performed, and the SNR equation is as follows [28,35,36]:

SNR = 20 log10

(
|DROImean − SROImean|

σ

)
(8)

where DROImean and SROImean are the arithmetic mean of all the pixels in the defective
area and the sound area, respectively, and σ is the standard deviation of all the pixels in
the sound area.

Figure 8 shows the non-filtering raw image and the filtering image. Based on the raw
image, it can be seen that the Gaussian image and the NLmean image have significantly
lower detectability. However, it is difficult to qualitatively evaluate improvements in the
median image and mean image. Therefore, quantitative detectability was evaluated using
the SNR equation of Equation (8); Figure 9 shows the SNR value of each image. Both
amplitude and phase signal processing had the highest detectability in median images. In
addition, it can be seen that the detectability was improved compared to the raw image to
which non-filtering was applied.
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Figure 8. Images with filtering (median, mean, Gaussian, NLmean) applied to raw images for first
de-noising: (a) amplitude and (b) phase.

Figure 9. SNR comparison of each filtered image.

4.3. Automatic Defect Detection

For automatic defect detection of amplitude and phase signal processing images,
binarization processing using the Otsu algorithm was performed on images to which
median filtering was applied. The optimum threshold values for amplitude and phase for
binarization are 25 and 27, respectively, as shown in Figure 10.

Figure 10. Images with second de-noising applied after the binarization process: (a) amplitude and
(b) phase.
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The process for second de-noising after binarization is as follows. Firstly, by using
the ‘bwareaopen’ morphology function, all objects with fewer than 50 pixels that did not
belong to the desired object were removed. Secondly, by using the ‘strel’ function, the gaps
of defects in the image were filled in. Thirdly, boundary lines were traced to recognize
defects in the image. In order to improve the processing speed, the ‘noholes’ function was
used, which prevented finding inner contours. These functions were applied individually
in MATLAB software.

After performing the second de-noising, a metric equation for automatic defect detec-
tion was used. The area and perimeter of each defective object were measured, and based
on the results, a simple metric representing the roundness of the object was established, as
follows [37]:

metric =
4π× area

perimeter2 (9)

This metric is 1 for circles only and less than 1 for all other shapes. This classification
process can be adjusted by setting an appropriate threshold value. The roundness threshold
value for defect detection was set to 0.75. Figure 11 shows an image with the automatic
defect detection of amplitude and phase. The roundness of the ‘B3’ defect in the amplitude
image was calculated as 0.37; therefore, it was not recognized as a defect. In the raw
amplitude image of Figure 5, the defect in the ‘B’ column was visually undetectable.
Therefore, no defects were detected in the ‘B’ column, even in the binary image. The phase
image can confirm that more defects than amplitude images were detected.

Figure 11. Automatic defect recognition based on a threshold of 0.75 for each image: (a) amplitude
and (b) phase.

4.4. Detectability Comparative

After the binary process, an analysis was performed to compare the detectability
improvement depending on whether or not filtering was applied. In the previous study
process, comparative analysis was performed through SNR calculation, but only some
specific areas using ROI were calculated. Root mean square error (RMSE) was calculated
to evaluate the overall detectability of amplitude and phase images. The lower the RMSE
value, the smaller the difference in the real value and the estimated value, which means
that the precision is high. Therefore, it can be interpreted as meaning that the detectability
is high, and the equation is as follows [3]:

RMSE(θ1, θ2) =

√
∑n

i=1 (θ1,i − θ2,i)
2

n
(10)
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where θ1 is the real value (percentage value of roundness of raw image defects), θ2 is
the estimated value (percentage value of roundness of binary image defect), and n is the
number of areas. The real value means the roundness percentage of the actual defects, and
all defects were set to 100.

Table 2 shows the roundness values for all defects in the amplitude and phase images
of filtering and non-filtering, and the calculated RMSE value for all defects. Unrecognized
defects in the binary image were excluded. It can be seen that both amplitude and phase
had high detectability in the filtered image. According to Table 2, the same number
of defects were detected regardless of the filtering. However, in order to improve the
detectability of defects, it is necessary to increase the threshold of the roundness; therefore,
the application of filtering can be considered important.

Table 2. RMSE values for the filtering and non-filtering of amplitude and phase images.

Hole
Amplitude Phase

Filtering Non-Filtering Filtering Non-Filtering

A1 − − 88 79
A2 − − − −
A3 − − 80 85
A4 − − 81 84
B1 87 84 86 85
B2 − − − −
B3 81 79 82 77
B4 88 88 84 82
C1 81 84 88 85
C2 − − − −
C3 79 − − −
C4 92 89 86 80
D1 86 85 88 84
D2 − − − −
D3 83 86 84 84
D4 92 91 89 84

RMSE 23.657 31.1469 23.6378 24.8919

5. Conclusions and Future Works

In this study, the automatic defect detection of backside of STS304 plate based on
lock-in infrared thermography was performed. The concept of lock-in signal processing
and the Otsu algorithm for binarization was reviewed. In addition, a research process for
automatic defect detection was presented, and first and second de-noising were performed.
SNR evaluation was performed after applying median filtering to remove noise from the
signal processing image: the amplitude image improved by 2.67%, and the phase image
improved by 18.22%. After applying the Otsu algorithm for binarization processing, second
de-noising and boundary line tracking were performed for automatic defect detection. As a
result of applying the roundness metric equation, more defects were detected in the phase
image than the amplitude image. As a final process, RMSE was calculated to evaluate the
detectability according to filtering.

However, there were two major limitations in this study. First, a lot of noise was
generated after the lock-in signal processing because uniform heat was not provided by
using two halogen lamps. Secondly, the metric was a roundness equation, and there is a
limit to the detection of circular defects. Although there were such limitations, this paper
proposes that it is possible to detect circular defects in a short time by constructing a simple
algorithm mechanism.

In future research, an advanced noise removal technique that can improve the de-
tectability for circular backside defects will be considered. In addition, a study to establish
a mechanism capable of real-time automatic defect detection is required.
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