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Abstract: This study proposes a new attention-enhanced YOLO model that incorporates a leaf spot
attention mechanism based on regions-of-interest (ROI) feature extraction into the YOLO framework
for leaf disease detection. Inspired by a previous study, which revealed that leaf spot attention based
on the ROI-aware feature extraction can improve leaf disease recognition accuracy significantly and
outperform state-of-the-art deep learning models, this study extends the leaf spot attention model
to leaf disease detection. The primary idea is that spot areas indicating leaf diseases appear only in
leaves, whereas the background area does not contain useful information regarding leaf diseases.
To increase the discriminative power of the feature extractor that is required in the object detection
framework, it is essential to extract informative and discriminative features from the spot and leaf
areas. To realize this, a new ROI-aware feature extractor, that is, a spot feature extractor was designed.
To divide the leaf image into spot, leaf, and background areas, the leaf segmentation module was
first pretrained, and then spot feature encoding was applied to encode spot information. Next, the
ROI-aware feature extractor was connected to an ROI-aware feature fusion layer to model the leaf
spot attention mechanism, and to be joined with the YOLO detection subnetwork. The experimental
results confirm that the proposed ROI-aware feature extractor can improve leaf disease detection by
boosting the discriminative power of the spot features. In addition, the proposed attention-enhanced
YOLO model outperforms conventional state-of-the-art object detection models.

Keywords: smart farming; leaf disease identification; leaf disease detection; feature extractor

1. Introduction

Smart farming refers to the management of farms using information and communica-
tion technologies to increase the quantity and quality of plants and crops. By placing smart
agriculture sensors in greenhouses or in the field, various sensing data such as lighting,
temperature, soil nutrient levels, leaf color, and humidity can be collected. Given the vast
amount of sensing data, crop growth can be evaluated using data analysis tools to enable
farmers to make data-driven decisions. In other words, farmers can determine optimal
amounts of water, fertilizers, and pesticides to minimize resources and raise better and
healthier crops.

Particularly, crop disease diagnosis in a timely manner is important to prevent diseases
from spreading at an immature state and prevent economic damages to farmers. A large
team of experts and farmers can identify crop diseases based on the symptoms on the
leaves; however, this manual observation is time consuming and costly. In addition, it
is inefficient to continuously monitor all the crops on a large field area. Therefore, the
automatic detection of crop diseases is necessary.

With the rapid advance in computer vision enabled by deep learning, image-based
crop disease detection has garnered particular attention. Among deep learning models, the
deep convolutional neural network (DCNN) [1] has demonstrated powerful performance
for image classification and detection. Therefore, image-based approaches have been
actively studied using digital cameras built on autonomous agricultural vehicles for crop
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disease identification and detection. This study only deals with the identification and
detection of apple leaf diseases.

1.1. Related Works
1.1.1. Leaf Disease Identification

Conventionally, image-based leaf disease identification involves two steps: image
feature extraction and classifier learning. The first step is image feature extraction, which
refers to the process of describing the local image appearance for leaf disease detection and
the generation of image-level feature vectors. To characterize local leaf spot appearances,
popular feature extractions such as SIFT [2], LBP [3], sparse codes [4], and others [5],
including color histograms and entropy, can be applied. Subsequently, these features
are pooled and aggregated through Bag-of-words (BOW) [6] and Fisher vector encoding
(FVE) [7] to obtain image-level feature vectors. The second step is classifier learning to
find a hyperplane that can separate image-level feature vectors into classes. Given these
feature vectors, a support vector machine (SVM) [8,9], which is a data analysis tool, is
trained to classify leaf diseases. Certainly, other tools, such as decision trees [10], genetic
algorithms [11], and dictionary learning [12], can be utilized for leaf disease identification.

Recently, the DCNN has replaced a series of steps that consisted of handcrafted feature
designs, pooling, and classifier learning, because the DCNN can automatically learn generic
representations in a hierarchical manner for discriminative feature extraction. With the
emergence of the DCNN, a profound knowledge of feature design, feature pooling, and
classifier learning is not necessary, thereby rendering it easier for non-experts to handle
the leaf disease identification problems. If a new training dataset is provided, good
performance can be obtained through transfer learning (TL), which uses pretrained models
such as VGG [13] and ResNet [14], and subsequently updates the model’s parameters. A
large number of studies [15–21] have been performed based on TL during the past few
years for leaf disease identification.

More recently, attention networks [22], feature pyramid networks [23], and vision
transformer networks [24] have been actively studied. Attention networks [22] model
spatial and channel weighting maps, to emphasize the features in a particular area or
channel. Feature pyramid networks [23] utilize multiple feature maps with different scales
in the backbone, which refers to general-purpose feature extractors such as VGG and
ResNet, to be more robust to the object’s scale problem. Vision transformer networks [24]
replace the DCNN backbone as a convolution-free model, and employ a pure transformer
and pyramid transformer as a unified backbone for various vision tasks. A sequence of
patches is adopted as the input, which is different from conventional DCNNs. It has been
reported that vision transformer networks can be applied to many downstream tasks, while
outperforming traditional backbones.

1.1.2. Leaf Diseases Detection

Conventional object detection approaches can be adopted for leaf disease detec-
tion [25]. Unlike leaf disease identification, leaf disease detection requires both the category
and location of leaf diseases. Conventionally, two approaches have been adopted for object
detection. One is a sliding-window detector [26], and the other is a region proposal [27].
The sliding-window detector moves a window along a raster scanning direction, and deter-
mines whether the window contains leaf diseases. During the training phase, handcrafted
features such as histogram of gradients (HOG) [26], LBP [3], or SIFT [2] are extracted
from positive and negative samples. Subsequently, SVM [9,10] is trained for leaf disease
classification. In the test phase, the same feature extractor is applied repeatedly for each
sliding window, and the learned SVM determines whether leaf diseases are contained in
the window.

The region proposal is a technique for generating candidates (i.e., bounding boxes)
where leaf diseases may exist. It starts by generating superpixels [28], and merging them
with similar colors, sizes, and textures. Here, a superpixel is defined as a group of pixels that
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share common characteristics. Through bottom-up grouping, approximately a thousand
bounding boxes surrounding the superpixels before and after merging are generated.
Similarly to the sliding-window detector, handcrafted features such as SIFT and its variants
are generated for each bounding box, and the SVM classifier is trained. Selective Search [27]
and EdgeBoxes [29] are popular methods for region proposals.

Recent object detection technologies use pretrained models such as VGG [13] and
ResNet [14] as backbones for feature extractors. For each bounding box generated by
a region proposal, the pretrained models extract deep features through a layer-by-layer
transformation. The region-based CNN (RCNN) [30], which is the earliest model, adopts
this approach. Two stages are required: region proposal and classifier learning. In RCNN,
training is a multi-stage pipeline, and object detection is slow. To overcome these draw-
backs, a Fast RCNN [31] has been proposed. In this model, a multi-task loss is utilized
to jointly minimize class and bounding-box losses, and an ROI pooling layer is utilized
to transform each candidate into a fixed-sized feature map. This enables training to be
in a single stage. However, the region proposal is not separated from the Fast RCNN. To
conduct the region proposal in the feature domain, a region proposal network (RPN) [32]
has been proposed.

In addition to the RCNN series, there is another single-shot detector that treats object
detection as a single regression problem. YOLO [33] and SSD [34] are popular models.
Unlike the RCNN series, YOLO directly predicts bounding boxes from a full image. This
creates a high-speed and high-accuracy detector. Similar to YOLO, SSD is a single-shot
detector; however, it utilizes multiple features with different scales to handle various
objects in size. In addition, the SSD defines a set of default boxes with different aspect
ratios, which correspond to anchors in a Faster RCNN [32].

Recently, Mask RCNN [35] and Cascaded RCNN [36] have been introduced. Mask
RCNN extends the Faster RCNN by adding a new branch for instance segmentation. There-
fore, the Mask RCNN can simultaneously achieve localization and instance segmentation.
The Cascaded RCNN deals with a noisy detection problem, due to an intersection over
union (IOU) threshold. To address the limitation, the Cascaded RCNN trains a sequence of
detectors with increasing IOU thresholds. More details are provided in the literature [36].

1.2. Motivation

To the best of our knowledge, there are few deep-learning models specialized for
leaf disease identification and detection. Existing models such as VGG, ResNet, YOLO,
and Faster R-CNN are directly utilized, or with minor modifications. In other words,
the TL approach dominates leaf disease identification and detection [15–21,37,38]. Unlike
popular datasets such as ImageNet [1] and VOC2007 [26], which have been adopted
for conventional computer vision problems such as classification and object detection,
leaf disease datasets have characteristics in that there is a spatial region in which leaf
diseases exist.

Figure 1 illustrates an example of an apple leaf with diseases. Leaf diseases solely
exist in the leaves, whereas the background has no information about them. Therefore,
it is essential to find the spot area (i.e., the diseased area), and extract spot features to
identify leaf diseases. These spot features are informative and discriminative and play
a crucial role in leaf disease identification and detection. Based on this observation, this
study reveals how to extract informative and discriminative spot features from input leaf
images. A novel leaf spot attention network (LSA-Net), and attention-enhanced YOLO
(AE-YOLO) network equipped with an ROI-aware feature extractor, are proposed for leaf
disease identification and detection, respectively. The proposed networks incorporate a
leaf spot attention mechanism to find spot areas and encode spot information.
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1.3. Proposed Approach

Figure 2 depicts the difference between traditional approaches [5,9,39] and the pro-
posed networks for leaf disease identification and detection. As shown in Figure 1, the
traditional approach includes three steps, i.e., clustering, feature extraction, and classifier
learning. First, the clustering step divides the input image into background and spot areas,
and two types of features are extracted from the divided areas via a feature extraction step.
Next, the classifier is trained using machine learning tools such as SVM and decision trees.
However, this traditional approach has a few drawbacks. The first drawback is that the
colors and textures used for clustering and feature extraction are handcrafted features,
which are not better than deep features in terms of the discriminative power because deep
learning can provide abundant features via a layer-by-layer nonlinear transformation. The
second drawback is that the employed classifiers, such as SVM and decision trees, are not
better than deep learning in terms of classification performance.
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To overcome the shortcomings of traditional approaches, the proposed method incor-
porates the three steps into a single deep learning architecture. Inspired by conventional
approaches, the clustering and feature extraction are replaced by the ROI-aware feature
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extraction subnetwork (ROI-aware FES), and the classifier learning is replaced by the
SAC-SubNet or YOLO detection subnetwork, as illustrated in Figure 2. For leaf disease
identification, ROI-aware FES and SAC-SubNet are adopted. The entire network that
comprises the ROI-aware FES and SAC-SubNet is referred to as LSA-Net. For leaf disease
detection, the ROI-aware FES and YOLO detection subnetwork are adopted, and this
detection network is referred to as the AE-YOLO network.

The primary idea of the proposed networks is based on the observation that symptoms
of leaf diseases can solely be detected in the leaf area. To realize this, the ROI-aware FES,
which is a new spot feature extractor, is designed, and the ROI-aware feature fusion is
proposed to model the leaf spot attention mechanism. The ROI-aware FES predicts a leaf
segmentation map, and subsequently encodes spot information. The ROI-aware feature
fusion combines two features provided by the feature extractors, that is, the backbone
and ROI-aware FES. This feature fusion models the leaf spot attention mechanism, and
increase the discriminative power. The ROI-aware FES and feature fusion can teach the
SAC-SubNet and YOLO detection subnetwork regarding which areas and features have a
decisive role in classifying and localizing leaf diseases. Therefore, the proposed ROI-aware
FES and feature fusion can be viewed as attention mechanisms [22,24]. Owing to the leaf
spot attention enabled by the ROI-aware FES and feature fusion, the proposed networks
can improve leaf disease identification and detection.

Although deep learning approaches [15–21,37,38] have been recently introduced,
existing models, such as VGG and ResNet, have been directly utilized for leaf disease
identification and detection. That is, TL dominates. However, this approach has limitations
in improving the discriminative power, because these models exclude the leaf spot attention
mechanism to extract informative features from leaf images. This is the major difference
between the proposed network and conventional transfer learning-based deep learning.

1.4. Contributions

• This paper is an updated version of the previous work published in the IEEE CVPR
workshop [40]. The previous work revealed that the proposed ROI-aware FES is very
effective in improving leaf disease identification performance. In this line of research,
it is interesting that the proposed ROI-aware FES can also be applied to leaf disease
detection. Therefore, in this paper, we illustrate how to incorporate the proposed
ROI-aware FES, that is, a new spot feature extractor, into the conventional YOLO
framework. The advanced YOLO model that incorporates the ROI-aware FES and
feature fusion is referred to as AE-YOLO in this study. In addition, it is revealed that
the proposed AE-YOLO can improve leaf disease detection and surpass state-of-the-
art object detection models. The proposed AE-YOLO is also expected to be applicable
not only for the detection of apple leaf diseases, but also for the detection of pests and
diseases in other crops.

• To the best of our knowledge, this study is the first attempt to introduce a novel
deep learning architecture that considers the leaf spot attention mechanism and is
applicable for both leaf disease identification and detection. Until now, existing models
such as VGG, ResNet, and YOLO have been adopted for leaf disease identification
and detection [15–21,37,38]. However, in the proposed architecture, a new ROI-
aware FES and feature fusion are introduced to find spot areas and encode spot
information. The major contribution is to show a novel deep learning architecture that
can incorporate the leaf spot attention mechanism based on the ROI-aware FES into
existing classification and detection models.

• Previous studies have targeted leaf images with a single background color and a
single leaf [17,21]. These images are simple, and good results can be obtained by
applying only TL. However, in this study, more complicated images are tested. In
other words, the background has few branches and leaves. This is a much more
challenging problem. The leaf disease dataset adopted in this study will be open to
the public for research purposes.
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• This study reveals how to incorporate the conventional approach [5,9,39] (including
three steps, i.e., clustering, feature extraction, and classifier learning) into a single
deep learning architecture. In the proposed networks, the clustering and feature ex-
traction steps are replaced by the proposed ROI-aware FES, and the classifier learning
is replaced by the SAC-SubNet or YOLO detection subnetwork. The major difference
between the proposed method and the conventional approach is that the proposed
method performs three steps simultaneously. In addition, unlike conventional clus-
tering [39], which might fail to extract spot colors from leaf images because of the
similarity in their background and spot colors, the proposed method incorporates the
clustering algorithm into the deep learning architecture; thus, more accurate feature
clustering can be obtained.

2. Proposed Networks
2.1. Proposed LSA-Net for Leaf Disease Identification

Symptoms can be detected only in the leaf area, whereas the background region
contains no information regarding leaf diseases. Therefore, the additional use of the ROI
features that contain the leaf, background, and spot information can teach the SAC-SubNet
regarding which features are more important and which features should have a decisive
role in classifying leaf diseases. Hence, an additional subnetwork to extract the spot features
from input leaf images is designed and subsequently combined with the SAC-SubNet.

Figure 3 illustrates the proposed LSA-Net for identifying apple leaf diseases. The
proposed architecture consists of two subnetworks: ROI-aware FES and SAC-SubNet. First,
the ROI-aware FES is a feature extraction network comprising two modules. One is the
leaf segmentation module, and the other is the spot feature encoding module. The leaf
segmentation module divides an input leaf image into background, leaf, and spot areas.

J = fθseg
(I) (1)

where fθseg is the learnable function with the parameter θseg for the leaf segmentation
module. I and J denote the input leaf image and segmented feature map, respectively. The
architecture of the fθseg is a fully convolutional network (FCN), developed for semantic
segmentation [41]. In the leaf segmentation module, the cropping layer applies two-
dimensional cropping to the input feature maps. Two input feature maps are required.
One is to be cropped, and the other is the reference to determine the size of the cropped
feature map. The transposed convolution layer applies the transposed convolution to the
input feature maps for up-sampling, and ⊕ indicates the addition layer that adds the input
feature maps by element.

The spot feature encoding module maps the segmented feature map J into a spot
feature vector v.

v = fθenc(J) (2)

where fθenc is the learnable function for the spot feature encoding module, and is composed
of pooling and fully connected layers. The segmented feature map, J, is high-dimensional
and contains spatial information. However, the spot feature vector, v, is low-dimensional
and has no spatial information. This means that the spot information contained in J is
encoded into the low-dimensional vector v.
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Second, the SAC-SubNet is a classification network and is an advanced version of
the existing VGG model, equipped with ROI-aware feature fusions to reflect the leaf spot
attention mechanism. In SAC-SubNet, there are two ROI-aware feature fusions. One is
early fusion, and the other is later fusion. As mentioned in the previous paragraph, the two
features J and v have different spatial information and dimensions. Therefore, the features
J and v are utilized for early and later fusions, respectively.

Fearly = fc(J, I) (3)

Flater = fc

(
v, f (i)θvgg

(
I, Fearly

))
(4)

where fc is the function for the early and later fusions. In the LSA-Net, simple concatenation
is adopted for the function, which indicates that fc has no parameters to be updated.
Even though another attention model, such as scaled dot-product attention [42], can be
considered, our experiment revealed that concatenation provides better performance than
scaled dot-product attention. Early fusion is indicated on the left side of SAC-SubNet.
Because the function fc is defined as the concatenation, the segmented feature map J is
stacked on top of the input leaf image I. In Equation (3), Fearly = [I; J] is the early fusion
result. Here, a semicolon (;) is utilized to indicate a new row in the matrix. The later
fusion is indicated at the center right of the SAC-SubNet. The later fusion concatenates two
features v and f (i)θvgg

, as expressed in Equation (4), where f (i)θvgg
denotes the output feature

maps of the ith layer of the VGG model. In this study, the VGG16 model was adopted for
SAC-SubNet. In Equation (4), it is noted that f (i)θvgg

takes two inputs, I and Fearly, which is
different from the conventional VGG model. In addition, the later fusion function fc is
incorporated into the VGG architecture. Through the later fusion, two types of high-level
features v and f (i)θvgg

are fused. This enables a spot-aware classification.
The proposed ROI-aware FES provides spot areas and encoded spot features, which

are fed into the SAC-SubNet through early and later fusions to complete the entire network



Appl. Sci. 2021, 11, 7960 8 of 17

to be trained in an end-to-end manner. Therefore, the ROI-aware FES is a novel spot
feature extractor that encodes spot information, and subsequently teaches the SAC-SubNet
regarding which areas and features should have a decisive role in classifying leaf diseases.
The ROI-aware FES serves as a guide to achieve more accurate leaf disease identification.
Because the spot features are utilized in SAC-SubNet, the leaf spot attention mechanism is
reflected. Even though spatial and channel weight maps are not designed like other atten-
tion models in [22,42,43], our experiment revealed that simple concatenation is sufficient to
develop a leaf spot attention mechanism and improve leaf disease identification.

The architecture of the ROI-aware FES in Figure 3 is inspired by semantic segmentation
in [41]. Even though the proposed ROI-aware FES includes the leaf segmentation module,
the goal of this study is different from that in [41]; in other words, our goal is not to
divide the input image into multiple regions, but to encode spot features and achieve apple
leaf disease identification. Naturally, the proposed architecture is different from those
of TL-based methods [15–21] because two types of subnetworks are connected to create
a whole network that is subsequently trained in an end-to-end manner. In other words,
conventional TL-based methods do not include the ROI-aware FES. If the ROI-aware
FES and ROI-aware feature fusion are removed from Figure 3, the proposed architecture
becomes identical to the conventional VGG network. Therefore, whether recognition
accuracy can be increased must be verified by comparing the performance between the
proposed LSA-Net and the conventional VGG network [13].

2.2. Proposed Attention-Enhanced YOLO Network for Leaf Disease Detection

It is unclear whether the proposed ROI-aware FES can also be applied for leaf disease
detection. Unlike leaf disease identification, leaf disease detection requires localization.
To realize this, a new AE-YOLO model is proposed, as illustrated in Figure 4. It is well
known that the existing YOLO model [33] consists of a feature extractor and detection
subnetwork. However, this YOLO model excludes leaf spot attention mechanisms; thus, it
lacks the ability to find spot areas that are spatially important and extract informative spot
features. To complement this, the leaf spot attention mechanism needs to be incorporated
into the YOLO network. As illustrated in Figure 4, the proposed AE-YOLO model contains
ROI-aware FES and ROI-aware feature fusion.
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In the proposed AE-YOLO model, there are two branches for feature extraction, as
illustrated in Figure 4. The first is the YOLO feature extractor, which is also called a
backbone and is required for object detection models. Various image classification models,
such as VGG [13] and ResNet [14], have been adopted for the backbone.

Fyolo = f (i)θyolo
(I) (5)
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f (i)θyolo
denotes the ith layer of the YOLO feature extractor, and Fyolo indicates the output

feature maps.
The second is ROI-aware FES. As illustrated in Figure 4, the ROI-aware FES is com-

posed of two modules: a leaf segmentation module and a spot feature encoding module.
Similar to the LSA-Net, the leaf segmentation module divides the input leaf image into
background, leaf, and spot areas, and the spot feature encoding module transforms a
high-dimensional segmented feature map into a low-dimensional feature vector to encode
spot information and increase the representation power. The architecture of the leaf seg-
mentation module is identical to that of LSA-Net. For simplicity, the spot feature encoding
module has only convolution blocks. The output feature maps of the spot feature encoding
module should have a size similar to Fyolo.

Froi = fθroi (I) (6)

where fθroi indicates the ROI-aware FES, and Froi denotes the output feature maps of fθroi .
In the proposed AE-YOLO model, the ROI-aware feature fusion is also required to

combine the two types of features: Fyolo and Froi. Unlike the LSA-Net that uses only a
concatenation layer for ROI-aware feature fusion, our proposed AE-YOLO network adds
more convolution blocks, as shown in Figure 5. To implement the spot-feature-guided
attention model, the two features Fyolo and Froi are first fused through the concatenation
layer and subsequently passed through several convolution blocks.

Fa = fc

(
Froi, Fyolo

)
(7)
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Here, fc is the function for the ROI-aware feature fusion, and Fa denotes the fused
feature maps after applying the function fc. In other words, Fa is the output of the last
concatenation layer in Figure 5. This fused feature map Fa is fed into the YOLO detection
subnetwork, as shown in Figure 4.

The architecture shown in Figure 5 is similar to the attention model used in SqueezeNet [43].
The only difference is that the proposed method uses two types of features, Fyolo and Froi,
as inputs for more effective leaf spot attention modeling. In other words, the additional
information on the spot features Froi can serve as a guide to reinforce the leaf spot attention
function. In Figure 5, the filter sizes used in the convolution layers are 1 × 1 and 3 × 3,
which are used to model the channel and spatial attention, respectively. More details for
channel and spatial attention layers are provided in Ref. [43].

In the proposed AE-YOLO model, there are two types of feature extractors. One is the
YOLO feature extractor, and the other is the ROI-aware FES. The YOLO feature extractor
can produce abundant features; however, it lacks the ability to determine spot areas. ROI-
aware FES can provide more informative spot features. Therefore, the ROI-aware feature
fusion can improve the discriminative power for better classification, which eventually
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leads to an improvement in the object detection accuracy. The ROI-aware feature fusion
can be regarded as a simple attention mechanism because it can teach the YOLO detection
subnetwork which areas and features are more crucial for leaf disease detection. More
details on the YOLO detection subnetwork and loss function are provided in [33].

3. Experiments

The proposed LSA-Net and AE-YOLO networks were implemented using MATLAB,
and trained with four Titan-XP GPUs on a Windows operating system. Two experiments
were conducted in this study. One was leaf disease identification, and the other was leaf
disease detection. Leaf disease identification is to predict label values corresponding to leaf
diseases from input leaf images, and leaf disease detection is to determine the bounding
boxes surrounding diseased leaves. First, to compare the performance of the leaf disease
identification, state-of-the-art classification models, that is, VGG [13], ResNet [14], and
SqueezeNet [43], feature pyramid network (FPN) [23], attention gated network (AGN) [22],
and pyramid vision transformer (PVT) [24] were tested. Second, to compare the perfor-
mance of the leaf disease detection, state-of-the-art detection models such as YOLO [33],
RCNN [30], Fast RCNN [31], RetinaNet [44], and Faster RCNN [32] were tested. For
quantitative evaluation, the correct recognition accuracy (CRC) [40] and mean averaged
precision (mAP) [30] were calculated. The dataset and source codes of the proposed LSA-
Net and AE-YOLO can be downloaded at https://github.com/cvmllab/ (accessed on 27
August 2021).

3.1. Image Collection

All apple leaf images used in this study were provided by the Apple Research Institute
in our country. The apple leaf images were categorized into three groups, according to
two types of leaf diseases and normal leaf. Figure 6 shows examples of apple leaf images.
The first row shows normal leaf images, and the second and third rows show diseased
leaf images. Particularly, for the diseased leaf images with marssonina blotch, as shown in
the second row, the blotch colors are similar to the normal leaf colors in the background.
Therefore, the color-based clustering algorithm [39] might fail to extract the blotch colors
from the normal leaves. This reveals that the leaf areas, background, and spot area must be
divided. In addition, a real environment was considered to some degree, in that the leaf
images were more complicated in the background than those tested in [17,21,39], where
the background colors were nearly solid. In our database, the total numbers of normal
leaf images, diseased leaf images with marssonina blotch, and diseased leaf images with
alternaria leaf spot were 558, 2281, and 896, respectively.

3.2. Leaf Segmentation Module Training

Before training the entire network in an end-to-end manner, the leaf segmentation
module was pretrained, as illustrated in Figures 3 and 4. Ground truth segmentation
maps are required to train the leaf segmentation module. In this study, ground truth
segmentation maps were generated manually through image editing to divide them into
three areas: background, leaf area, and spot area. During image editing, the leaves without
diseases were classified by background in the image, and those with diseases were classified
by leaf area in the image. This simplifies the labeling process. Given the ground truth
segmentation maps, the leaf segmentation module was trained via mini-batch gradient
descent optimization [45].

https://github.com/cvmllab/
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3.3. Entire Network Training

The pretrained leaf segmentation module was adopted to train the LSA-Net and AE-
YOLO networks. First, in the case of LSA-Net, the last loss layer of the leaf segmentation
module is removed, and the spot feature encoding module is added to the back of the
segmentation module, to construct the ROI-aware FES. Subsequently, the ROI-aware FES is
connected with the SAC-SubNet through early and later ROI-aware feature fusions, thereby
forming the entire network, as illustrated in Figure 3. Second, the proposed AE-YOLO
network also requires a pretrained leaf segmentation module, as illustrated in Figure 4.
Similar to the LSA-Net, the pretrained leaf segmentation module without the loss layer
is added to the spot feature encoding module to form the ROI-aware FES. Subsequently,
the entire network is constructed by incorporating the ROI-aware FES into the YOLO
framework. The two entire networks were trained in an end-to-end manner. Therefore, the
leaf segmentation module changes its pretrained parameters to be adopted for a new task.
In other words, the predicted segmentation map is adjusted during the entire network
training, for more accurate leaf disease identification and detection.

It is worthwhile to check the output feature map of the leaf segmentation module.
Figure 7 compares the ground truth segmentation maps and the predicted segmentation
feature maps. The predicted segmentation feature maps were extracted from the trained
LSA-Net. In Figure 7, it is noted that the predicted segmentation feature maps still possess
discriminative features for different areas, that is, background, leaf area, and spot area.
In particular, it is observed that the spot areas in the leaves have blue colors, which are
clearly distinguishable from the background’s red colors, and the leaves’ green colors. This
indicates that the leaf segmentation module can provide discriminative features. There
are a few segmentation errors in the predicted segmentation feature maps. However, the
ultimate objective of this study is not accurate segmentation, but leaf disease identification
and detection. This implies that the leaf segmentation module is sufficient to serve as a
guide to achieve more accurate leaf disease identification and detection. For reference, the
mean accuracy of the leaf segmentation module, defined as the ratio of correctly classified
pixels to total pixels for each class, is approximately 86%, and the mean intersection over
union (IoU), also known as the Jaccard similarity coefficient, is approximately 69% [46].
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3.4. Performance Comparison
3.4.1. Leaf Disease Identification

Table 1 presents the CRC results for the proposed method and conventional state-of-
the-art methods. In Table 1, all networks, including VGG, ResNet, FPN, AGN, SqueezeNet,
and PVT, were initialized with the pretrained parameters with an ImageNet dataset, and
TL was applied to each network with a new apple leaf dataset. Except for PVT, FPN,
and AGN, library functions of MATLAB (2021a) were used to train the conventional
classification models: VGG, ResNet, and SqueezeNet. The optimizer used was stochastic
gradient descent (SGD) [45] with momentum. The epoch number was 30, and the batch
size was set to 10. The learning rate was 0.001, and the momentum term was set to 0.9.
The regularization term was `2-norm, and its weight was set to 0.0001. For more detailed
parameter settings, please refer to the author’s source code. For the PVT, the open-source
code provided by the author in [24] was used with the default setting. AGN and FPN were
implemented using MATLAB’s layer functions. Therefore, the same training parameters
were used for the conventional and proposed models, except for PVT.

Table 1. Performance evaluation for leaf disease identification.

Methods CRC (%)

VGG16 [13] 90.19

ResNet50 [14] 87.87

Attention Gated Network (AGN) [22] 87.69

Feature Pyramid Network (FPN) [23] 88.58

SqueezeNet [43] 92.24

Pyramid Vision Transformer (PVT) [24] 93.70

Proposed LSA-Net 96.07

In Figure 3, if the ROI-aware FES and ROI-aware feature fusion are excluded from the
LSA-Net, the proposed architecture becomes identical to the conventional VGG network.
Therefore, it should be checked whether CRC can be improved with additional ROI-aware
FES and ROI-aware feature fusion. In Table 1, by comparing the proposed LSA-Net and
VGG16, it is known that the additional use of the ROI-aware FES and feature fusion
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increased the CRC value by approximately 6%. This reveals that the ROI-aware FES and
feature fusion can teach the SAC-SubNet regarding which areas and features should have
a decisive role in classifying apple leaf diseases. The ROI-aware FES and feature fusion
served as a guide for a more accurate leaf disease identification. In addition, the proposed
LSA-Net demonstrated the best performance among all the methods.

Although VGG and ResNet can be adopted for the identification of leaf diseases, these
models have limitations in improving the discriminative power because they do not model
leaf spot attention mechanisms to extract discriminative and informative features from leaf
images. In contrast, the SqueezeNet and PVT include attention mechanisms such as spatial
and channel attention; thus, their CRC values are higher than those of VGG and ResNet.
However, their performance is not better than that of the proposed LSA-Net because the
SqueezeNet and PVT are self-attention vision models, which means that these networks
do not utilize side information such as leaf segmentation and gradient maps. However,
the proposed LSA-Net models the leaf spot attention mechanism based on the predicted
leaf segmentation to extract spot features. This result confirms that the proposed leaf
spot attention model is more effective than the self-attention vision model for leaf disease
identification. The AGN is also a self-attention vision model; however, its performance is
not better than that of SqueezeNet or PVT. Originally, the AGN was designed for medical
image analysis, and it seems that the AGN is not suitable for leaf disease identification. In
Table 1, the FPN adopted ResNet50 as the backbone. The main difference between FPN
and ResNet50 is the pyramidal feature hierarchy, which has semantics from low to high
levels. From Table 1, it is observed that the application of pyramidal feature hierarchy
slightly increases the CRC value.

3.4.2. Leaf Disease Detection

Table 2 presents the mAP results for the proposed AE-YOLO and conventional object
detection models. In Table 2, the conventional detection models, including the RCNN series
and YOLO, selected ResNet50 as the backbone. Except for RetinaNet, library functions of
MATLAB (2021a) were used with the same parameter settings to train the conventional
object detection models. The optimizer used was SGD [45] with momentum. The epoch
number was 100, and the batch size was 4. The learning rate was 0.001, and the momentum
term was set to 0.9. The regularization term to prevent overfitting was `2-norm, and its
weight was set to 0.0001. The data augmentation technique, including contrast, saturation,
and brightness, was applied to increase the training data and prevent overfitting. For more
detailed parameter settings, please refer to the author’s source code. For RetinaNet, the
default settings provided by the source code in [24] were used. The backbone used in
RetinaNet was PVT.

Table 2. Performance evaluation for leaf disease detection.

Methods AP (%) (Marssonina) AP (%) (Alternaria) mAP (%)

RCNN [30] 17.66 23.70 20.70

Fast RCNN [31] 46.10 38.00 42.10

Faster RCNN [32] 50.01 44.90 47.50

RetinaNet [44] 54.60 40.20 47.40

YOLO [33] 38.70 31.60 35.10

Proposed attention-enhanced YOLO
(ResNet50) 54.30 47.40 50.80

Proposed attention-enhanced YOLO
(VGG16) 55.00 42.40 48.70

Proposed attention-enhanced YOLO
(SqueezeNet) 51.10 47.60 49.40
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Similarly to the LSA-Net, it should be checked whether the use of the ROI-aware FES
and ROI-aware feature fusion can lead to improvements in object detection accuracy. In
Figure 4, if the ROI-aware FES and feature fusion are removed, the proposed AE-YOLO
becomes identical to the conventional YOLO. By comparing the AP values of the proposed
AE-YOLO and conventional YOLO in Table 2, it is known that the proposed AE-YOLO
increases the AP value by 15.7% compared to the conventional YOLO. This result confirms
that the ROI-aware FES and feature fusions have a significant effect on improving object
detection performance.

In the last three rows of Table 2, the round bracket indicates the backbone adopted. In
the proposed architecture illustrated in Figure 4, various feature extractors can be adopted
for the backbone. In this study, three types of feature extractors, ResNet50, VGG16, and
SqueezeNet, were tested. The last three rows indicate that the AP values depend on the
backbone adopted, and ResNet is the best among the three feature extractors. This indicates
that the feature extractors affect the final object detection performance. In the proposed
AE-YOLO network, the ROI-aware FES is another feature extractor for spot detection.
This ROI-aware FES can enhance the discriminative power of the YOLO feature extractor
through ROI-aware feature fusion. This is the reason why the proposed AE-YOLO is
superior to the conventional object detection models.

In Table 2, it is noted that Fast RCNN and Faster RCNN are not better than the
proposed AE-YOLO. The Fast RCNN and Faster RCNN utilize region proposal, whereas
the proposed AE-YOLO adopts an additional spot feature extractor, that is, ROI-aware FES.
This result indicates that the ROI-aware FES is more effective in improving leaf disease
detection than the region proposal. As shown in Table 2, the mAP of RetinaNet was 47.40,
and its performance was comparable to that of the Faster RCNN. It is generally known that
single-shot detectors are less accurate than two-stage detectors (e.g., Faster RCNN).

Figure 8 illustrates the predicted bounding boxes with the proposed AE-YOLO. As
illustrated in the figures, the proposed AE-YOLO can detect diseased leaves properly.
However, the diseased leaves were not discovered in the proposed network. In particular,
when the leaves are small or covered by other leaves, and when the spot area is not clearly
visible, false detection occurs. Since the leaves vary in size, and the occlusion problem is
severe, leaf disease detection is more challenging than conventional object detections such
as faces, cars, and pedestrians. Accordingly, the overall mAP values were low compared to
those in [32].
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4. Conclusions

Novel leaf-spot attention networks for leaf disease identification and detection were
introduced in this study. To improve the performance of leaf disease identification and
detection, it is necessary to develop a novel ROI-aware feature extractor that can find spot
areas from leaf images and encode semantic spot information. Based on the observation
that leaf diseases exist in the leaf area, the ROI-aware feature extractor was designed to have
two modules: leaf segmentation and spot feature encoding. First, the leaf segmentation
module was pretrained to determine spot areas, then the spot feature encoding module
was applied to extract informative spot features. Next, the ROI-aware feature extractor was
connected to the ROI-aware feature fusion layer to model the leaf spot attention mechanism,
and to be joined with the SAC-SubNet or YOLO detection subnetwork. During the entire
network training, the ROI-aware feature extractor could teach the SAC-SubNet and YOLO
detection subnetwork which areas and features should have a decisive role in classifying
and localizing leaf diseases. The experimental results confirmed that the ROI-aware feature
extractor and feature fusion can increase the performance of leaf disease identification
and detection by boosting the discriminative power of spot features. It was also revealed
that the proposed LSA-Net and AE-YOLO are superior to state-of-the-art deep learning
models. In the future, we will test whether the proposed method can be extended to other
applications such as pest detection and tomato leaf disease identification.
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