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Abstract: The spread of the 5G technology in the telecom power applications increased the need
to supply high power density with higher efficiency and higher power factor. Thus, in this paper,
the performance of the different power factor correction (PFC) topologies implemented to work
with high power density telecom power applications are investigated. Two topologies, namely
the conventional and the bridge interleaved continues-current-conduction mode (CCM) PFC boost
converters are designed. Selection methodology of the switching elements, the manufacturing of
the boost inductors, and the optimal design for the voltage and current control circuits based on
the proposed small signal stability modeling are presented. The printed circuit board (PCB) for the
two different PFC topologies with a power rating of 2 kW were designed. PSIM simulation and the
experiments are used to show the supply current total harmonic distortions (THD), voltage ripples,
power efficiency, and the power factor for the different topologies with different loading conditions.

Keywords: telecom power supply; power factor correction (PFC); small signal stability; conventional
CCM PFC; interleaved CCM PFC; total harmonic distortion (THD); UCC28180 and UCC28070
IC controllers

1. Introduction

Many of the industrial applications including telecom power applications currently
used active-controlled AC/DC converters to offer efficient power supplies with high-
power density. Most of the active-controlled AC/DC converters are designed based on
the boost converter technique, optimal design, and controlling of the operation of the
boost converter at high power density offers high input power factor (PF), reducing total
harmonic distortion (THD) and the circuit power losses, and increasing the conversion
efficiency [1,2]. The AC/DC power supply with two stages, as illustrated in Figure 1, is the
optimal configuration to obtain high values for the input PF and power efficiency. Two-
stage active AC/DC telecom power supply consists of the PFC (power factor correction ) to
regulate the input power factor and the DC/DC converter stage, which is used to regulate
the bus voltage of the PFC stage (320–410 V) to the telecom power applications voltage
level (45–63 V) [3,4].

The front stage of the telecom AC-DC power supply is the PFC stage which imple-
ments to deliver the power conversion with lower reactive power consumption, lower total
harmonic distortion (THD), and, then, input supply power with a high-power factor (PF).

According to the power applications, many types of PFC converters are widely used,
such as the conventional [5–7], the interleaved [8–11], and bridgeless [12–14] PFC boost
converters. The conventional PFC topology as shown in Figure 2a is the basic topology as
most the other PFC converters are derived from this topology. Moreover, for most of the
power applications, this circuit topology is the most commonly used circuit because of its
good performance, low cost, simple operations, and lower requirements for the power and
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control circuit designs, but the electromagnetic interface (EMI) level of the conventional
CCM (continues-current-conduction mode ) PFC is high due to the high ripple current in
the input side [1,15].
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Figure 1. Construction of the industrial high-power density telecom power supply.
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Another technique to implement the PFC converters can be classified as interleaved
PFC boost converters as shown in the schematic circuit in Figure 2b. Interleaving means
channeling the power flow from the input to the output into two or more channels and
add them at the output point. By doing this, the problem of the input ripple current can
be solved, also, as the number of interleaved channels increased, the power rating will be
increased. Another advantage of this approach is better thermal performance as it uses
two inductors which are approximately half the size of the conventional topology. The use
of two inductors with a small current rating reduces the total size and total weight of the
boost inductor, furthermore, it can increase the thermal performance of the converter.

Recently, different emerging techniques to improve the performance of the interleaved
PFC converters are employed such as; the modification on the interleaved PFC circuit by
connecting series capacitor to reduce the switching losses, reduced the voltage stress across
the semiconductors as compared with the traditional interleaved boost converter [16],
also, the proposed technology to minimize the input current ripple of the interleaved
PFC converter by controlling the switching driving signals and without any change in the
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converter model parameter, which is presented in [17]. The digitally controlled double
dual boost interleaved PFC converter with high voltage gain, small input current ripple as
compared with traditional interleaved PFC converter, which is presented in [18].

The bridgeless PFC typologies as shown in Figure 2c has higher efficiency as compared
with the other PFC topologies since the input bridge rectifier is not used. However, most of
these bridgeless topologies experience a higher level of EMI [19]. Different modifications
and types of bridgeless topologies with complex design and higher costs are implemented
to decrease these EMI issues [19–22]. Therefore, the use of the bridgeless PFC topology is
limited in the telecom power applications, where the EMI level requires to be at the lower
limits. For this reason, and to optimize the economic design for the PFC converter, the
bridgeless PFC topology was excluded from the analysis, and the comparison in this work
and the design analysis of the conventional and the interleaved PFC topologies are, only,
performed.

The control circuits of the PFC circuits which implemented based on the boost con-
verter technique usually contains two control loops [23–25]: the outer voltage loop, which
regulate the output voltage value as the specified load value, and the inner current loop
to make the AC supply current follow the AC supply voltage and regulate the circuit PF
to higher values. Usually, these control loops in analogy control circuits are implemented
using proportional-integral (PI) controllers [26–28]. The parameters of the PI controllers
implemented to work with the boost converters are usually optimized by deriving the
converter operation equations and linearized the system with using the different lineariza-
tion techniques. Practically, PFC control circuits can be implemented using integrated
circuits (IC) control chips such as the conventional PFC control IC’s (UCC28180, UCC29950),
and interleaved PFC control IC’s (UCC28070, UCC28065) from Texas Instruments
(Dallas, Texas, USA) (, country) [29]. The adjustment of the voltage and current control
loops in these control IC’s is performed by deriving the linearized small signal modeling of
the converter system and choosing the closed loop control system stability criteria which
are specified by the control system crossover frequency and the damping ratio [15,24,30,31].

The target of this study was to study the optimal design, manufacturing of the con-
ventional and interleaved PFC with the high-power density and verified the performance
of both topologies using the simulation and the experimental implementation. The per-
formance of both PFC topologies was investigated by optimizing the parameters of the
boost converter voltage and current control loops based on obtaining the proposed small
signal stability modeling for both topologies and using the proper stability criterion for
the closed loop control loops. The main parts of the power and control circuits in the
two topologies were designed for the enhancement of the circuit high power factor, good
conversion efficiency, a specified level of the load voltage, and current ripple contents,
and the lower values of the THD follows the telecom power applications load class in the
standard EN61000-3-2 [32]. The gains of the current-voltage controllers in both topologies
have been optimized to adjust the controller’s crossover frequency and damping ratio.

PSIM simulations have been used to test the performance of the designed PFC convert-
ers with the designed components and optimized control loops. Furthermore, the design
of the printed circuit board (PCB) for both topologies using the OrCAD(, city and country)
capture and ALEGRO PCB (Cadence 17.4, California, USA) (version, city and country)
design software to verify the experimental performance and to make the comparative anal-
ysis between the designed PFC converters performances with different loading conditions
are performed.

The following sections in this paper are organized as follows: Section 2 outlines the
PFC converters magnetic parts manufacturing and switching elements selection method-
ology. Section 3 proposed the small signal modeling and the design techniques of the
control loops for the different topologies of the PFC converters. Section 4 provides the
simulation procedure and results for the different PFC topologies employed. Section 5
shows the printed circuit board (PCB) design, provides the experimental verification, and
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the comparative analysis of the performance for the different PFC topologies. Section 6 is
the conclusion of the paper.

2. PFC Converters Power Components Design Analysis and Selection

As shown in the different PFC topologies depicted in Figure 2, the principle operation
of the different PFC topologies is based on the boost converter operation. The three main
power elements in such these converters to be designed are, (1) the storage energy element
represented by the boost inductor (Lb), (2) selecting the switching parts represented by the
high voltage Mosfet (Qb) and the high current fast switching diode (Db), and (3) the design
of the output filter represented by the output bulk capacitor (Cb) connecting in parallel
with the high voltage output side. The following subsections outline the design analysis of
the boost converter’s different power components for the conventional and the interleaved
PFC boost converters topologies.

2.1. The Boost Inductor Design and Manufacturing
2.1.1. Conventional PFC Boost Inductor

There are many considerations to consider when selecting the PFC boost inductors,
such as the inductance value, the direct current resistance (DCR), and the saturation current
value. The first step to designing the required boost inductor is to calculate the required
inductance value based on the required circuit ripple current which is usually calculated as
the percentage (10–40%) of the maximum input current to the boost converter [33].

For the conventional CCM PFC, the boost inductor value can be expressed as given [5]:

Lb =
1

%Ripple
×

V2
in_min

ηηη Po
×
(

1−
√

2 Vin_min

Vo

)
1

Fsw
(1)

where Vin_min is the minimum supply input voltage, %Ripple is the inductor ripple current
percentage, ηηη is the desired efficiency, Po is the power rating, and Fsw is the converter
switching frequency.

The circuit operation of the conventional PFC boost converter working in the
continuous current conduction mode (CCM) can be represented by two operation modes.
Figure 3 depicts the waveforms of the inductor voltage and currents for the boost converter
at different operation modes, where VL represents the inductor voltage, IL represents the
inductor current, D is the converter duty cycle, Ton is the on-switching time, Toff is the
off-switching time, Ts is the switching time, Vin is the boost converter input voltage, Vo is
the output voltage, and ∆ILrpp is the inductor ripple current peak to peak value.
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Figure 3. Boost inductor voltage and currents waveforms of the conventional PFC topology.
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Mode-1, when the switch (Qb) is closed, the energy is stored in the inductor, generating a
magnetic field. Mode-2, when Qb is opened, the current circuit impedance increases, thereby
reducing the current, and the magnetic field previously created is reduced to let the current
toward the load, thus, the inductor voltage polarity is reversed, which places the two sources
in series, and charging the capacitor (Cb) through the fast switching diode (Db).

The boost converter average input current is the same as the inductor average current
(Iavg) which can be calculated at full load condition and rated output voltage as given

Iavg =
Pout

Vo

(
1

1−D

)
(2)

The boost converter is designed to work with supply voltage wide range (85–265) V.
So, the maximum and the minimum duty cycle values are calculated as

Dmax = 1− Vin_min

Vo
, Dmin = 1− Vin_max

Vo
(3)

The average inductor currents at minimum and maximum supply voltage are calcu-
lated as

Iavg_min =
Pout

Vo

(
1

1−Dmax

)
, Iavg_max =

Pout

Vo

(
1

1−Dmin

)
(4)

The inductor ripple current as the percentage (%Ripple) of the converter total input
current can be expressed as

∆ILrpp = %Ripple× Iavg × 2 (5)

From (4) and (5), and from the waveforms in Figure 3, the inductor maximum peak
current is calculated as

IL_pk = Iavg +
∆ILrpp

2
(6)

Using the converter parameters given in Table 1, the required inductance, and the
inductor maximum peak current for the conventional CCM PFC converter can be calculated.
Based on the calculated inductance and the inductor current, the inductor core, the number
of turns (N), and the size of the winding wire have to be selected.

Table 1. The target PFC converters stage design specifications.

Design Parameter Value Unit

Supply voltage (Vin) 220 (85–265) V
Supply Frequency (F) 60 (47–63) Hz
Output Voltage (Vo) 400 (320–410) V
Output Power (Po) 2000 W

Efficiency (η) 95% -
Switching Frequency (Fsw) 100 kHz

Hold Up Time (thold) 10 ms
Inductor ripple (%Ripple) 20%

voltage ripple (Vrpp) 20 Vpp
Current ripple 5%

The PFC inductor core was designed to have a high saturation level which prevents
the saturation at the maximum peak current (IL_pk), support the converter operation with
the designed switching frequency, also, the inductor core losses have to be accepted in
accordance with the temperature rise during the PFC converter operation. Kool Mu core
material’s with low loss, relatively high saturation level (10,500 gausses), higher switching
frequency level up to 200 kHz, and the near-zero magnetostriction (ability to expand or
contract in response to a magnetic field) make the Kool Mµ material good for eliminating
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audible frequency noise in in-line noise filters and inductors, which also make it excellent
for the implementation of the PFC circuits [34].

Choosing the inductor core in this work will be conducted by using the LI2 method to
choose the core part number from the Kool Mu chart of the Magnetic inc supplier, as shown
in Figure 4, where L is the inductance value and I is the inductor average current. [34,35].
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From the chart and with using the calculated value of the LI2, and take in account
offering the required value of the inductance with the suitable space for the wire winding
around the core, the conventional PFC converter inductor is designed with using two
stacked Kool Mu Toroids core with part number of 77083A7. The inductor number of turns
(N) to obtain the required inductance value (Lb) can be calculated as:

N =

√
Lb

2 AL_min
(7)

where AL_min is the minimum inductance factor for each core (AL_min = 74.52 nH/T2).
The copper loss of the winding wire can be calculated on maximum value of the rms

input current (Iin_rms) as given

PLb_Loss = Iin_rms
2 ×DCR (8)

Iin_rms =
Pout

η×Vin_min × PF
(9)

where DCR is the inductor wire DC resistance and PF is the designed converter power factor.
The inductor wire which is selected based on the inductor maximum peak current, and

should meet the requirements that it should be thick so that the DCR is small and it should be
possible to form the required number of turns around the core. In this work, the conventional
CCM PFC inductor was manufactured with 60 turns of the copper wire with 1.15 mm diameter
size around the 2-stacked Kool Mu 77083A7 toroids cores. The manufactured inductor DCR
value was experimentally measured, and it was about 0.087 Ω.
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2.1.2. Interleaved PFC Boost Inductor

In the interleaved PFC converter, the total power is shared among the parallel channels
and the PWM signals for each channel switch are at 360/n, where n is the channels number.
A 2-channel interleaved CCM PFC topology is employed in this work. Since this topology
uses two inductors, L1 and L2, each with approximately half the size of the conventional
boost PFC, so that the thermal performance of the converter will improve [36]. Furthermore,
the inductor current ripple in the conventional boost PFC is the same as the input current
ripple while in the interleaved boost PFC, the ratio of the boost converter input ripple
current to inductor’s ripple current can vary depending on the duty cycle (D) as given in
Equation (7), where the current ripple cancellation in the input side of interleaved type is
considered as the major advantage over the conventional type as seen at the input current
ripple of the converter in Figure 5 [37].

IinRipple = ∑
ILRipple

1−2D
1−D if D ≤ 0.5

ILRipple
2D−1

D if D > 0.5
(10)
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As the result of the input current ripple cancellation, the size of the EMI filter can be
reduced, and the required boost inductors (L1 and L2) values will be reduced which leads
to reducing the volume and weight of the designed boost inductors.

The circuit operation of the designed interleaved PFC boost converter working in the
continuous current conduction mode (CCM) can represent four operating modes and if
the average duty cycle is less than 0.5, both switches will not be turned on at the same
time which results in three operating modes describes the on-off states of the 2-channels
switches as depicted in the converter waveforms in Figure 6, where VL1, VL2 represents the
inductors voltages, and IL1, IL2 represents the inductors currents.
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For the interleaved PFC converter, the boost inductor at each channel can be expressed
as [38,39].

L1 = L2 =
Don(1−Don)×Vout

ILrpk_pk × Fsw
(11)

The inductor ripple current at each channel as the percentage (%Ripple) of the con-
verter total input current can be given as

IL1 rpk_pk = IL2 rpk_pk =
%Ripple

2
×

Iavg

2
(12)

The peak current passing through the inductor at each channel can be given as

IL1_pk =
Iavg

2
+

IL1 rpk_pk

2
(13)

using the converter parameters given in Table 1, the required inductance and the inductor
maximum peak current for the interleaved CCM PFC converter can be calculated.

For each channel, in order to offer the required value of the inductance with the
suitable space of the wire winding around the core, the core of Kool Mu material with part
number of 77354A7 was used as depicted in the chart in Figure 4, the inductor number of
turns (N) to obtain the required inductance value (L1) and (L2) can be calculated as:

N1 = N2 =

√
L1

AL_min
=

√
L2

AL_min
(14)
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where AL_min is the minimum inductance factor for the chosen core (AL_min=69.92 nH/T2).
The copper loss of the winding wire resistance (DCR) can be calculated on Iin_rms

as given

PL1_Loss = PL2_Loss =

(
Iin_rms

2

)2
×DCR (15)

where DCR is the direct current resistance of the inductors L1 and L2.
In this work the interleaved CCM PFC inductors in each channel are manufactured

with 65 turns of the copper wire with 0.75 mm diameter size around the single Kool
Mu 77354A7 toroids core. The manufactured inductor DCR value was experimentally
measured, and it was about 0.055 Ω.

Table 2 shows the comparison between the boost inductor specifications designed for
the conventional and the interleaved CCM PFC converters. The view of the manufactured
boost inductors for both topologies is shown in Figure 7. From the manufactured boost
inductors specifications and the view for both topologies, the reduction in the boost
inductor weight, size, and cost can be observed in case of the interleaved topology as
compared with the conventional topology.

Table 2. Boost inductor specifications for the PFC (power factor correction) topologies. CCM
(continues-current-conduction mode).

Conventional CCM PFC Interleaved CCM PFC

Inductor No. of units 1 2
Core type Kool Mu (77083A7) Kool Mu (77354A7)

Inductive factor (AL) 81 ± 8% (nH/T2) 76 ± 8% (nH/T2)
No. of Turns (N) 60 65

Winding wire Cupper 1.15 mm Cupper 0.75 mm
DC resistance (DCR) 0.078 Ω 0.055 Ω

Total Weight 175 g 95 g
Total cost 17.00 USD 11.00 USD
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2.2. Output Capacitor Selection

For both topologies, the design techniques of the output capacitor are the same. The
output capacitor value usually calculated to meet the specified output voltage ripple using
(14), also, this value should be enough to deliver the output minimum voltage hold up
with the specific time (thold), as given in (15)

Cb ≥
Po

2× π× F× Vrpp × Vo
(16)

Cb ≥
2× Po × thold

V2
o −V2

o min
(17)

where Vrpp is the peak to peak output voltage ripple. The larger value among the two
equations was selected to design the output capacitor.

The capacitor rms current across the 60 Hz line cycle is given as [40]

ICb_rms =

√√√√( 8
√

2× P2
o

3π×Vin_min × Vo
− P2

o

V2
o

)
(18)

The capacitor equivalent series resistance (ESR) is calculated as

ESR =
DF

2× π× F×Cb
(19)

where DF is the chosen capacitor dissipation factor and can be obtained from the capacitor
datasheet.

The ESR losses of the capacitor can be calculated as

PESR_Loss = ESR× I2
Cb_rms (20)

An important issue when choosing the output bulk capacitor for the conventional
CCM PFC topology is that the ESR should be as small as possible, as it affects power
efficiency and voltage regulations. A larger ESR presents more ripple, affecting the boost
converter control loops stability [41]. Usually, aluminum electrolytic capacitors are used
where high-power density is required, because of their small volume, these types of
capacitors are also preferred in PFC applications since they provide high capacitance value
with low equivalent series resistance (ESR), but these capacitor types are expensive when
compared with the higher ESR types. On the other hand, the interleaving technique in
PFC circuits causes the inductor current ripple reduction and then produces a reduced rms
output capacitor current, so capacitors with higher ESR (lower cost) can be used.

2.3. Switching Elements Selection
2.3.1. Power Mosfet Switches Selection

The power Mosfet switches in the PFC boost converters are selected based on the
maximum peak current with considering the value of the on-state drain-source resistance
(Rdson) to reduce the conduction losses.

In the conventional CCM PFC topology, the rms current (IQb) and the maximum peak
current stress (IQb_peak) in the switch Qb can be calculated as given in [7,40].

IQb =
Po

Vin_min

√
1− 8

√
2Vin_min

3πVo
(21)

IQb_peak =
√

2× IQb (22)
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In case of the interleaved CCM PFC topology, the maximum peak current of the
switches Q1, Q2 is the half in case of the conventional CCM PFC converter as given

IQ1_peak = IQ2_peak =
IQb_peak

2
(23)

The conduction losses (PQ Loss_cond) of the switches can be calculated at the switch
rms current and using the value of the drain-source resistance of a MOSFET switch Rdson
at 100 C as given

PQ Loss_cond = I2
Qb × Rdson (24)

The switching losses (PQ Loss_swit) are calculated using the rise time (tr) and fall time
(tf) of the Mosfet gate and the capacitance losses (Coss) for the chosen switch.

PQ Loss_swit = Fsw

[
0.5×Vo × Iin_pk × (tr + tf) + 0.5×Coss ×V2

o

]
(25)

In case of the interleaved PFC, 2 switches were used to implement the two channels
boost converter, but the cost of the switching elements is still lower than the conventional
topology because low current rating switches can be used. Based on the current and voltage
ratings for both topologies and considering the value of the Rdson, the IPZ60R040C7 switch
is used for the conventional, and 2 switches of IPW60R099P6 were used for the interleaved
PFC boost converters in this work.

2.3.2. Fast Switching Boost Diode Selection

The boost diode maximum current is calculated as the maximum load current at the
minimum output voltage.

In the conventional PFC converter, the boost diode Db maximum current is calculated
at the full load condition and minimum output voltage as follow

IDb_max =
Pout

Vo_min
(26)

For the interleaved PFC converter

ID1_max = ID2_max =
IDb_max

2
(27)

The diode losses are estimated based upon the forward voltage (Vf) at 125 ◦C and the
reverse recovery charge (Qrr) of the diode.

PDbLoss = Vf × IDb_max + 0.5× Fsw ×Vout ×Qrr (28)

As given in (26) the boost diode has big influence on the system’s performance due to
the reverse recovery behavior. So, the Ultra-fast diode with very low reverse recovery time
(trr) and reverse recovery charge (Qrr) is necessary to reduce the switching loss.

In this work Schottky diode is used as the boost diode, the new diode technology
of silicon carbide (SiC) Schottky diode with part number of (IDH16G65C5) shows its
outstanding performance with almost no reverse recovery behavior. So that, the switching
loss due to this diode can be ignored, and only the conduction loss due to Vf is considered.

3. The Proposed Average Small Signal Modelling and Control Circuits Design

To simulate the different PFC topologies for investigating the converter performance
with the designed power components, the converter control circuit parameters have to be
optimized. The analog PI controllers are used to implement the voltage and current control
circuits in the different PFC topologies. The controller’s parameters are obtained with
using the proposed average small signal stability modeling for both of the conventional
and interleaved CCM PFC topologies.
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3.1. Conventional CCM PFC Topology

The control loops of the conventional CCM PFC converter are implemented with two
control loops as depicted in Figure 8, the outer loop which regulate the output voltage level
to the desired value, and the inner loop which used to let the input current follows the
reference current to reduce the inductor current distortion and provide input power with
high power factor. The mathematical equations which describe the change in the inductor
current (ILb) and output voltage (Vo) for the conventional CCM PFC converter shown in
Figure 2a can be given as

dILb
dt

=
Vin

Lb
− Vo(1−D)

Lb
(29)

dVo

dt
= − Vo

R Cb
+

ILb(1−D)

Cb
(30)

where R is the load resistance in ohms.
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Assume all variables (ILb, Vin, Vo, and D) are at the steady state at the selected
operational point (iLb, vin, vo , and d ) and the small-signal AC variation (i∗Lb, v∗in, v∗o
and d∗), where

ILb = iLb + i∗Lb ; Vin = vin + v∗in ; Vo = vo + v∗o ; D = d + d∗ (31)

The designed PFC control system should track and modify the duty cycle (D) based
on the small-signal AC variation to regulate Vo and ILb.

Substituting Equation (29) into (27) and (28), we obtain

d(iLb + i∗Lb)

dt
=

(vin + v∗in)
Lb

− (vo + v∗o) (1− d− d∗)
Lb

(32)

d(vo + v∗o)
dt

= − (vo + v∗o)
R Cb

+
(iLb + i∗Lb)(1− d− d∗)

Cb
(33)

Equations (30) and (31) can be re-written again as Equations (32) and (33) using the
averaging model which consider that over the switching period in the steady state, the
inductor current change, and the capacitor voltage is zero.

d(i∗Lb)

dt
=

1
Lb

(v∗in) +
vo

Lb
(d∗)− (1− d)

Lb
(v∗o) (34)

d(v∗o)
dt

=
(1− d)

Cb
(i∗Lb) +

iLb
Cb

(d∗)− 1
R Cb

(v∗o) (35)
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Arrange state Equations (34) and (35) in state space matrix form to obtain the state
space representation of the small signal stability model for the conventional CCM PFC
converter as given

[
i.
∗

Lb

v.∗
o

]
=

 0−
(

1−d
Lb

)
(

1−d
Cb

)
−1

R Cb

[ i∗Lb

v∗o

]
+

[ 1
Lb

Vo
Lb

0 iLb
Cb

]
.

[
v∗in
d∗

]
(36)

Figure 9 presents the control blocks for the outer and inner control loops of the
conventional PFC using the PI controller. The optimal parameters for the PI controllers
can be obtained by deriving the voltage and current systems transfer functions using the
average signal modelling.
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For the voltage control loop; the TF of the outer voltage system Gv(s) in s-domain can
be obtained as the output voltage to the inductor current transfer function as (37), and the
analog PI controller system can be expressed using the TF GPIv(s) as (38)

Gv(s) =
v∗o(s)
i∗Lb(s)

=
|vin|

2 Vo Cbs
(37)

GPIv(s) = KPv +
KIv

s
. (38)

where KPv is the proportional gain and KIv is the integral gain of the voltage PI controller.
The closed-loop TF of the outer voltage control loop system (GCLV(s)) can be obtained as

GCLv(s) =
Vo(s)
Vref(s)

=

|vin|
2 Vo Cb

.(KPv s + KIv)

s2 + |vin| KPv
2 Vo Cb

s + |vin| .KIv
2 Vo Cb

(39)

For the current control loop; the TF of the inner current system Gi(s) in s-domain can
be obtained as the output voltage to the inductor current transfer function as (40), and the
analog PI controller system can be expressed using the TF GPIi(s) as (41)

Gi(s) =
i∗Lb(s)
d∗(s)

=

(
Vo

LbCbR

)
. (sRCb + 2)

s2 + 1
CbR s + 1

LbCb
(1− d)2 (40)

GPii(s) = KPi +
KIi

s
(41)

Since the converter switching frequency (Fsw) was selected as about 100 kHz in this
work, for high frequency analysis, the capacitor can be shorted, and the open-loop TF of
the inductor current system in Equation (40) can be simplified as

Gi(s) =
2 Vo

sLb
(42)
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The closed loop TF of the current control loop GCLI(s) can be obtained as

GCLI(s) =
ILb(s)
Iref(s)

=
2 Vo KPi s + 2 VoKIi

s2Lb + 2 Vo KPi s + 2 VoKIi
(43)

Once the transfer functions of the control loops are determined, the PI controllers’
gains can be designed with the standard form of the second order system TF by selecting the
proper control system bandwidth and the undamped natural frequency which enhanced
the optimal stability criteria. Usually, the bandwidth of the outer voltage loop must be
very small to eliminate the harmonics of the output DC voltage reflected by the AC input
voltage at 60 Hz [42]. What is more the bandwidth of the inner current loop must be high
as compared with the outer voltage control loop to let the inductor current follows the
reference current, also the current control loop bandwidth must be less than switching
frequency (Fsw) to reject the noise at the switching frequency. In this work, the undamped
natural frequency (ξ) was considered to be about 0.707, the closed loop bandwidth of (Wn)
was assumed to be about 150 rad/s and 10,000 rad/s for the outer voltage and inner current
loops, respectively. For the reliable operation of a controller to offer good performance
with different loading condition, the controllers Kp and KI parameters were set to work
with the minimum value of the load voltage (Vo) of 320 V with the rated input voltage.

Figure 10 depicts the bode plot of the closed-loop TF of the two control loops, which
shows that the current controller offers unity gain for frequencies less than 3 kHz. This
current control system, working as a low pass filter, helps to remove the switching frequency
noise. Moreover, the voltage controller offers unity gain for frequencies less than 23 Hz.
This voltage controller works as a low pass filter to remove the 60 Hz voltage ripple.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 28 
 

 
(a) 

 
(b) 

Figure 10. Bode plots for the control loops for the conventional CCM PFC converter: (a) voltage control loop; (b) current 
control loop. 

3.2. Interleaved CCM PFC Topology 
The average small signal modelling of the interleaved PFC can be derived in the same 

way as explained for the conventional boost PFC using state space averaging technique. 
The interleaved PFC contains two separates boost PFC converters operating 180 degrees 
out of phase. These two separate legs are assumed to operate identically to derive the 
transfer function of the model as depicted in Figure 11.  

The mathematical equations which describe the change in inductors currents (IL1, IL2) 
and the output voltage (Vo) can be given as dI୐ଵ (t)dt = V୧୬Lଵ − V୭(1 − D)Lଵ   (44)dI୐ଶ (t)dt = V୧୬Lଶ − V୭(1 − D)Lଶ   (45)dV୭(t)dt = I୐ଵ(1 − D)Cୠ + I୐ଶ(1 − D)Cୠ − V୭R Cୠ  (46)

-3dB, 23 Hz

-3dB, 3 kHz

Figure 10. Bode plots for the control loops for the conventional CCM PFC converter: (a) voltage
control loop; (b) current control loop.



Appl. Sci. 2021, 11, 7911 15 of 27

3.2. Interleaved CCM PFC Topology

The average small signal modelling of the interleaved PFC can be derived in the same
way as explained for the conventional boost PFC using state space averaging technique.
The interleaved PFC contains two separates boost PFC converters operating 180 degrees
out of phase. These two separate legs are assumed to operate identically to derive the
transfer function of the model as depicted in Figure 11.
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The mathematical equations which describe the change in inductors currents (IL1, IL2)
and the output voltage (Vo) can be given as

dIL1 (t)
dt

=
Vin

L1
− Vo(1−D)

L1
(44)

dIL2 (t)
dt

=
Vin

L2
− Vo(1−D)

L2
(45)

dVo(t)
dt

=
IL1(1−D)

Cb
+

IL2(1−D)

Cb
− Vo

R Cb
(46)

Assume all variables (IL1, IL2, Vin, Vo, and D ) are at the steady state at the selected
operational point (iL1, iL2 , vo , and d ) and the small-signal AC variation (i∗L1, i∗L2, v∗in, v∗o,
and d∗), where

IL1 = iL1 + i∗L1; IL2 = iL2 + i∗L2; Vin = vin + v∗in ; Vo = vo + v∗o ; D = d + d∗ (47)

Substituting from (47) in Equations (44)–(46), we obtain

d(iL1 + i∗L1)

dt
=

(vin + v∗in)
L1

− (vo + v∗o) (1− d− d∗)
L1

(48)

d(iL2 + i∗L2)

dt
=

(vin + v∗in)
L2

− (vo + v∗o) (1− d− d∗)
L2

(49)

d(vo + v∗o)
dt

= − (vo + v∗o)
R Cb

+
(iL1 + i∗L1)(1− d− d∗)

Cb
+

(iL2 + i∗L2)(1− d− d∗)
Cb

(50)
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Equations (48)–(50) can be re-written again as Equations (51)–(53) using the averaging
model as follow

d(i∗L1)

dt
=

1
L1

(v∗in) +
vo

L1
(d∗)− (1− d)

L1
(v∗o) (51)

d(i∗L2)

dt
=

1
L2

(v∗in) +
vo

L2
(d∗)− (1− d)

L2
(v∗o) (52)

d(v∗o)
dt

=
(1− d)

Cb
(i∗L1) +

(1− d)
Cb

(i∗L2) +
iL1 + iL1

Cb
(d∗)− 1

R Cb
(v∗o) (53)

Arrange state Equations (51)–(53) in state space matrix form to obtain the state space
representation of the small signal stability model for the interleaved CCM PFC converter
as given

 i.
∗

L1

i.
∗

L2

v.∗
o

 =


0 0− (1−d)

L1

0 0− (1−d)
L2

(1−d)
Cb

(1−d)
Cb
− 1

R Cb


 i∗L1

i∗L2

v∗o

+


1

L1

vo
L1

1
L2

vo
L2

0 iL1+iL1
Cb


[

v∗in
d∗

]
(54)

The transfer function (TF) of the output voltage control system for the interleaved
CCM PFC converter can be obtained as given

Gv(s) =
v∗o(s)

i∗L1,2(s)
=

|vin|
2Vo Cbs

(55)

The transfer function (TF) of the inner current control loops for the inductor’s currents
IL1 and IL2 for the interleaved CCM PFC converter can be obtained as given

Gi(s) =
i∗L1,2(s)
d∗(s)

=
2Vo

2R(1− d)2 ×
1 + sRCb

2

1 + sL1,2

R(1−d)2 +
s2L1,2Cb

(1−d)2

(56)

After rearranging Equation (56), the open loop TF of the inductors currents systems
can be written as

G1(s) = G2(s) =

(
Vo

L1,2CbR

)
. (sRCb + 2)

s2 + 1
CbR s + 2

L1,2Cb
(1− d)2 (57)

For the interleaved CCM PFC converter, the closed loop bandwidth values were
assumed to be about 150 rad/s and 18,000 rad/s for the outer voltage and inner current
loops, respectively.

Figure 12 depicts the bode plot of the closed-loop TF of the control loops, which shows
that the current controller offers unity gain for frequencies less than 5.5 kHz. This current
control system, working as a low pass filter, helps to remove the switching frequency noise.
Furthermore, the voltage controller offers unity gain for frequencies less than 21 Hz. This
voltage controller works as a low pass filter to remove the 60 Hz voltage ripple.
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4. Simulation Results

Figure 13 shows the PSIM software (Powersim, Rockville, USA) simulation circuits
for the conventional and interleaved PFC circuits with the designed power components
values. The EMI filter in both topologies was designed as an LC filter with common mode
coupling inductor of about 2.4 mH and suppression capacitors of about 2.2 nF [43]. For the
practical simulation results, which were closest to the experimental results, the boost diode
is considered as SiC Schottky diode to ignore the switching losses, the forward voltage
of the boost diode is about 1.5 V, and the parameters of bridge diode, the boost converter
switches for both topologies are obtained from the datasheets of the selected components.
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Figure 13. PSIM simulation circuit for the PFC topologies: (a) conventional boost PFC; (b) interleaved boost PFC.

At the rated input of (220 Vrms, 60 Hz) and rated load of Po = 2000 W and Vo = 400 V, the
power performance for both topologies is simulated. Figures 14 and 15 show the waveforms
of the input and output currents and input and output voltages as well as the circuit power
factor (PF) for the conventional and the interleaved CCM PFC converters respectively. We
observed that the designed conventional PFC converter offers input power factor at full load
condition of 2 kW with minimum value about 0.9955 and maximum value about 0.9970. On
the other hand, the interleaved converter offers a power factor with a minimum value of
about 0.9975 and a maximum value of about 0.9991 during the full load operating condition.
The peak to peak ripple value in the output voltage is measured of about 12.00 V in the
conventional and 12.10 V in the interleaved converter which is less than the design specified
value (Vrpp = 20 V) for the output voltage ripple contents in both topologies. Additionally,
the output ripple current peak to peak value is measured of about 0.153 A in the conventional
and 0.151 A in the interleaved converter which is less than 4% in both topologies.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 19 of 28 
 

  
(a) (b) 

Figure 13. PSIM simulation circuit for the PFC topologies: (a) conventional boost PFC; (b) interleaved boost PFC.  

 
Figure 14. Voltages, currents, and input power factor for the conventional CCM PFC at full load condition. 

 
Figure 15. Voltages, currents, and input power factor for the interleaved CCM PFC at full load condition. 

To show the operation performance of the designed current control loops for both 
PFC topologies, the operation waveforms of inductor currents and the reference current 
are simulated. Figures 16 and 17 show the inductor’s current and the reference current 
generated from the outer voltage control loop for the conventional and the interleaved 
PFC converters, respectively. It can be observed that the inductors currents successfully 

Figure 14. Voltages, currents, and input power factor for the conventional CCM PFC at full load condition.

To show the operation performance of the designed current control loops for both
PFC topologies, the operation waveforms of inductor currents and the reference current
are simulated. Figures 16 and 17 show the inductor’s current and the reference current
generated from the outer voltage control loop for the conventional and the interleaved PFC
converters, respectively. It can be observed that the inductors currents successfully follow
the reference current in both topologies which ensure input current follows input voltage,
and offer higher input power factor values.
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The dynamic performance of the outer voltage control loop to regulate the output
voltage to the specified value (400V) with different input voltage conditions is simulated
as shown in Figures 18 and 19 for the conventional and the interleaved PFC converters,
respectively. Three operation conditions of the lower voltage, steady state voltage, and
higher voltage conditions of the input supply voltage are used to test the operation of
the outer voltage control loop. It can be observed that the designed outer voltage control
loops based on the proposed small signal stability modeling succeed to regulate the output
voltage to the specified value with very small transition time with different wide range of
the input voltage conditions.
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Figure 19. Output voltage dynamic performance with different input voltage for the interleaved CCM PFC.

To investigate the advantage of the current ripple cancellation in the interleaved
PFC converters over the conventional PFC converters, the input current ripple for both
converters is measured at the same switching period from 1.999925 to 1.999985. Figure 20
shows the waveforms of the boost converter input current and inductors currents for the
conventional and the interleaved PFC converters. The total input ripples current peak to
peak over this switching period is measured for both topologies, which is about 0.6901 A
for the conventional PFC converter and is reduced to about 0.3091 A for the interleaved
PFC converter due to the ripple current cancellation of the interleaved converters, reducing
of the input current ripples leads to reducing the current total harmonic distortions and
increasing the input supply power factor.
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Figures 21 and 22 shows the Fourier analysis for the input current at the full load
condition of the conventional and the interleaved CCM PFC converters, respectively. It
is observed that the third harmonic is the dominant harmonic in the current spectrum
and it is about 0.578 A for the conventional PFC, which reduced to about 0.220 A with
the interleaved PFC converter. Furthermore, the total harmonic distortion (THD) of about
4.67% in the conventional PFC converter and reduced to about 2.65% with the interleaved
PFC converter. It can observe that the designed PFC converters offer harmonic level follows
the harmonic standard specification IEEE 519-20142 [35] and IEC 61000-3-2 [36] for the
design of the telecom power supply.
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5. Experimental Verification

The printed circuits board (PCB) for the 2 kW PFC converters is designed using
OrCAD capture and PCB design software 17.4 (Cadence, CA, USA) using the components
given in Table 3. The control circuit for the conventional PFC circuit is implemented using
the UCC28180 CCM PFC controller and the control circuit for the interleaved PFC circuit is
implemented using the UCC28070 interleaved CCM PFC controller from Texas instruments.
With using the design calculation tools of both IC controllers, the cross over frequency for
the voltage and current control loops are adjusted with the same values given in design
Section 3.

Table 3. Selection elements of the different topologies.

Conventional CCM PFC Interleaved CCM PFC

Bridge GSIB2580 GBJ3508
Boost Inductor 470 uH 2× 300 uH

MOSFET IPZ60R040C7 2× IPW60R099P6
Boost Diode IDH16G65C5 2× IDH16G65C5

Bulk capacitor 1120 uF
(2× EKMR421VSN561MR50S)

1120 uF
(2× ALA7DA561DE450)

PFC Control IC UCC 28180 UCC 28070
Gate driver 1ED160N12AF UCC27324D

Figure 23 shows the experimental setup used for testing the experimental performance
for the designed PFC converters. The Kikusi DC electronic load with a power rating of
about 3 kW is used for loading the converters from 25% to 100% of the full load condition.
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Figure 23. Experimental setup for testing of the designed PFC converters.

At the rated input of (220 Vrms, 60 Hz), different loading conditions (25%, 50%, 75%, and
100%) of the full load condition are loaded to the designed converter. Figures 24 and 25 and
show the input, output voltages, input current waveforms, and the power factor measurement
for the conventional and the interleaved PFC converters, respectively.
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It is observed that the designed voltage control loops in the conventional and inter-
leaved PFC converters ables to adjust the output voltage at a constant value of 400 V with
very small ripple contents at different loading conditions. Additionally, the current control
loops offer input current with a high power factor and small THD. Figure 24a shows that
the conventional PFC converter offers an input power factor of about 98.8% at a lower
loading condition of 25%, which is higher than an interleaved PFC converter of 97.50%
with the same loading condition as shown in Figure 25a.

With the increasing of the loading condition in the conventional PFC converter, the
input current distortion factor is increased due to the high voltage and current stresses
in the PFC converter switch and increasing of the thermal heating of the PFC inductor
which reduced the input power factor at higher loading condition. On the other hand, the
channeling of the current through two channels in the interleaved PFC converter reduced
the components’ current and voltage stresses and also improve the thermal performance of
the PFC inductors, makes the converter power factor stable at higher values at the higher
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loading condition. At full loading condition of 2 kW, Figures 24d and 25d show that the
conventional PFC converter offers an experimentely power factor value about 99% and the
interleaved PFC converter offers a power factor value of about 99.85%.

With different loading conditions, as depicted in Figure 26, the designed PFC con-
verters performances are tested through measurements of the THD, power factor and
conversion efficiency by using the simulation and experimental tests. At 25% loading
condition the efficiency of the conventional PFC converter is experimentally about 95.9%
and for the interleaved PFC converter is about 93.8%, when the load is increased to about
100% loading condition, the conventional PFC converter efficiency is about 97%, and for
the interleaved PFC converter is about 97.6%. It is observed that, at a low loading condition
the conventional PFC converter offers higher efficiency than the interleaved converter, but
when the loading power is increased the current stress and thermal losses in the conven-
tional PFC boost inductor and Mosfet is increased which increased the thermal power
losses and reduced the conversion efficiency, also increasing the current distortion factor,
increasing the THD, and reducing the input power factor.
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On the other hand, interleaving technique in the PFC converters improve the converter
thermal performance, reducing the voltage, and current stresses in the boost converter
components at higher loading condition which increase the conversion efficiency, and
reducing the total harmonic distortion of the input current at high power loading condition
as shown in Figure 26c, where the THD is reduced from 5.6% in the conventional PFC
converter to about 3.2% with using of the interleaved PFC converter. Usually, in the PFC
converter circuits, the input power factor is depending on the displacement factor and the
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distortion factor [5], thus, reducing the current distortion factor leads to an increase in the
input power factor from 99% to about 99.85% as shown in Figure 26a.

6. Conclusions

In this paper, the detailed design analysis and manufacturing of the printed circuit
board (PCB) of two topologies of the telecom PFC converters with high-power density,
high conversion efficiency, high input power factor, and lower THD are performed. The
proposed small signal modeling is used to design the parameters of the PI controllers for the
current and voltage control loops for both topologies. Simulation and experimental tests are
used to test the performance of the designed converters with different loading conditions.
The simulation and experimental results show that the conventional PFC topology with
the proposed design offers higher efficiency and higher power factor at lower loading
condition until 800 W as compared with the interleaved PFC converter, but when the
loading condition is increased more than 800 W, the thermal heating in the conventional
boost inductor, the boost diode, and Mosfet is increased leading to higher conduction losses
and higher current distortion factor which reduced the conversion efficiency and, also,
reduced the input power factor.

The experimental results show that, at the higher loading condition, the efficiency of
the designed interleaved boost PFC converter is higher as compared with the conventional
boost PFC converter since the power is channeled through two paths which reduced
the boost inductor size and weight. Furthermore, the interleaving technique reduces the
voltage and current stresses across the Mosfet switches and improves the component’s
thermal performance, improvement of the converter thermal performance decreases the
conduction losses of the inductor, the boost diode, and the Mosfet, increased the conversion
efficiency and input power factor with higher loading condition.
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The literature review and manuscript preparation, as well as the simulations, were carried out by
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