System-Analytical Method of Earthquake-Prone Areas Recognition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recognition of the Areas Prone to Strong Earthquakes with One Learning Class
2.2. Recognition of Strong Earthquake-Prone Areas Based on Identifying Dense Condensations of Point Objects
- (a)
- flat set is obtained for , given the fixed values of free parameters ,
- (b)
- flat set contains high seismicity objects as points in the plane, i.e., , and
- (c)
- the epicenters of known strong earthquakes (M ≥ M0) are located inside or at the borders of zones . That said, given possible errors in the identification of historic epicenters, they can be located near the borders .
3. Results
3.1. Variable EPA Method
3.2. FCAZ Recognition of the Strongest Earthquake-Prone Areas
3.3. FCAZ Recognition of the Areas Prone to Strong and Significant Earthquakes for One and Several Threshold Magnitudes
4. Discussion
4.1. Justification of Reliability of FCAZ Recognition Results
4.2. FCAZ Recognition as the Problem of Advanced Systems Analysis
- is the finite set of recognition objects (the epicenters of earthquakes with M ≥ MR) at the moment , ;
- denotes certain coverage of the considered region by square objects, on which the E2XT algorithm works;
- is a set of values of free parameters of FCAZ selected for an optimal recognition at the moment ;
- and are the subsets of objects classified as high seismicity and low seismicity ones, respectively, i.e., the objects are fairly close, and the objects are fairly distant from known and potential areas prone to strong earthquakes, , .
5. Conclusions
- Barrier-3—the Altai–Sayan–Baikal region (M ≥ 6.0) and the Caucasus (M ≥ 6.0).
- FCAZ—mountain belt of the South American Andes (M ≥ 7.75), the Pacific Coast of the Kamchatka Peninsula (M ≥ 7.75), and the Kuril Islands (M ≥ 7.75); California (M ≥ 6.5); the Baikal–Transbaikal region (M ≥ 5.5, M ≥ 5.75, M ≥ 6.0); the Altai–Sayan region (M ≥ 5.5); the Caucasus (M ≥ 5.0); the Crimean Peninsula and northwestern Caucasus (M ≥ 4.5, M ≥ 5.0).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ANSS | Advanced National Seismic System |
Barrier-3 | Pattern recognition algorithm with one learning class |
Cora-3 | Pattern recognition algorithm with two learning classes (the most common dichotomy algorithm in the EPA approach) |
DMA | Discrete Mathematical Analysis |
DPS | Discrete Perfect Sets (algorithm in the structure of the FCAZ method) |
E2XT | Extension (algorithm in the structure of the FCAZ method) |
EPA | Earthquake-Prone Areas |
FCAZ | Formalized Clustering and Zoning |
MSZ | Morphostructural zoning |
SFCAZ | Successive Formalized Clustering and Zoning |
Top 3 | Rank of three strongest characteristics in Barrier-3 algorithm |
M | Magnitude |
M0 | Magnitude threshold of strong earthquakes |
MR | Magnitude threshold, starting from which the epicenters were used as recognition objects in FCAZ method |
References
- Gelfand, I.M.; Guberman, S.; Izvekova, M.L.; Keilis-Borok, V.I.; Ranzman, E.I. Criteria of high seismicity determined by pattern recognition. Tectonophysics 1972, 13, 415–422. [Google Scholar] [CrossRef]
- Gelfand, I.M.; Guberman, S.A.; Izvekova, M.L.; Keilis-Borok, V.I.; Rantzman, E.Y. On the criteria of high seismicity. Dokl. Akad. Nauk SSSR 1972, 202, 1317–1320. (In Russian) [Google Scholar]
- Gorshkov, A.; Novikova, O. Estimating the validity of the recognition results of earthquake-prone areas using the ArcMap. Acta Geophys. 2018, 66, 843–853. [Google Scholar] [CrossRef]
- Gvishiani, A.D.; Gorshkov, A.I.; Rantsman, E.Y.; Cisternas, A.; Soloviev, A.A. In Recognition of Earthquake-Prone Areas in the Regions of Moderate Seismicity; Nauka: Moscow, Russia, 1988; 176p. (In Russian) [Google Scholar]
- Gvishiani, A.D.; Soloviev, A.A.; Dzeboev, B.A. Problem of Recognition of Strong-Earthquake-Prone Areas: A State-of-the-Art Review. Izv. Phys. Solid Earth 2020, 56, 1–23. [Google Scholar] [CrossRef]
- Kossobokov, V.G.; Soloviev, A.A. Pattern recognition in problems of seismic hazard assessment. Chebyshevskii Sb. 2018, 19, 55–90. (In Russian) [Google Scholar] [CrossRef]
- Soloviev, A.A.; Gvishiani, A.D.; Gorshkov, A.I.; Dobrovolsky, M.N.; Novikova, O.V. Recognition of earthquake-prone areas: Methodology and analysis of the results. Izv. Phys. Solid Earth 2014, 50, 151–168. [Google Scholar] [CrossRef]
- Alekseevskaya, M.; Gabrielov, A.; Gelfand, I.; Gvishiani, A.; Rantsman, E. Formal morphostructural zoning of mountain territories. Geophysics 1977, 42, 227–233. [Google Scholar]
- Gabrielov, A.M.; Gorshkov, V.I.; Rantsman, E.Y. The experience of morphostructural zoning based on formalized features. In Recognition and Spectral Analysis in Seismology, 10 of Computational Seismology; Keilis-Borok, V.I., Ed.; Nauka: Moscow, Russia, 1977; pp. 50–58. (In Russian) [Google Scholar]
- Gorshkov, A.I.; Soloviev, A.A.; Zharkikh, Y.I. A Morphostructural Zoning of the Mountainous Crimea and the Possible Locations of Future Earthquakes. J. Volcanol. Seismol. 2017, 11, 407–412. [Google Scholar] [CrossRef]
- Rantsman, E.Y. Locations of Earthquakes and Morphological Structure of Mountain Countries; Nauka: Moscow, Russia, 1979; 172p. (In Russian) [Google Scholar]
- Rantsman, E.Y.; Glasko, M.P. Morphostructural Nodes are Locations of Extreme Natural Phenomena; Media-Press: Moscow, Russia, 2004; 224p. (In Russian) [Google Scholar]
- Gvishiani, A.D.; Agayan, S.M.; Dzeboev, B.A.; Belov, I.O. Recognition of Strong Earthquake–Prone Areas with a Single Learning Class. Dokl. Earth Sci. 2017, 474, 546–551. [Google Scholar] [CrossRef]
- Gvishiani, A.D.; Gurvich, V.A. Dynamical Problems of Classification and Convex Programming: Applications; Nauka: Moscow, Russia, 1992; 360p. (In Russian) [Google Scholar]
- Gvishiani, A.D.; Gurvich, V.A. Time stability of a prediction of sites of strong earthquakes: II. The eastern part of Central Asia. Izv. Phys. Solid Earth 1983, 18, 665–671. [Google Scholar]
- Dzeboev, B.A.; Gvishiani, A.D.; Belov, I.O.; Agayan, S.M.; Tatarinov, V.N.; Barykina, Y.V. Strong Earthquake-Prone Areas Recognition Based on an Algorithm with a Single Pure Training Class: I. Altai-Sayan-Baikal Region, M ≥ 6.0. Izv. Phys. Solid Earth 2019, 55, 563–575. [Google Scholar] [CrossRef]
- Dzeboev, B.A.; Soloviev, A.A.; Dzeranov, B.V.; Karapetyan, J.K.; Sergeeva, N.A. Strong earthquake-prone areas recognition based on the algorithm with a single pure training class. II. Caucasus, M ≥ 6.0. Variable EPA method. Russ. J. Earth Sci. 2019, 19, ES6005. [Google Scholar] [CrossRef]
- Gvishiani, A.D.; Soloviev, A.A. On the concentration of major earthquakes round the interactions of morphostructural lineaments in South America. In Computational Seismology, 13: Interpretation of Seismological Data: Methods and Algorithms; Keilis-Borok, V.I., Levshin, A.L., Eds.; Allerton: New York, NY, USA, 1981; pp. 42–48. [Google Scholar]
- Soloviev, A.A.; Krasnoperov, R.I.; Nikolov, B.P.; Zharkikh, J.I.; Agayan, S.M. Web-Oriented Software System for Analysis of Spatial Geophysical Data Using Geoinformatics Methods. Izv. Atmos. Ocean Phys. 2018, 54, 1312–1319. [Google Scholar] [CrossRef]
- Soloviev, A.A.; Gvishiani, A.D.; Nikolov, B.P.; Nikolova, Y.I. GIS-Oriented Database on Seismic Hazard Assessment for Caucasian and Crimean Regions. Izv. Atmos. Ocean Phys. 2018, 54, 1363–1373. [Google Scholar] [CrossRef]
- Gvishiani, A.D.; Dzeboev, B.A.; Agayan, S.M. FCAZm intelligent recognition system for locating areas prone to strong earthquakes in the Andean and Caucasian mountain belts. Izv. Phys. Solid Earth 2016, 52, 461–491. [Google Scholar] [CrossRef]
- Gvishiani, A.; Dzeboev, B.; Agayan, S. A new approach to recognition of the earthquake-prone areas in the Caucasus. Izv. Phys. Solid Earth 2013, 49, 747–766. [Google Scholar] [CrossRef]
- Agayan, S.M.; Bogoutdinov, S.R.; Gvishiani, A.D.; Kagan, A.I. Smoothing of time series by the methods of discrete mathematical analysis. Russ. J. Earth Sci. 2010, 11, RE40001. [Google Scholar] [CrossRef]
- Agayan, S.M.; Bogoutdinov, S.R.; Krasnoperov, R.I. Short introduction into DMA. Russ. J. Earth Sci. 2018, 18, ES2001. [Google Scholar] [CrossRef] [Green Version]
- Agayan, S.M.; Tatarinov, V.N.; Gvishiani, A.D.; Bogoutdinov, S.R.; Belov, I.O. FDPS algorithm in stability assessment of the Earth’s crust structural tectonic blocks. Russ. J. Earth Sci. 2020, 20, ES6014. [Google Scholar] [CrossRef]
- Bogoutdinov, S.R.; Agayan, S.M.; Gvishiani, A.D.; Graeva, E.M.; Rodkin, M.V.; Zlotnicki, J.; Le Mouel, J.L. Fuzzy logic algorithms in the analysis of electrotelluric data with reference to monitoring of volcanic activity. Izv. Phys. Solid Earth 2007, 43, 597–609. [Google Scholar] [CrossRef]
- Gvishiani, A.D.; Agayan, S.M.; Bogoutdinov, S.R. Discrete mathematical analysis and monitoring of volcanoes. Inzhenernaya Ekol. 2008, 5, 26–31. (In Russian) [Google Scholar]
- Gvishiani, A.D.; Agayan, S.M.; Bogoutdinov, S.R. Mathematical Methods of Geoinformatics. I. A New Approach to Clusterization. Cybern. Syst. Anal. 2002, 38, 238–254. [Google Scholar] [CrossRef]
- Gvishiani, A.D.; Agayan, S.M.; Bogoutdinov, S.R.; Soloviev, A.A. Discrete mathematical analysis and applications in geology and geophysics. Vestn. Kamchatskoi Reg. Organ. Uchebno-Nauchnyi Tsentr. Seriya: Nauk. O Zemle 2010, 2, 109–125. (In Russian) [Google Scholar]
- Soloviev, A.A.; Agayan, S.M.; Gvishiani, A.D.; Bogoutdinov, S.R.; Chulliat, A. Recognition of disturbances with specified morphology in time series: Part 2. Spikes on 1-s magnetograms. Izv. Phys. Solid Earth 2012, 48, 395–409. [Google Scholar] [CrossRef]
- Agayan, S.; Soloviev, A. Recognition of dense areas in metric spaces basing on crystallization. Syst. Res. Inf. Technol. 2004, 2, 7–23. [Google Scholar]
- Agayan, S.M.; Bogoutdinov, S.R.; Dobrovolsky, M.N. Discrete perfect sets and their application in cluster analysis. Cybern. Syst. Anal. 2014, 50, 176–190. [Google Scholar] [CrossRef]
- Dzeboev, B.A. A New Approach to Monitoring Seismic Activity: California Case Study. Dokl. Earth Sci. 2017, 473, 338–341. [Google Scholar] [CrossRef]
- Dzeboev, B.A.; Krasnoperov, R.I. On the monitoring of seismic activity using the algorithms of discrete mathematical analysis. Russ. J. Earth Sci. 2018, 18, ES3003. [Google Scholar] [CrossRef]
- Gvishiani, A.D.; Dzeboev, B.A.; Belov, I.O.; Sergeyeva, N.A.; Vavilin, E.V. Successive Recognition of Significant and Strong Earthquake-Prone Areas: The Baikal–Transbaikal Region. Dokl. Earth Sci. 2017, 477, 1488–1493. [Google Scholar] [CrossRef]
- Gorshkov, A.I.; Soloviev, A.A. Recognition of earthquake-prone areas in the Altai-Sayan-Baikal region based on the morphostructural zoning. Russ. J. Earth Sci. 2021, 21, ES1005. [Google Scholar] [CrossRef]
- Gorshkov, A.I.; Soloviev, A.A.; Zharkikh, J.I. Recognition of Strong Earthquake Prone Areas in the Altai–Sayan–Baikal Region. Dokl. Earth Sci. 2018, 479, 412–414. [Google Scholar] [CrossRef]
- Bongard, M.M. Recognition Problem; Nauka: Moscow, Russia, 1967; 320p. (In Russian) [Google Scholar]
- Bongard, M.M.; Vaintsvaig, M.N.; Guberman, S.A.; Izvekova, M.L.; Smirnov, M.S. Using a learning program for identifying oil reservoirs. Geol. I Geofiz. 1966, 2, 15–29. (In Russian) [Google Scholar]
- Soloviev, A.A.; Novikova, O.V.; Gorshkov, A.I.; Piotrovskaya, E.P. Recognition of potential sources of strong earthquakes in the Caucasus region using GIS technologies. Dokl. Earth Sci. 2013, 450, 658–660. [Google Scholar] [CrossRef]
- Soloviev, A.A.; Gorshkov, A.I.; Soloviev, A.A. Application of the data on the lithospheric magnetic anomalies in the problem of recognizing the earthquake prone areas. Izv. Phys. Solid Earth 2016, 52, 803–809. [Google Scholar] [CrossRef]
- Shebalin, N.V.; Tatevosian, R.E. Catalogue of large historical earthquakes of the Caucasus. In Historical and prehistorical earthquakes in the Caucasus; Giordini, D., Balassanian, S., Eds.; NATO ASI Series, 2. Enviroment—Vol. 28; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1997; pp. 201–232. [Google Scholar]
- Karapetyan, J.K.; Sargsyan, R.S.; Kazaryan, K.S.; Dzeranov, B.V.; Dzeboev, B.A.; Karapetyan, R.K. Current state of exploration and actual problems of tectonics, seismology and seismotectonics of Armenia. Russ. J. Earth Sci. 2020, 20, ES2005. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Gvishiani, A.D.; Dzeboev, B.A.; Agayan, S.M.; Belov, I.O.; Nikolova, J.I. Fuzzy Sets of High Seismicity Intersections of Morphostructural Lineaments in the Caucasus and in the Altai–Sayan–Baikal Region. J. Volcanol. Seismol. 2021, 15, 73–79. [Google Scholar] [CrossRef]
- Reasenberg, P. Second-order moment of central California seismicity, 1969−82. J. Geophys. Res. 1985, 90, 5479–5495. [Google Scholar] [CrossRef]
- Zaliapin, I.; Ben-Zion, Y. Earthquake clusters in southern California I: Identification and stability. J. Geophys. Res. Solid Earth 2013, 118, 2847–2864. [Google Scholar] [CrossRef]
- Zaliapin, I.; Gabrielov, A.; Keilis-Borok, V.; Wong, H. Clustering analysis of seismicity and aftershock identification. Phys. Rev. Lett. 2008, 101, 018501. [Google Scholar] [CrossRef] [Green Version]
- Abubakirov, I.R.; Gusev, A.A.; Guseva, E.M.; Pavlov, V.M.; Skorkina, A.A. Mass determination of moment magnitudes Mw and establishing the relationship between Mw and ML for moderate and small Kamchatka earthquakes. Izv. Phys. Solid Earth 2018, 54, 33–47. [Google Scholar] [CrossRef]
- Dzeboev, B.A.; Agayan, S.M.; Zharkikh, Y.I.; Krasnoperov, R.I.; Barykina, Y.V. Strongest Earthquake-Prone Areas in Kamchatka. Izv. Phys. Solid Earth 2018, 54, 284–291. [Google Scholar] [CrossRef]
- Skorkina, A.A. Scaling of two corner frequencies of source spectra for earthquakes of the Bering fault. Russ. J. Earth Sci. 2020, 20, ES2001. [Google Scholar] [CrossRef]
- Kondorskaya, N.V.; Shebalin, N.V.; Khrometskaya, Y.A.; Gvishiani, A.D. New Catalog of Strong Earthquakes in the USSR from Ancient Times through 1977; World Data Center A for Solid Earth Geophysics, Report SE-31; NOAA: Boulder, CO, USA, 1982; 608p. [Google Scholar]
- Fedotov, S.A.; Solomatin, A.V. The long-term earthquake forecast for the Kuril-Kamchatka island arc for the September 2013 to August 2018 period; the seismicity of the arc during preceding deep-focus earthquakes in the sea of Okhotsk (in 2008, 2012, and 2013 at M = 7.7, 7.7, and 8.3). J. Volcanol. Seismol. 2015, 9, 65–80. [Google Scholar] [CrossRef]
- Dzeboev, B.A.; Krasnoperov, R.I.; Belov, I.O.; Barykina, Y.I.; Vavilin, E.V. Modified algorithmic system FCAZm and strong earthquake-prone areas in California. Geoinformatika 2018, 2, 2–8. (In Russian) [Google Scholar]
- Gvishiani, A.; Dobrovolsky, M.; Agayan, S.; Dzeboev, B. Fuzzy-based clustering of epicenters and strong earthquake-prone areas. Environ. Eng. Manag. J. 2013, 12, 1–10. [Google Scholar] [CrossRef]
- Gvishiani, A.D.; Agayan, S.M.; Dobrovolsky, M.N.; Dzeboev, B.A. Objective epicenter classification and recognition of strong-earthquake-prone areas in California. Geoinformatika 2013, 2, 44–57. (In Russian) [Google Scholar]
- Gvishiani, A.D.; Dzeboev, B.A.; Sergeyeva, N.A.; Belov, I.O.; Rybkina, A.I. Significant Earthquake-Prone Areas in the Altai–Sayan Region. Izv. Phys. Solid Earth 2018, 54, 406–414. [Google Scholar] [CrossRef]
- Gvishiani, A.D.; Dzeboev, B.A. Assessment of seismic hazard in choosing of a radioactive waste disposal location. Min. J. 2015, 10, 39–43. (In Russian) [Google Scholar] [CrossRef]
- Karapetyan, J.K.; Gasparyan, A.S.; Shakhparonyan, S.R.; Karapetyan, R.K. Registration and spectral analysis of waveforms of 10.24.2019 earthquake in the Caucasus using the new IGES-006 seismic sensor. Russ. J. Earth Sci. 2020, 20, ES6006. [Google Scholar] [CrossRef]
- Gvishiani, A.D.; Dzeboev, B.A.; Sergeyeva, N.A.; Rybkina, A.I. Formalized Clustering and the Significant Earthquake-Prone Areas in the Crimean Peninsula and Northwest Caucasus. Izv. Phys. Solid Earth 2017, 53, 353–365. [Google Scholar] [CrossRef]
- Nekrasova, A.K.; Kossobokov, V.G. Unified scaling law for earthquakes in Crimea and Northern Caucasus. Dokl. Earth Sci. 2016, 470, 1056–1058. [Google Scholar] [CrossRef]
- Gelfand, I.M.; Guberman, S.A.; Keilis-Borok, V.I.; Knopoff, L.; Press, F.S.; Ranzman, E.Y.; Rotwain, I.M.; Sadovsky, A.M. Pattern recognition applied to earthquake epicenters in California. Phys. Earth Planet. Inter. 1976, 11, 227–283. [Google Scholar] [CrossRef]
- Gvishiani, A.D.; Zhidkov, M.P.; Soloviev, A.A. On transferring the criteria of high seismicity of Andean mountain belt to Kamchatka. Izv. Akad. Nauk SSSR. Fiz. Zemli 1984, 1, 20–33. (In Russian) [Google Scholar]
- Gvishiani, A.D.; Zhidkov, M.P.; Soloviev, A.A. Recognition of strong-earthquake-prone areas: X. M 7.75 earthquake prone areas on the Pacific Coast of South America. In Mathematical Models of the Structure of the Earth and the Earthquake Prediction, 14 of Computational Seismology; Keilis-Borok, V.I., Ed.; Allerton: New York, NY, USA, 1983; pp. 56–68. [Google Scholar]
- Dzeboev, B.A.; Karapetyan, J.K.; Aronov, G.A.; Dzeranov, B.V.; Kudin, D.V.; Karapetyan, R.K.; Vavilin, E.V. FCAZ-recognition based on declustered earthquake catalogs. Russ. J. Earth Sci. 2020, 20, ES6010. [Google Scholar] [CrossRef]
- Zgurovsky, M.Z.; Pankratova, N.D. System Analysis: Theory and Applications; Data and Knowledge in a Changing World; Springer: Berlin/Heidelberg, Germany, 2007; 447p. [Google Scholar] [CrossRef]
- Cisternas, A.; Godefroy, P.; Gvishiani, A.; Gorshkov, A.; Kossobokov, V.; Lambert, M.; Ranzman, E.; Sallantin, J.; Saldano, H.; Soloviev, A.; et al. A dual approach to recognition of earthquake prone areas in the Western Alps. Ann. Geophys. 1985, 3, 249–270. [Google Scholar]
- Gorshkov, A.; Kossobokov, V.; Soloviev, A. Recognition of earthquake-prone areas. In Nonlinear Dynamics of the Lithosphere and Earthquake Prediction; Keilis-Borok, V., Soloviev, A., Eds.; Springer: Heidelberg, Germany, 2003; pp. 239–310. [Google Scholar] [CrossRef]
- Gorshkov, A.I.; Kuznetsov, I.V.; Soloviev, A.A.; Panza, G.F. Identification of future earthquake sources in the Carpatho-Balkan orogenic belt using morphostuctural criteria. Pure Appl. Geophys. 2000, 157, 79–95. [Google Scholar] [CrossRef]
- Gorshkov, A.I.; Panza, G.F.; Soloviev, A.A.; Aoudia, A. Morphostructural zonation and preliminary recognition of seismogenic nodes around the Adria margin in peninsular Italy and Sicily. J. Seismol. Earthq. Eng. 2002, 4, 1–24. [Google Scholar]
Maximum height | Hmax |
Minimum height | Hmin |
The range of heights | dH = Hmax-Hmin |
Distance between points where Hmax and Hmin are measured | l |
Height gradient | dH/l |
The combination of relief types | Top |
The area of Quaternary sediments | Q |
The highest rank of lineament | HR |
The number of lineaments at the intersection | NL |
The distance to the nearest intersection | Rint |
Number of lineaments in the neighborhood of the intersection | NLC |
The distance to the nearest lineament of rank I | R1 |
The distance to the nearest lineament of rank II | R2 |
The maximum value of the Bouguer anomaly | Bmax |
The minimum value of the Bouguer anomaly | Bmin |
The range of the Bouguer anomaly values | dB = Bmax-Bmin |
The maximum value of magnetic anomaly | MOmax |
The minimum value of magnetic anomaly | MOmin |
The range of the magnetic anomaly values | Modif = MOmax-MOmin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzeboev, B.A.; Gvishiani, A.D.; Agayan, S.M.; Belov, I.O.; Karapetyan, J.K.; Dzeranov, B.V.; Barykina, Y.V. System-Analytical Method of Earthquake-Prone Areas Recognition. Appl. Sci. 2021, 11, 7972. https://doi.org/10.3390/app11177972
Dzeboev BA, Gvishiani AD, Agayan SM, Belov IO, Karapetyan JK, Dzeranov BV, Barykina YV. System-Analytical Method of Earthquake-Prone Areas Recognition. Applied Sciences. 2021; 11(17):7972. https://doi.org/10.3390/app11177972
Chicago/Turabian StyleDzeboev, Boris A., Alexei D. Gvishiani, Sergey M. Agayan, Ivan O. Belov, Jon K. Karapetyan, Boris V. Dzeranov, and Yuliya V. Barykina. 2021. "System-Analytical Method of Earthquake-Prone Areas Recognition" Applied Sciences 11, no. 17: 7972. https://doi.org/10.3390/app11177972
APA StyleDzeboev, B. A., Gvishiani, A. D., Agayan, S. M., Belov, I. O., Karapetyan, J. K., Dzeranov, B. V., & Barykina, Y. V. (2021). System-Analytical Method of Earthquake-Prone Areas Recognition. Applied Sciences, 11(17), 7972. https://doi.org/10.3390/app11177972