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Abstract: Mobile edge computing is a new computing model, which pushes cloud computing
power from centralized cloud to network edge. However, with the sinking of computing power,
user mobility brings new challenges: since it is usually unstable, services should be dynamically
migrated between multiple edge servers to maintain service performance, that is, user-perceived
latency. Considering that Mobile Edge Computing is a highly distributed computing environment
and it is difficult to synchronize information between servers, in order to ensure the real-time
performance of the migration strategy, a virtual machine migration strategy based on Multi-Agent
Deep Reinforcement Learning is proposed in this paper. The method of centralized training and
distributed execution is adopted, that is, the transfer action is guided by the global information during
training, and only the local observation information is needed to obtain the transfer action. Compared
with the centralized control method, the proposed method alleviates communication bottleneck.
Compared with other distributed control methods, this method only needs local information, does
not need communication between servers, and speeds up the perception of the current environment.
Migration strategies can be generated faster. Simulation results show that the proposed strategy is
better than the contrast strategy in terms of convergence and energy consumption.

Keywords: mobile edge computing; deep reinforcement learning; virtual machine migration

1. Introduction

With the development of science and technology, there are many applications that
require high computing power and are extremely sensitive to delay, which are far beyond
the service capacity that mobile devices can provide. In addition, due to the limitations of
the development of battery technology, the power consumption of running these applica-
tions is unbearable for mobile devices. These problems have become an opportunity for
the development of Mobile Cloud Computing (MCC) technology, through the integration
of cloud computing capabilities into the mobile network, so that mobile users can access
and use cloud computing services [1]. The Mobile Capabilities Augmentation using Cloud
Computing (MCACC) framework proposed in reference [2] divides mobile applications
into a group of services. The framework is deployed in the application layer, and each
service is executed locally or remotely on the cloud based on dynamic unloading decisions,
so that mobile applications are not limited by mobile device resources. However, because
mobile cloud computing uses a centralized model, there is often a very long distance
between the server and mobile users, which will lead to high network delay. Addition-
ally, in the longer path, the probability of data being attacked on the way will be greatly
increased. The European Telecommunications Standards Institute (ETSI) introduced the
concept of Mobile Edge Computing (MEC) in 2014. According to the white paper released
by ETSI for the first time, mobile edge computing is defined as: “Mobile edge computing
can provide IT service environment and cloud computing capabilities within the range of
Ratio Access Network (RAN) near mobile devices [3]”. Mobile edge computing releases
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the mobile device from the heavy computing work. By transferring the computing task on
the mobile device to the MEC server, which is closer from the space [4], it can reduce the
user-perceived delay, reduce the network congestion probability and prolong the battery
life of the mobile device.

Although MEC greatly improves the computing power of mobile users, the unpre-
dictable user mobility in wireless networks also brings new challenges. Reducing latency
and smoothing the user experience as users move cannot be solved by simply pushing
cloud capabilities to the edge of the network. In order to ensure the business continuity of
users between different edges, it is necessary to adopt an efficient mobility management
scheme at the network edge.

Software Defined Network (SDN) [5] is an emerging technology, which provides
a simplified method to dynamically control multiple simple switches through a single
controller program. In the fog computing architecture based on SDN [6], routing logic
and intelligent management logic are deployed on the SDN controller, which greatly
simplifies the operation and management of the network. However, the placement of
dynamic service profiles is not simple. On the one hand, the user-perceived delay is
determined by both the communication delay and the computing delay [7,8]. Therefore, if
each user’s service profile is placed on the nearest MEC node, some MEC nodes may be
overloaded, resulting in increased computing latency. On the other hand, when the MEC
computing node is overloaded or unable to calculate, the computing services need to be
migrated to the Virtual Machines (VMs) of other nodes for computing. In order to improve
Quality of Service (QoS) such as TCP throughput, in Reference [9], the author proposed
a VM migration method based on expected TCP throughput, which migrates VMs from
crowded nodes to another node on the mobile edge; this method is a VM migration method
considering edge node congestion without considering user mobility in MEC environment.
Moreover, during the migration, you also need to ensure that the resources (CPU, network
bandwidth, etc.) of the migration operating system will not be unnecessarily disrupted
by contention for active services [10]. When computing services need to be frequently
migrated between multiple MEC nodes, this will incur additional operational costs. A
resource allocation strategy based on VM migration is proposed in Reference [11]. It is
considered that the MEC server is deployed near the terminal, and the MEC controller
allocates the servers accessed by the terminals in different areas to maximize the system
Energy Efficiency (EE). User equipment can harvest radio frequency energy from multiple
frequency bands as they move. Energy-efficient mobility management is an important
issue in modern networks. In Reference [12], the author introduces handover costs into
total energy consumption. Therefore, the effective dynamic service layout strategy should
pay attention to: (1) coordinating communication delay and computing delay to minimize
user-perceived delay; (2) weighing performance and cost in a cost-effective way.

In this paper, the VM migration method is used to keep the VM synchronized with
the user all the time to ensure the quality of service. MEC places computing resources on
the edge of the network closer to mobile devices in a distributed way. Considering that it is
difficult to ensure the real-time exchange of information in distributed systems, this paper
proposes a VM migration strategy based on Multi-Agent Deep Reinforcement Learning
(MADRL). The strategy adopts the combination of centralized training and distributed
execution, evaluates the migration action through the global information during training,
and transmits the evaluation in reverse to train the state value network, so as to learn
the migration strategy with the lowest energy consumption. During execution, only local
observation information is needed to obtain the migration action. Compared with the
centralized control method, the proposed method alleviates the communication bottleneck
of the VM migration strategy based on MADRL. Compared with other distributed control
methods, this method only needs local information and does not need communication
between servers. it speeds up the perception of the current environment, and the migration
strategy can be generated more quickly. Finally, the simulation results show that the
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proposed migration strategy has a better effect than the contrast strategy in terms of
convergence, energy consumption and migration success rate.

2. Related Works

Service placement has been widely studied in the paradigm of cloud computing. In
MEC, a key challenge in achieving efficient service placement is to consider device mobility.
In the existing research, some work is based on the prediction of future information. For
example, in Reference [13], the author solved the tradeoff between execution overhead
and delay by using mobility-based prediction schemes, and proposes a data transfer
throughput estimation scheme (DTT), MDC handoff time estimation scheme (HTE) and
service migration management scheme (SMM). In addition, the author further studies
how to place services by predicting the costs of future data transmission, processing and
service migration in Reference [14]. In Reference [15], the author proposed a FMeC-based
framework in the autopilot scenario, which is based on the analysis of vehicle movement
patterns and makes a tradeoff between reducing service migration costs and maintaining
end-to-end QoS. The proposed scheme meets the delay requirements of autopilot and
minimizes the overall cost.

However, it is not realistic to accurately predict future information such as user
mobility in the real environment. In order to meet the challenge of user mobility that
is unpredictable in practice, another recent work applied the Markov Decision Process
(MDP). In Reference [16], through Markov chain analysis of whether to migrate services,
the author discusses the impact of service migration on mobile users’ perceived delay. In
References [17,18], the authors determine the optimal threshold of service migration based
on MDP. In addition, the author in Reference [19] extended the service migration algorithm
to adapt to 2D migration scenarios. In Reference [20], the optimal service migration strategy
is designed by defining the service placement problem as a sequential decision problem.
The above studies are based on the centralized system model, and the global information
of the network needs to be predicted when solving the scheduling strategy. However,
MEC is a highly distributed computing environment; obtaining the status of all servers
may consume a lot of network resources, and cannot ensure the real-time performance
of the migration strategy. In order to solve the above problems, this paper constructs a
distributed migration model and proposes a VM migration strategy based on MADRL.
The migration process is mainly through live VM migration technology, and live migration
is a key function of system virtualization technology [21]. The methods of centralized
training and distributed execution are adopted to alleviate the communication bottleneck,
speed up the perception of the current environment, and generate the migration strategy
more quickly.

3. System Model

As shown in Figure 1, after the user establishes a connection with a server, the com-
puting task is unloaded to the server, and then the server creates a dedicated VM for the
calculation of the task. During the period of establishing a connection to the end of the
service, users still upload their location information regularly, and the server sends back
the navigation information regularly. With the continuous movement of users, the distance
from the server will become farther and farther, resulting in an increase in transmission
delay, so as to reduce the quality of user experience. Therefore, the above problems can be
solved by actively migrating VMs closer to mobile users.
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Figure 1. VM migration scenario.

In order to better represent the mobility of users and the dynamic changes of the
network, time is divided into time periods according to the same interval and numbered
according to time order, and the i-th time period is expressed as sloti. As shown in the figure,
consider a network structure composed of MEC server H = {1, 2, · · · , n, · · · , H}. MEC
server n can be represented by a triple (capn, rn, ln), where capn represents the remaining
computing capacity of the server (in cycles per s), rn represents the remaining disk space of
the server (in byte), and ln represents the location of the server. Each MEC node connects to
a local Base Station (BS) or wireless access point via a high-speed local area network (LAN).
The VMs to be migrated on the MEC server n within the time period SIi are recorded as
Tn =

{
T1

n , T2
n , . . . , Tu

n
}

, the VM Tu
n is represented by the quintuple Tu

n = (λu
n, cu

n, du
n, su

n, ou
n),

where λu
n represents the size of the VM configuration file (unit byte), cu

n represents the
calculation cycle (unit cycle) of the CPU required to perform the computing task, and
du

n represents the maximum delay (unit seconds) that the task can tolerate. su
n represents

the current movement speed of the device that generated the task (in meter per second),
and ou

n represents the current direction of movement of the device that generated the task,
expressed as the angle between the clockwise direction and the north (in 2 degrees).

3.1. Delay Model

The delay that users can perceive can be composed of two parts: computing delay and
transmission delay. The transmission delay tru

n is directly proportional to the size of the
transmitted data and inversely proportional to the bandwidth, which can be calculated by
the following formula:

tru
n =

κu
n

Btr
n

(1)

where κu
n represents the task size, and Btr

n represents the bandwidth between the BS to
which the user is connected and the destination MEC server. The computing delay comu

n
represents the time it takes for the task to obtain the result on the MEC server. The delay
can be calculated by the CPU computing cycle required by the task and the computing
power of the MEC server, as shown below:

comu
n =

cu
n

capn
. (2)

In summary, the task Tu is executed on the MEC server n, and the total delay Du
perceived by the user can be expressed as a formula:

Du = tru
n + comu

n. (3)
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3.2. Energy Consumption Model

Assuming that the VM Tu
i is migrated from the MEC server Hi to Hj, the migration

cost is positively related to the size of the VM profile and the distance between the two
servers, as shown in Formula (4),

Eu
i,j = ctλ

u
i d
(

Hi, Hj
)
, (4)

where ct represents the resource consumed by transferring 1 byte of data per unit length.

3.3. Problem Modeling and Transformation

How to migrate is the focus of the dynamic VM migration mechanism; most migra-
tion mechanisms only rely on network conditions to determine the migration strategy,
few people take into account the user’s movement speed, direction and other behavior
characteristics. As shown in the example shown in Section 4.1, when multiple servers
meet the migration conditions of the current time period, the choice of migration strategy
considering the movement direction of the user can reduce the probability of triggering VM
migration in the future, thus reducing the migration energy consumption of the system.

The optimization goal of this paper is to minimize the energy consumption of migra-
tion when the constraints are met. ai,j represents the VM migration strategy, and when
ai,j = 1, it represents the migration of the VM Tu

i from the MEC server Hi to Hj. Therefore,
the optimization goal can be written as:

min ∑
|H|
i=1 ∑

|Ti |
u=1 ∑

|H|
j=1 ai,jEu

i,j,
s.t. C1 : Du

j < du
n, ∀Hj ∈ H, ∀Tu

n ∈ Tn

C2 : rj > λu
n, ∀Hj ∈ H, ∀Tu

n ∈ Tn
C3 : capj > cu

n, ∀Hj ∈ H, ∀Tu
n ∈ Tn

C4 : ai,j ∈ {0, 1}, ∀Hi ∈ H, ∀Hj ∈ H
C5 : ∑

|H|
j=0 ai,j ≤ 1 .

(5)

4. VM Migration Strategy Based on MADRL

For the above optimization objectives, taking into account the mobility of users and
the dynamic changes of the server, as well as the sensitive delay requirements of tasks, it
is difficult for traditional methods to solve them, so this paper uses the method of deep
reinforcement learning to solve the migration strategy. In the existing DRL-based VM
migration strategy research, it is often assumed that the global information of mobile
devices and servers in the system can be obtained, but in practical applications, due to the
delay of network transmission, it is difficult to achieve global information synchronization.
Therefore, this paper uses MADRL to generate the VM migration strategy in the mobile
edge environment. Each MEC server, as an independent agent, learns the migration
strategy by interacting with the environment to minimize the migration cost.

In Reference [22], the system considered by the authors consists of a central control
unit. The authors first assume that the tasks of User Equipment (UE) are successfully
received to the central control unit of MEC as a UE request. The central control unit then
detects the incoming UE request, selects the best Mobile Edge Server (MES) for the request
and allocates resources, during which the authors assume the UE continuous transmission
location. Finally, the central control unit can issue a command to migrate its VM to another
MES and migrate the VM to that MES. Referring to the previous work related to virtual
machine migration, we also assume that the VM migration mechanism between server
hosts uses live VM migration technology. According to the concept of virtualization, VM is
hosted by a virtual machine monitor (VMM), which runs on the server host. In modeling,
we assume that the operational state of the VMM can be integrated into the operational
state of the server. When the server makes a decision that the VM needs to be migrated, it
triggers the live migration of the VM. The monitor identifies the destination server host to
which this VM is to be migrated [23]. The live migration process is triggered by loading
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the VM instance and related user data from Network Area Storage (NAS) [24,25] to the
destination server host by switching the current connection. After this process is completed,
the VM can restart and continue to perform subsequent computing tasks on the server. In
order to simplify the model migration process, we do not consider the unexpected failures
in the process of data transfer between servers. These failures may be sudden network
outages, memory errors at the source or destination, data packet corruption or loss in
transmission [26].

4.1. Multi-Agent Deep Reinforcement Learning Model

(1) Agent Observation State

The observed state on(i) ∈ S represents the state that MEC server Hn can perceive
during the time period SIi, which consists of two parts; namely, the current running status
of the server and the parameters of the VM to be migrated, so it can be expressed as
on(i) =

{
Hn, T1

n , T2
n , . . . , Tu

n
}

.

(2) Action Space

According to the observed state of time period SIi and the migration strategy πi,
we can receive the action an(i), which is a vector composed of u elements, each element
represents the destination server of VM Tu

n migration, and an(i) =
(
a1

n, · · · , au
n
)
. For

VM Tu
n , because the output pn,m of neural network is the probability of migration from

VM Tu
n to server Hm, au

n chooses the server with the highest probability as the migra-
tion destination server through greedy algorithm, and migrates VM Tu

n to this server, so
au

n = max(pn,1, · · · , pn,m). The action set of all agents is represented by A, which is an n
dimensional vector.

(3) Reward Function

According to the observed state of on(i), the MEC server takes the action an(i) and ob-
tains a timely reward of rn(i). The optimization goal is to minimize the energy consumption
of VM migration, so the reward function rn(i) is as follows:

rn(i) =


1

∑
|T |
u=1 ∑

|H|
j=1 ai,jEu

i,j

, success

0, f ail
. (6)

In the multi-agent environment, we use sar to denote system status, joint action and
joint reward, respectively, which are marked as s = {on(i)}, a = {an(i)}, r = {rn(i)},
respectively. In order to simplify the representation, the state, action and reward of MEC
server Hn in the current time period are expressed by using the on, an and rn. o′n, a′n, r′n
are used to represent the status, action and reward of MEC server Hn in the next time
period. Each agent expects to maximize its reward in the process of interacting with the
environment. In this paper, the action value function of the action au

n taken by the MEC
server Hn in the case of the observed state on in the time period SIi is expressed by using
Qn(on, an). Based on the Behrman equation, the recursive relation of the action value
function Qn(on, an) is shown in the Formula (7),

Qn(on, an) = E
[
rn + γE

[
Qn
(
o′n, a′n

)]]
, (7)

where the discount factor γ ∈ [0, 1) controls the ability of the agent to “look forward to the
future”. When γ = 1, the agent obtains a reward for Qn without any discount in the future.

4.2. VM Migration Strategy Based on MADRL

Each MEC server Hn has its own agent, and each agent is composed of two parts,
namely actor and critic network. The actor network includes two parts: the current actor
network πn and the target actor network π′n. The two network parameters are θn and
θ′n, respectively. Similarly, the critic network also includes two parts: the current critic
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network Qn and the target critic network Q′n. The two network parameters are ωn and
ω′n, respectively.

The VM migration strategy architecture based on MADRL is shown in Figure 2. In the
process of model training, the current actor network πn and the current critic network Qn
are trained online, and the target critic network Q′n is trained offline. The current actor
network πn of each agent receives the current observation state on, and the MEC server
takes the action an and obtains the reward rn, and then the MEC server moves on to the
next state o′n. Then, the quaternion {s, a, r, s′} is saved into the experience replay set D.
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Neural network training includes three steps. First update the current critic network,
then update the current actor network, and finally update the target actor network and the
target critic network.

(1) Update the Current Critic Network

At the beginning of each time period, each agent will randomly select s samples
{s, a, r, s′} from the experience replay set D, and use the mean square error loss function
shown in Formula (8) to update the parameter ωn of the current critic network through the
gradient back propagation of the neural network,

L(ωn) =
1
s

s

∑
j=1

(yj −Qn(s, a)
)2, (8)

where yj is as shown in Equation (9),

yj = r + γQ′n
(
s′, π′n

(
s′
))

. (9)

(2) Update the Current Actor Network

The current actor network updates parameters through policy gradient descent, as
shown in Equation (10):

∇θn J ≈ 1
s ∑j∇θn log(πn(on))∇an Qn(s, a). (10)

(3) Update the Target Actor Network and Target Critic Network
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The parameters of the target actor network and target critic network are updated as
shown below:

θ′n = τθn + (1− τ)θ′n , (11)

ω′n = τωn + (1− τ)ω′n , (12)

where τ ∈ [0, 1 ) represents the learning rate of the parameter.
The VM migration strategy based on MADRL is shown in Algorithm 1.

Algorithm 1 VM migration strategy based on MADRL

1.Initialize current actor network π and critic network Q with parameters θ and ω

2.Initialize target actor network π′ and critic network Q′ with parameters θ′ and ω′

3.Initialize episode K, discount factor γ, learning rate τ, the number of samples s, update
frequency C, experience replay set D
4.for episode k = 1, 2, . . . , K do
5. for SIi i = 1, 2, . . . , T do
6. choose action an = πn(on) for each MEC Server
7. execute action a = (a1, · · · , an), obtain reward r and next state s′

8. store transitions {s, a, r, s′} into replay set D
9. s← s′
10. end for
11. if k%C == 0 then
12. for agent n = 1, 2, . . . , n do
13. sample s transitions {s, a, r, s′} from D
14. update current critic network according to (8), (9)
15. update current actor network according to (10)
16. end for
17. update target actor network and target critic network according to (11), (12)
18. end if
19.end for

4.3. Simulation Experiment Results and Analysis
4.3.1. Experimental Environment and Data Set

In order to evaluate the performance of the VM migration strategy based on MADRL
proposed in this paper, a simulation environment is developed based on Python language,
and the tasks and servers in the environment are modeled. In the simulation process, time
is divided into periods of equal length, and the interval is set as 1 s. Server running status
is generated based on the machine_usage.csv file in the open source dataset cluster-trace-
v2018 [27]. The dataset contains information about 4000 servers and corresponding online
application containers as well as the operation of offline computing tasks in 8 days. A task
model is generated based on the batch_task.csv file in the dataset. When considering the
task mobility, this experiment uses real vehicle driving datasets to validate the proposed
VM migration strategy. The dataset consists of 4316 cabs driving for 24 h in Shanghai,
China on 20 February 2007 [28]. Each vehicle trajectory consists of a set of time-stamped
GPS points, and each GPS point has seven fields, which are cab ID, time stamp, longitude
and latitude of the cab’s current location, instantaneous speed at this time, clockwise
angle to north (unit: 2 degrees), and cab status (status: empty or with passengers). After
pre-processing the raw data, five VMs were set to wait for migration in each time period,
and 50 MEC servers were randomly deployed.

4.3.2. Experimental Scheme Design

(1) Simulation Experiment Parameters

The simulation environment is built based on the following parameters, as shown
in Table 1.
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Table 1. Simulation experiment parameter.

Parameter Value

number of VM 5~20
size of VM 1000~10,000 bytes

tolerable delay 0.01~0.3 s
number of CPU cycles required for tasks 500~1500 cycles

speed 0~90 m/s
computational capacity of a server 1 × 106~6 × 106 cycles/s

bandwidth of a server 1~3 MHz
size of memory 1 TB

distance between servers 200~1000 m

(2) Neural Network Parameter Setting

The actor network consists of four fully connected layers and two hidden layers,
which have 512 and 128 neurons, respectively. The critic network consists of three fully
connected layers and two hidden layers, which have 512 and 256 neurons, respectively.
The learning rate of actor network is 0.001. The learning rate of critic network is 0.01, and
the discount factor is 0.95.

The experiment consists of three processes: preprocessing process, offline training
process and online VM migration process. In the process of offline training, the processed
data are input into actor network and critic network. During the online computing offload
process, each vehicle chooses to offload its computing task to a MEC server.

5. Experimental Results and Analysis

Experiments compare the performance of the VM migration strategy based on MADRL
strategy proposed in this paper with the following three VM migration strategies.

(1) Random migration strategy (Random): Randomly migrate VMs to a server.
(2) Nearest neighbor migration strategy (NN): Directly select the nearest MEC server to

migrate the VM.
(3) Centralized migration strategy based on Actor–Critic algorithm (CON_AC): Based on

the centralized network architecture of SDN, the migration strategy is generated by
the SDN controller.

(4) Distributed migration strategy based on Actor–Critic algorithm (DIS_AC): Each agent
interacts with the environment individually to learn the VM migration strategy, and
the agents do not communicate with each other.

In the experiment, the neural networks used by CON_AC, DIS_AC and MADRL are
all actor and critic networks based on the parameter configuration described in the previous
section, and they use the same reward function. The experiment has 2000 iterations, and
the maximum number of iterative steps in each round is 50. Experiments compare the
convergence of the above three migration strategies based on reinforcement learning when
the number of servers is 10 and the number of VMs is 20, as shown in Figure 3.

As can be seen from Figure 3, DIS_AC does not converge in this scenario. The DIS_AC
method is based on the Actor–Critic method. During the training, each agent only makes
the migration strategy according to the local information. When an agent makes a decision,
the environment state has changed. It is precisely because the agents compete for resources
and lack of awareness of the overall environment, which can easily lead to the fluctuation
of the reward and the decrease of the reward value. The convergence of CON_AC is the
best, and the MADRL strategy proposed in this paper is slightly inferior, but very close.
This is because CON_AC can obtain the global server and VM status through the SDN
controller, and only one agent exists in the SDN controller in this environment. On the
other hand, MADRL has multiple agents, so it is necessary to construct the global state
according to the observed state of each agent. Therefore, due to the interaction between
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agents, the convergence speed of the model is a little slower than that of CON_AC, and it
begins to converge in about the 800th round.
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Figure 4 shows the time it takes for MADRL and CON_AC to obtain strategies as the
number of servers increases with the number of VMs 10 and 20, respectively. The time it
takes to obtain a strategy is expressed as the time it takes from the start of the triggered
migration to the time before the migration strategy is executed. The experiments are all
carried out on the same server, and the parameters are fixed.
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As we can see from Figure 4, MADRL has the lowest time consumption. The increase
in the number of servers has little impact on MADRL, and only when the number of VMs
increases, it will increase the time it takes to obtain strategies. However, CON_AC is very
affected by the number of servers, and when the number of VMs is 10, the time spent
increases 2.8 times as the number of servers increases from 5 to 20. The reason is that
MADRL only needs local observation information to obtain the migration action, and
does not need to communicate with other servers, which speeds up the perception of the
current environment and generates the migration strategy more quickly. On the other hand,
CON_AC needs to communicate with all servers to obtain the current global information.
As the number of servers increases, the complexity of the network increases exponentially,
increasing the time it takes to generate a migration strategy.

Figure 5 shows the number of VMs migrated per hour within 24 h. As can be seen
from the figure, the number of NN is the least, followed by NN, DIS_AC, MADRL and
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CON_AC, which are the most effective. This is because the migration strategies between
servers coordinate with each other to avoid centralized migration to the same server, which
can speed up the processing speed of the system. Compared to Random, NN, and DIS_AC,
MADRL migrated 93.57%, 25.59%, and 21.61% more VMs per hour on average, respectively.
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In this paper, the average energy consumption and migration success rate of the five
migration strategies are compared. The number of servers set in the experiment is 10, and
there are 20 VMs to be migrated in each time period, with a total of 50 iterations. The
experimental results are shown in Figure 6.
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As can be seen from Figure 6, Random has the highest energy consumption and the
lowest migration success rate because it migrates randomly and does not optimize energy
consumption. NN has the lowest energy consumption, but the migration success rate is
45.4% lower than that of MADRL. The main reason is that the NN strategy always migrates
VMs to the nearest server, so the total energy consumption is the lowest. However, the
nearest server may not meet the migration conditions, resulting in low success rate of the
migration. The migration result of MADRL is similar to that of CON_AC. While optimizing
the energy consumption of migration, we can take into account the status of other servers,
reduce the probability of migration failure, and obtain better migration performance.

6. Conclusions

This paper uses VM migration to solve the problem of service degradation as the
distance increases. Considering the difficulty of synchronizing information in a distributed
computing environment, a VM migration strategy based on MADRL is proposed. Firstly,
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the mobile edge network model is given, then the energy consumption of the migration
problem is modeled, and the optimization goal is established. Then, a solving method based
on MADRL is given. Finally, a simulation experiment of the VM migration strategy based
on MADRL proposed in this paper is carried out. Through the comparison of convergence
between different strategies, the number of migrated VMs, and energy consumption, it can
be seen that the strategy proposed in this paper has better results. This paper assumes that
the task cannot be divided. However, in the actual application, the task may be divided
into multiple parts. Then, how to solve the problem in this scenario will be the focus of
future work.
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