Dosimetric Evaluation in Micro-CT Studies Used in Preclinical Molecular Imaging
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. The microCT Unit
2.2. Theoretical Calculations
2.2.1. X-ray Spectra
2.2.2. Imparted Dose at Surface
2.3. Dosimetric Measurements
2.3.1. Thermoluminescent Dosimetry Procedures
2.3.2. Half-Value Layer and Effective Energy
2.3.3. Imparted Dose at Surface Measured by TLD
2.3.4. Statistical Analysis
3. Results
3.1. Analytical Results
3.2. Dosimetric Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moya, U.E.; Brandan, M.E.; Martínez-Dávalos, A.; Ruiz-Trejo, C.; Rodríguez-Villafuerte, M. Parametrization of X-ray spectra appropiate for microCT scanners. Nucl. Instrum. Methods Phys. Res. A 2010, 613, 152–155. [Google Scholar] [CrossRef]
- Bushberg, J.T.; Seibert, J.A.; Leidholdt, E.M.; Boone, J.M. The Essential Physics of Medical Imaging, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012; pp. 315–317. [Google Scholar]
- Seguin, F.H.; Burstein, P.; Bjorkholm, P.J.; Homburger, F.; Adams, R.A. X-ray computed tomography with 50-µm resolution. Appl. Opt. 1985, 24, 4117–4123. [Google Scholar] [CrossRef] [PubMed]
- Stock, S.R. MicroComputed Tomography: Methodology and Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 45–56. [Google Scholar]
- Ford, N.L.; Thornton, M.M.; Holdsworth, D.W. Fundamental image quality limits for microcomputed tomography in small animals. Med. Phys. 2003, 30, 2869–2877. [Google Scholar] [CrossRef] [PubMed]
- Kersemans, V.; Thompson, J.; Cornelissen, B.; Woodcock, M.; Allen, P.D.; Buls, N.; Muschel, R.J.; Hill, M.A.; Smart, S.C. Micro-CT for anatomic referencing in PET and SPECT: Radiation dose, biologic damage, and image quality. J. Nucl. Med. 2011, 52, 1827–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boone, J.M.; Velazquez, O.; Cherry, S.R. Small-animal X-ray dose from micro-CT. Mol. Imaging 2004, 3, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Boone, J.M. X-ray Production, Interaction, and Detection in Diagnostic Imaging. In Handbook of Medical Imaging, 1st ed.; Beutel, J., Kundel, H.L., Van Metter, R.L., Eds.; SPIE: Washington, WA, USA, 2000; Volume 1, pp. 1–78. [Google Scholar]
- Boone, J.M.; Seibert, A. An accurate method for computer-generating tungsten anode X-ray spectra from 30 to 140 kV. Med. Phys. 1997, 24, 1661–1670. [Google Scholar] [CrossRef] [PubMed]
- Boone, J.M.; Fewell, T.R.; Jennings, R.J. Molybdenum, rhodium, and tungsten anode spectral models using interpolating polynomials with application to mammography. Med. Phys. 1997, 24, 1863–1874. [Google Scholar] [CrossRef] [PubMed]
- Carrilero-López, V.; (Senior Nuclear Imaging Scientist/Radiological protection supervisor, Bruker BioSpin, Billerica MA, USA). Personal communication, 2018.
- Sánchez, F.; Orero, A.; Soriano, A.; Correcher, C.; Conde, P.; González, A.; Hernández, L.; Moliner, L.; Rodríguez-Alvarez, M.J.; Vidal, L.F.; et al. ALBIRA: A small animal PET/SPECT/CT imaging system. Med. Phys. 2013, 40, 051906-1–051906-11. [Google Scholar] [CrossRef] [PubMed]
- Apogee Tube, W Anode. Available online: http://www.fisica.unam.mx/~brandan/spectra/AW.pdf (accessed on 13 June 2021).
- Hubbell, J.H.; Seltzer, S.M. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients, NIST Standard Reference Database 126; National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA, 1995.
- Burden, R.L.; Faires, J.D.; Burden, A.M. Numerical Analysis, 9th ed.; Cengage Learning: Boston, MA, USA, 2010; pp. 202–211. [Google Scholar]
- Buhr, H.; Büermann, L.; Gerlach, M.; Krumrey, M.; Rabus, H. Measurement of the mass energy-absorption coefficient of air for X-rays in the range from 3 to 60 keV. Phy. Med. Biol. 2012, 57, 8231. [Google Scholar] [CrossRef] [PubMed]
- Johns, H.E.; Cunningham, J.R. The Physics of Radiology, 4th ed.; Charles, C., Ed.; Thomas: Springfield, IL, USA, 1983; pp. 270–290. [Google Scholar]
- Gardner, J.L. Uncertainties in Photometric Integrals; NMI Technical Report 9; NMI: Lindfield, NSW, Australia, 2005. [Google Scholar]
- Woolliams, E.R. Determining the Uncertainty Associated with Integrals of Spectral Quantities; European Association of National Metrology Institutes: Berlin, Germany, 2013. [Google Scholar]
- Bergman, R.; Paget, M.L.; Richman, E.E. CALiPER Exploratory Study: Accounting for Uncertainty in Lumen Measurements; No. PNNL-20320; Pacific Northwest National Lab (PNNL): Richland, WA, USA, 2011.
- Nunn, A.A.; Davis, S.D.; Micka, J.A.; DeWerd, L.A. LiF: Mg, Ti TLD response as a function of photon energy for moderately filtered x-ray spectra in the range of 20–250 kVp relative to Co60. Med. Phys. 2008, 35, 1859–1869. [Google Scholar] [CrossRef] [PubMed]
- López-Pineda, E.; (Laboratorio de Dosimetría, Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico). Personal communication, 2019.
- Sosa, M.; Bernal-Alvarado, J.; Azorín, J.C.; Cuevas, A.C.; Córdova, T.; Mesa, F. Experimental and mathematical modeling of half-value layer measurements for x-ray equipment. Biomed. Eng. Appl. Basis Commun. 2016, 28, 1650019. [Google Scholar] [CrossRef]
- Bandalo, V.; Greiter, M.B.; Brönner, J.; Hoedlmoser, H. ISO 4037: 2019 validation of radiation qualities by means of half-value layer and Hp (10) dosimetry. Radiat. Prot. Dosim. 2019, 187, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Wagner, L.K.; Archer, B.R.; Cerra, F. On the measurement of half-value layer in film–screen mammography. Med. Phys. 1990, 17, 989–997. [Google Scholar] [CrossRef] [PubMed]
- International Atomic Energy Agency. Quality Assurance Programme for Digital Mammography: International Atomic Energy Agency Human Health Series No. 17; International Atomic Energy Agency (IAEA): Vienna, Austria, 2011; p. 109. [Google Scholar]
- Attix, F.H. Introduction to Radiological Physics and Radiation Dosimetry, 1st ed.; John Wiley & Sons: New York, NY, USA, 1986; p. 185. [Google Scholar]
- McGregor, D.S.; Shultis, J.K. Radiation Detection: Concepts, Methods, and Devices, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020; p. 746. [Google Scholar]
- Hupfer, M.; Kolditz, D.; Nowak, T.; Eisa, F.; Brauweiler, R.; Kalender, W.A. Dosimetry concepts for scanner quality assurance and tissue dose assessment in micro-CT. Med. Phys. 2012, 39, 658–670. [Google Scholar] [CrossRef] [PubMed]
- Carlson, S.K.; Classic, K.L.; Bender, C.E.; Russell, S.J. Small Animal Absorbed Radiation Dose from Serial Micro-Computed Tomography Imaging. Mol. Imaging Biol. 2007, 9, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Meganck, J.A.; Liu, B. Dosimetry in Micro-computed Tomography: A Review of the Measurement Methods, Impacts, and Characterization of the Quantum GX Imaging System. Mol. Imaging Biol. 2017, 19, 499–511. [Google Scholar] [CrossRef] [Green Version]
- Taschereau, R.; Chow, P.L.; Chatziioannou, A.F. Monte Carlo simulations of dose from microCT imaging procedures in a realistic mouse phantom. Med. Phys. 2006, 33, 216–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCollough, C.H.; Leng, S.; Yu, L.; Cody, D.D.; Boone, J.M.; McNitt-Gray, M.F. CT Dose Index and Patient Dose: They Are Not the Same Thing. Radiology 2011, 259, 311–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mole, R.H. Quantitative observations on recovery from whole body irradiation in mice. I. Recovery after single large doses of radiation. Br. J. Radiol. 1956, 29, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Stearner, S.P.; Tyler, S.A. Radiation Mortality in the Mouse: Model of the Kinetics of Injury Accumulation: I. Protracted Doses in the 30-Day Lethal Range. Radiat. Res. 1963, 20, 619–630. [Google Scholar] [CrossRef] [PubMed]
45 kV X-ray Beam | ||
---|---|---|
Mouse ID | Modality | Current (mA) |
1 | Standard | 0.2 |
2 | Good | 0.2 |
3 | Best | 0.2 |
4 | Standard | 0.4 |
5 | HR | 0.4 |
kV | (mGy/mAs) | (mGy/mAs) |
---|---|---|
35 | 0.76 ± 0.03 | 0.52 ± 0.01 |
45 | 1.27 ± 0.05 | 0.79 ± 0.01 |
kV | |
---|---|
35 | 1.07 ± 0.04 |
45 | 1.06 ± 0.04 |
35 kV | 45 kV | |||
---|---|---|---|---|
0.2 mA | 0.4 mA | 0.2 mA | 0.4 mA | |
Modality | ||||
Standard | 33 ± 1 | 66 ± 3 | 50 ± 2 | 101 ± 4 |
Good | 52 ± 2 | 103 ± 5 | 78 ± 3 | 156 ± 6 |
Best | 74 ± 3 | 148 ± 6 | 112 ± 4 | 223 ± 9 |
Setting | HVL (mm Al) | µAl (mm−1) | Eeff (keV) |
---|---|---|---|
35 kV, 0.2 mA | 0.27 ± 0.06 | 2.8 ± 0.5 | 13.9 ± 0.9 |
35 kV, 0.4 mA | 0.35 ± 0.07 | 2.0 ± 0.4 | 15.2 ± 1.2 |
45 kV, 0.2 mA | 0.42 ± 0.05 | 1.7 ± 0.2 | 16.2 ± 0.8 |
45 kV, 0.4 mA | 0.48 ± 0.07 | 1.4 ± 0.2 | 17 ± 1 |
35 kV | 45 kV | |||
---|---|---|---|---|
0.2 mA | 0.4 mA | 0.2 mA | 0.4 mA | |
Modality | IDSTL ± δIDSTL (mGy) | IDSTL ± δIDSTL (mGy) | ||
Standard | 42 ± 1 | 86 ± 7 | 67 ± 4 | 125 ± 3 |
Good | 74 ± 4 | 141 ± 2 | 106 ± 3 | 223 ± 7 |
Best | 111 ± 5 | 219 ± 12 | 167 ±1 | 332 ± 8 |
mA | Modality | IDSms ± δIDSms (mGy) |
---|---|---|
0.2 | Standard | 55 ± 8 |
0.2 | Good | 74 ± 4 |
0.2 | Best | 109 ± 17 |
0.4 | Standard | 89 ± 5 |
0.4 | HR | 298 ± 9 |
Modality | IDS0 (mGy) | |
---|---|---|
Standard | 80 | 161 |
Good | 125 | 250 |
Best | 179 | 357 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rueda, A.N.; Ruiz-Trejo, C.; López-Pineda, E.; Romero-Piña, M.E.; Medina, L.A. Dosimetric Evaluation in Micro-CT Studies Used in Preclinical Molecular Imaging. Appl. Sci. 2021, 11, 7930. https://doi.org/10.3390/app11177930
Rueda AN, Ruiz-Trejo C, López-Pineda E, Romero-Piña ME, Medina LA. Dosimetric Evaluation in Micro-CT Studies Used in Preclinical Molecular Imaging. Applied Sciences. 2021; 11(17):7930. https://doi.org/10.3390/app11177930
Chicago/Turabian StyleRueda, Alexis N., César Ruiz-Trejo, Eduardo López-Pineda, Mario E. Romero-Piña, and Luis A. Medina. 2021. "Dosimetric Evaluation in Micro-CT Studies Used in Preclinical Molecular Imaging" Applied Sciences 11, no. 17: 7930. https://doi.org/10.3390/app11177930
APA StyleRueda, A. N., Ruiz-Trejo, C., López-Pineda, E., Romero-Piña, M. E., & Medina, L. A. (2021). Dosimetric Evaluation in Micro-CT Studies Used in Preclinical Molecular Imaging. Applied Sciences, 11(17), 7930. https://doi.org/10.3390/app11177930