AI Approaches to Environmental Impact Assessments (EIAs) in the Mining and Metals Sector Using AutoML and Bayesian Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data for the Environmental Impact Assesment (EIA)
- Compatible environmental impact (0–3): Recovery is immediate after the activity ceases, and no protection or mitigation measures are necessary.
- Moderate environmental impact (4–6): Protective measures or a recovery time interval are required after the activity ceases.
- Severe-critical environmental impact (7–10): It is necessary to apply protection and restoration measures, with the possibility that recovery after the cessation of activity is not possible given that its magnitude is above the acceptable threshold.
2.3. AutoML for Understanding the Environmental Impact Assesment (EIA)
- G is a DAG in which each node represents one of the variables X1, X2, …, Xn and, each arc represents a direct relationship of dependency between variables;
- P is a set of parameters that typify the network by reflecting the probabilities for each possible value xi of each variable Xi.
2.3.1. Data Discretization
2.3.2. Unsupervised Bayesian Learning
2.3.3. Computing Risk and Uncertainty
3. Results
3.1. Exploratory Analysis of the Unsupervised Network
3.2. Predicting the Environmental Impact Assessment (EIA) Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Litvinenko, V.S. Digital Economy as a Factor in the Technological Development of the Mineral Sector. Nat. Resour. Res. 2020, 29, 1521–1541. [Google Scholar] [CrossRef]
- Sidorenko, O.; Sairinen, R.; Moore, K. Rethinking the concept of small-scale mining for technologically advance raw materials production. Resour. Policy 2020, 68, 101712. [Google Scholar] [CrossRef]
- Lund, S.; Manyika, J.; Woetzel, J.; Barriball, E.; Krishnan, M.; Alicke, K.; Birshan, M.; George, K.; Smit, S.; Swan, D.; et al. Risk, Resilience, and Rebalancing in Global Value Chains. McKinsey Global Institute, 2020. Available online: https://www.mckinsey.com/business-functions/operations/our-insights/risk-resilience-and-rebalancing-in-global-value-chains (accessed on 1 July 2021).
- Babbitt, C.W.; Althaf, S.; Rios, F.C.; Bilec, M.M.; Graedel, T.E. The role of design in circular economy solutions for critical materials. One Earth 2021, 4, 353–362. [Google Scholar] [CrossRef]
- Schmid, M. Challenges to the European automotive industry in securing critical raw materials for electric mobility: The case of rare earths. Mineral. Mag. 2020, 84, 5–17. [Google Scholar] [CrossRef]
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Critical Raw Materials Resilience: Charting a Path towards greater Security and Sustainability. Brussels, COM (2020) 474 Final. Available online: https://ec.europa.eu/docsroom/documents/42849 (accessed on 1 July 2021).
- Sonter, L.J.; Ali, S.H.; Watson, J. Mining and biodiversity: Key issues and research needs in conservation. R. Soc. 2018, 285, 1892. [Google Scholar] [CrossRef]
- Paul, S.K.; Chowdhury, P. A production recovery plan in manufacturing supply chains for a high-demand item during COVID-19. Int. J. Phys. Distrib. Logist. Manag. 2021, 51, 104–125. [Google Scholar] [CrossRef]
- Lund, S.; Manyika, J.; Woetzel, J.; Barriball, E.; Krishnan, M.; Alicke, K.; Birshan, M.; George, K.; Smit, S.; Swan, D.; et al. Behind the Mining Productivity upswing: Technology-Enabled Transformation. 2018. Available online: https://www.mckinsey.com/industries/metals-and-mining/our-insights/behind-the-mining-productivity-upswing-technology-enabled-transformation (accessed on 1 July 2021).
- Zhukova, I.V.; Zubarev, A.E. Management of Complex Socio-Economic Systems on the Example of the Mining Industry. Springer Int. Publ. 2021, 206, 643–651. [Google Scholar] [CrossRef]
- Young, A.; Rogers, P. A Review of Digital Transformation in Mining. Min. Metall. Explor. 2019, 36, 683–699. [Google Scholar] [CrossRef]
- Qi, C.-C. Big data management in the mining industry. Int. J. Miner. Metall. Mater. 2020, 27, 131–139. [Google Scholar] [CrossRef]
- Li, J.-G.; Zhan, K. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment. Engineering 2018, 4, 381–391. [Google Scholar] [CrossRef]
- Gerassis, S.; Albuquerque, M.; García, J.; Boente, C.; Giráldez, E.; Taboada, J.; Martín, J. Martín, Understanding complex blasting operations: A structural equation model combining Bayesian networks and latent class clustering. Reliab. Eng. Syst. Saf. 2019, 188, 195–204. [Google Scholar] [CrossRef]
- Al-Zabidi, A.; Rehman, A.U.; Alkahtani, M. An Approach to Assess Sustainable Supply Chain Agility for a Manufacturing Organization. Sustainability 2021, 13, 1752. [Google Scholar] [CrossRef]
- Ghose, A.K. Technology vision 2050 for sustainable mining. Procedia Earth Planet. Sci. 2009, 1, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Aghina, W.; Ahlback, K.; De Smet, A.; Lackey, G.; Lurie, M.; Murarka, M.; Handscomb, C. The five trademarks of agile organizations. McKinsey Co. 2018. [Google Scholar]
- Ganeriwalla, A.; Harnathka, S.; Costa, A.; Volkov, M.; Voigt, N. Racing Toward a Digital Future in Metals and Mining. 2021. Available online: https://web-assets.bcg.com/65/43/b63e686f453d82fb46f6a0702e2d/bcg-racing-toward-a-digital-future-in-metals-and-mining-feb-2021.pdf (accessed on 1 July 2021).
- Fugiel, A.; Burchart-Korol, D.; Czaplicka-Kolarz, K.; Smoliński, A. Environmental impact and damage categories caused by air pollution emissions from mining and quarrying sectors of European countries. J. Clean. Prod. 2017, 143, 159–168. [Google Scholar] [CrossRef]
- Mancini, L.; Sala, S. Social impact assessment in the mining sector: Review and comparison of indicators frameworks. Resour. Policy 2018, 57, 98–111. [Google Scholar] [CrossRef]
- Sarupria, M.; Manjare, S.D.; Girap, M. Environmental impact assessment studies for mining area in Goa, India, using the new approach. Environ. Monit. Assess. 2019, 191, 18. [Google Scholar] [CrossRef]
- Zambon, I.; Colantoni, A.; Carlucci, M.; Morrow, N.; Sateriano, A.; Salvati, L. Land quality, sustainable development and environmental degradation in agricultural districts: A computational approach based on entropy indexes. EIA Rev. 2017, 64, 37–46. [Google Scholar] [CrossRef]
- Moreno-Jiménez, E.; García-Gómez, C.; Oropesa, A.L.; Esteban, E.; Haro, A.; Ramón Carpena-Ruiz, R.; Tarazona, J.V.; Peñalosa, J.M.; Fernández, M.D. Screening risk assessment tools for assessing the environmental impact in an abandoned pyritic mine in Spain. Sci. Total Environ. 2011, 409, 692–703. [Google Scholar] [CrossRef] [PubMed]
- Tsiakmaki, M.; Kostopoulos, G.; Kotsiantis, S.; Ragos, O. Implementing AutoML in Educational Data Mining for Prediction Tasks. Appl. Sci. 2020, 10, 90. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, P.A.; Fernández, A.; Fernández, R.; Rumí, R.; Salmerón, A. Bayesian networks in environmental modelling. Environ. Model. Softw. 2011, 26, 1376–1388. [Google Scholar] [CrossRef]
- Nadkarni, S.; Shenoy, P.P. A causal mapping approach to constructing Bayesian networks. Decis. Support Syst. 2004, 38, 259–281. [Google Scholar] [CrossRef] [Green Version]
- Uusitalo, L. Advantages and challenges of Bayesian networks in environmental modelling. Ecol. Model. 2007, 203, 312–318. [Google Scholar] [CrossRef]
- Gómez, M. Galicia leads the export of slate in Spain. ExpoPYME, 2019. [Google Scholar]
- Cárdenes, V.; de León, M.P.; Rodríguez, X.A.; Rubio-Ordoñez, A. Roofing Slate Industry in Spain: History, Geology, and Geoheritage. Geoheritage 2019, 11, 19–34. [Google Scholar] [CrossRef]
- Menéndez-Díaz, A.; Argüelles-Fraga, R.; Ordóñez-Galán, C.; Bouza-Rodríguez, J.B. Room Design for Underground Slate Workings: Analysis of Safety Factors for Keyblocks. Rock Mech. Rock Eng. 2016, 49, 1107–1113. [Google Scholar] [CrossRef]
- Bastante, F.G.; Taboada, J.; Ordóñez, C. Design and planning for slate mining using optimization algorithms. Eng. Geol. 2004, 73, 93–103. [Google Scholar] [CrossRef]
- Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Union 1992, 206, 7–50.
- Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the conservation of wild birds. Off. J. Eur. Union 2010, 26, 7–25.
- World Economic Forum Mining & Metals Industry Partnership in collaboration with Accenture. In Scoping Paper: Mining and Metals in a Sustainable World; Industry Agenda; WEF MM Mining Metal Sustainable World: Cologny, Switzerland, 2014.
- Sustainable Development Goals. Guidelines for the Use of the SDG Logo Including the Colour Wheel, and 17 Icons; United Nations Department of Global Communications: New York, NY, USA, 2019.
- UNESCO Global Geoparks. Courel Mountains, a Very Human Geology. List of Global UNESCO Geoparks. 2019. Available online: https://en.unesco.org/global-geoparks/list (accessed on 1 July 2021).
- De Luaces, A.; Schröder, K.; Møller, J. Espacios Naturales en Galicia: Un análisis diacrónico de las distintas categorías de protección y de la eficiencia de estas para afrontar el reto de la pérdida de Biodiversidad. Recur. Rurais Rev. Inst. Biodivers. Agrar. Desenvolv. Rural. (IBADER) 2020, 16, 57–97. [Google Scholar]
- Araujo, M.; Rivas, T.; Giraldez, E.; Taboada, J. Use of machine learning techniques to analyse the risk associated with mine sludge deposits. Math. Comput. Model. 2011, 54, 1823–1828. [Google Scholar] [CrossRef]
- Cristian, C.; Giuseppe, O. A methodological approach on the procedural effectiveness of EIA: The case of Sardinia. City Territ. Archit. 2019, 6, 1. [Google Scholar] [CrossRef]
- Sadler, B. International Study of the Effectiveness of Environmental Assessment. Final Report: Environmental Assessment in a Changing World: Evaluating Practice to Improve Performance; Canadian Environmental Assessment Agency: Ottawa, ON, Canada, 1996. [Google Scholar]
- Ley 21/2013, de 9 de Diciembre, de Evaluación Ambiental. BOE núm. 296, Gobierno de España. 2013.
- Pearl, J. Comment on “Causal inference, probability theory, and graphical insights” by Stuart, G. Baker. Stat. Med. 2013, 32, 4331–4333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conrady, S.; Jouffe, L. Bayesian Networks and BayesiaLab—A Practical Introduction for Researches; Bayesian: Austin, TX, USA, 2015; ISBN 0996533303. [Google Scholar]
- Chickering, D. Learning Bayesian Networks is NP-Complete. In Learning from Data. Lecture Notes in Statistics; Fisher, D., Lenz, H., Eds.; Springer: New York, NY, USA, 1996; Volume 32. [Google Scholar]
- Park, J.; Newman, M. Statistical mechanics of networks. Phys. Rev. E 2004, 70, 066117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radicchi, F.; Kriokov, D.; Hartle, H.; Bianconi, G. Classical information theory networks. J. Phys. Complex. 2020, 1, 025001. [Google Scholar] [CrossRef]
- Bowd, R.; Quinn, N.W.; Kotze, D.C. Toward an analytical framework for understanding complex social-ecological systems when conducting environmental impact assessments in South Africa. Ecol. Soc. 2015, 20, 41. [Google Scholar] [CrossRef] [Green Version]
- Gwimbi, P.; Nhamo, G. Effectiveness of Environmental Impact Assessment follow-up as a tool for environmental management: Lessons and insights from platinum mines along the Great Dyke of Zimbabwe. Environ. Earth Sci. 2016, 75, 561. [Google Scholar] [CrossRef]
Environmental Factor | Attributes |
---|---|
Landscape Quality | Chromatic aspects; fragility; display (visualization); vulnerability |
Soils | Water erosion, wind and desertification; soil degradation; surface and subsurface runoff; fertility decrease and soil recycling; edaphic profile changes |
Ecosystems | Ecological succession break; biodiversity loss; food chain changes |
Atmosphere | Noise; gases; dust; smell |
Habitats | Construction of transport routes; roads construction; high voltage electricity grid; clearing and leveling |
Surface Waters | Ecosystem loss, eutrophication and water quality; water pollution by waste dump; flow changes; basin contribution changes; basin edaphology changes; current flow changes; flood zones alteration |
Fauna | Fauna biodiversity and habitat loss; fauna unprotected species decrease; isolation of species or individuals; species or individuals concentration |
Flora | Flora biodiversity and habitat loss; flora unprotected species decrease; decrease in flora growth and regeneration |
Morphology | Shapes and volumes; slopes changes |
Geophysical Processes | Erosion changes; slopes stability alteration; vibrations; deposition |
Parents | Child | Relative Weight | Contrib. | MI | PC |
---|---|---|---|---|---|
Shapes and Volumes | Slopes Changes | 1.0000 | 5.78% | 1.5813 | 0.9999 |
Shapes and Volumes | Erosion Changes | 0.9381 | 5.42% | 1.4835 | 0.9860 |
Soil Degradation | Surface and Subsurface Runoff | 0.7521 | 4.35% | 1.1894 | 0.9752 |
Shapes and Volumes | Soil Degradation | 0.7213 | 4.17% | 1.1406 | 0.9170 |
Soil Degradation | Edaphic Profile Changes | 0.7211 | 4.17% | 1.1403 | 0.9706 |
Surface and Subsurface Runoff | Clearing and leveling | 0.7004 | 4.05% | 1.1075 | 0.9624 |
Surface and Subsurface Runoff | Water erosion Wind and Desertification | 0.6419 | 3.71% | 1.0150 | 0.9150 |
Current Flow Variations | Flood Zones Alteration | 0.6026 | 3.48% | 0.9529 | 0.9982 |
Surface and Subsurface Runoff | Fertility Decrease and Soil Recycling | 0.5900 | 3.41% | 0.9330 | 0.9499 |
Surface and Subsurface Runoff | Flora Unprotected Species Decrease | 0.5798 | 3.35% | 0.9169 | 0.9127 |
Intervals | Surface and Subsurface Runoff | Shapes and Volumes | Species or Individual Concentration | Soil Degradation | |
---|---|---|---|---|---|
Compatible | Mean Value | 1.308 | 1.308 | 1.078 | 1.308 |
Uncertainty [%] | 11.678 | 11.678 | 8.66 | 11.678 | |
Entropy [bits] | 18.510 | 18.510 | 13.726 | 18.510 | |
Moderate | Mean Value | 3.593 | 4.318 | 4.447 | 3.939 |
Uncertainty [%] | 16.915 | 18.092 | 21.502 | 18.291 | |
Entropy [bits] | 26.809 | 28.674 | 33.798 | 28.990 | |
Severe-Critical | Mean Value | 5.236 | 5.529 | 5.780 | 5.317 |
Uncertainty [%] | 16.964 | 14.607 | 18.517 | 16.251 | |
Entropy [bits] | 26.536 | 22.689 | 29.02 | 25.378 | |
Mean Value | Uncertainty [%] | Entropy [bits] | |||
Total | 3.839 | 27.079 | 42.677 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerassis, S.; Giráldez, E.; Pazo-Rodríguez, M.; Saavedra, Á.; Taboada, J. AI Approaches to Environmental Impact Assessments (EIAs) in the Mining and Metals Sector Using AutoML and Bayesian Modeling. Appl. Sci. 2021, 11, 7914. https://doi.org/10.3390/app11177914
Gerassis S, Giráldez E, Pazo-Rodríguez M, Saavedra Á, Taboada J. AI Approaches to Environmental Impact Assessments (EIAs) in the Mining and Metals Sector Using AutoML and Bayesian Modeling. Applied Sciences. 2021; 11(17):7914. https://doi.org/10.3390/app11177914
Chicago/Turabian StyleGerassis, Saki, Eduardo Giráldez, María Pazo-Rodríguez, Ángeles Saavedra, and Javier Taboada. 2021. "AI Approaches to Environmental Impact Assessments (EIAs) in the Mining and Metals Sector Using AutoML and Bayesian Modeling" Applied Sciences 11, no. 17: 7914. https://doi.org/10.3390/app11177914
APA StyleGerassis, S., Giráldez, E., Pazo-Rodríguez, M., Saavedra, Á., & Taboada, J. (2021). AI Approaches to Environmental Impact Assessments (EIAs) in the Mining and Metals Sector Using AutoML and Bayesian Modeling. Applied Sciences, 11(17), 7914. https://doi.org/10.3390/app11177914