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Abstract: The research in path planning for unmanned aerial vehicles (UAV) is an active topic
nowadays. The path planning strategy highly depends on the map abstraction available. In a
previous work, we presented an ellipsoidal mapping algorithm (EMA) that was designed using
covariance ellipsoids and clustering algorithms. The EMA computes compact in-memory maps,
but still with enough information to accurately represent the environment and to be useful for
robot navigation algorithms. In this work, we develop a novel path planning algorithm based
on a bio-inspired algorithm for navigation in the ellipsoidal map. Our approach overcomes the
problem that there is no closed formula to calculate the distance between two ellipsoidal surfaces, so
it was approximated using a trained neural network. The presented path planning algorithm takes
advantage of ellipsoid entities to represent obstacles and compute paths for small UAVs regardless of
the concavity of these obstacles, in a very geometrically explicit way. Furthermore, our method can
also be used to plan routes in dynamical environments without adding any computational cost.

Keywords: path planning; unmanned aerial vehicles; neural networks; evolutionary algorithms

1. Introduction

Autonomous Unmanned Aerial Vehicles (UAVs) play an important role in both mili-
tary and civilian applications. In contrast with manned aircrafts, UAVs are able to perform
complex and dangerous tasks with high maneuverability and low cost [1,2]. An important
problem to solve in order to achieve a certain level of autonomy is path planning. In the
past, the best path was selected as the shortest distance to a goal; now, the best path is
associated with the traveled distance and energy consumption [3]. If more parameters,
besides distance, are considered, the path planning problem can been stated as an opti-
mization problem, and population based algorithms have been used in many cases to solve
it successfully [4–8].

In [9], we described a novel algorithm for path planning, which uses conformal
geometric algebra to generate maps using spheres. By using spheres, we gain in terms
of the number of parameters needed for representing the maps and these maps are rich
in information. For example, we need the same number of parameters for representing a
sphere as for a plane, but the plane also needs an extra number of parameters for bounding
the plain. Moreover, the spheres are easy to operate in conformal geometric algebra.

The algorithm employs the characteristics of the spheres described in this algebra to
navigate through the maps by combining them with Teaching-Learning Based Optimization
(TLBO). In this paper, we compared different evolutionary optimization algorithms where
TLBO had the best result.

On the other hand, we also explored approaching the robotic mapping problem by
using ellipsoidal representations [10]. These ellipsoidal geometric entities are coded in
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the geometric algebra G6,3. The resulting map is compact and rich in information as we
showed in [10].

The problem of robotic mapping consists of constructing a spatial representation of
the environment, which is helpful for the robot [11]. There are classic mapping abstrac-
tions, such as grid occupancy [12], where cubes represent the objects. This abstraction is
memory efficient but discretizes the environment; furthermore, it is useful for office-like
environments but is not adequately suited for outdoor environments.

We can also find variable size grid occupancy [13], where we can change the reso-
lution of the grid. With particular modification, we can model dynamic maps with this
abstraction [14].

There are other map abstractions such as multiplanar maps [15], landmarks, and points
of obstacles [16]. A mapping algorithm called OctoMap was proposed in [17,18]. OctoMap
has variable resolution grid occupancy representation with a probabilistic construction. We
include in Table 1 a qualitative comparison between ellipsoidal maps and Octomap.

Table 1. EMA and OctoMap properties.

Property EMA OctoMap

Basic geometric entity Ellipsoids Cubes
Variate granularity Yes Yes
Construction scheme Any clustering algorithm Hierarchical
Robust to outliers Yes Yes

In Figure 1, we present an example of a cloud point (left) [19] and its ellipsoidal
map (right).

(a) Cloud point (83,459 points). (b) Ellipsoidal Map (700 ellipsoids).
Figure 1. Example of an ellipsoidal map generated with the ellipsoidal mapping algorithm presented in [10].

In this work, we present a novel algorithm for path planning in 3D environments
for small UAVs. This algorithm works on ellipsoidal mapping provided by the algorithm
in [10]. There is no closed form for calculating the distance between two ellipsoidal surfaces
and using an iterative algorithm will be computational expensive.

We propose to solve this problem by training a dense neural network for approximat-
ing the distance between two ellipsoids. We propose a new fitness function to find the path
with the TLBO algorithm.

The TLBO algorithm was chosen because it obtained the best performance in a similar
problem presented in [9]. We refer the reader to [9] for a performance comparison on
metaheuristics for similar path-planning.
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The paper is organized as follows: in Section 2, we introduce our solution to efficiently
calculate the distance between ellipsoids and we show the training and generalization
results. In Section 3, we offer a brief review of the TLBO algorithm and we develop the
fitness function for path planning in ellipsoidal maps. Then, the simulation and results
of the proposed algorithm are presented in Section 4. Finally, in Section 5, we offer a
conclusion and future directions based on this work.

2. Approximating the Distance Function with Neural Networks

Our goal was to develop a path planning algorithm to work with the ellipsoidal
maps to take advantage of these maps being compact-in-memory yet rich-in-information.
The hypothesis to achieve the above goal was to design an algorithm that could compute a
path using the distance between the envelope ellipsoids of the obstacles, and the ellipsoid
that models the UAV. The computed path maintains the vehicle safe free space between
itself and the occupied places.

To know how much free space exists between ellipsoids, we needed to solve the non-
trivial key problem of finding a method to compute the distance between them due to the
fact that there is not a closed way to do it. We propose a machine learning method to solve
the above computation using neural networks to overcome the problem that represents
the great computational costs of using iterative algorithms to calculate distances in maps,
where the number of ellipsoids is large.

To solve this problem efficiently, we use a dense neural network to estimate the
distance between two ellipsoids. One ellipsoid will represent a small UAV and the other
will represent an obstacle.

We can train a neural network for the regression problem. To generate a dataset
for training, we randomly generate a pose for the UAV (yaw, pitch and roll). We fix the
semi-axes of the ellipsoid representing the UAV with (0.5, 0.5, 0.3) in meters. Furthermore,
we generate a random ellipsoid around the UAV. We calculate a cloud mesh for every
ellipsoid and estimate the distance between the UAV by using a brute force approach.
In Figure 2, we present an example of generated samples and their estimated distance.

Figure 2. Examples of random generated samples for training.

One problem with this approach is to find a correct normalization of the data. If the
input data of a neural network is not well normalized it could lead to slow or biased
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learning. In the following, we describe a novel normalization method that achieves good
results on the neural network performance.

Firstly, the small UAV is represented by an ellipsoid with fixed semi-axes. These
semi-axes are not considered in the learning problem, because the neural network can learn
them as well. We will fix the UAV position at the center of the 3D space. Then, the position
and the semi-axes are not input data for the neural network. The UAV is represented only
with the angles (yaw, pitch, roll) ∈ [0, 2π]3.

In the second instance, the 3D points on the map representing the obstacles are mapped
using ellipsoids. As we presented in [10], we applied a clustering technique to the cloud
point. Each cluster is a set of 3D points

{
[xi, yi, zi]

T}n
i=1, with center of mass [µx, µy, µz]T .

We can also calculate the pair-wise covariance between two variables; for example,
for x and y coordinates, the covariance is calculated with (1):

σxy = σyx =
n

∑
i=1

(xi − µx)(yi − µy)

n
. (1)

With the pair-wise covariances, we construct the covariance matrix is defined with (2).
The parameters (c1, . . . , c9) carry the information of an ellipsoid that covers all non-outlier
data points.

Σ =

σxx σxy σxz
σxy σyy σyz
σxz σyz σzz

 =

c1 c2 c3
c4 c5 c6
c7 c8 c9.

 (2)

The obstacle ellipsoids will be represented with the normalized covariance matrix.
This parametrization is chosen because it is the output of the multi-ellipsoidal mapping
algorithm presented in [10]. Other parametrizations lead to a high computational cost; for
instance, one could use the angles of rotation and the semi-axes, but this will require the
spectral decomposition of the covariance matrix.

In Figure 3, we present a 2D scheme of the maximum and minimum distances between
two ellipses. The desired distance will be between the minimum and the maximum
distances and it will depend on the orientation of the ellipses.

Maxi
mun dista

nce

Minim
un dista

nce

Figure 3. Minimum and maximum distance between ellipses.

The positions of the UAV and obstacles are difficult to normalize. If we normalize
using common techniques like max-min or the standard normalization the neural network
could output strange values for ellipsoid outside this normalization. To avoid this situation,
we will code the relative position with a normalized vector from the UAV center to the
obstacle center (ux, uy, uz).
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Instead of doing regression with the real distance between the ellipsoids, we just
estimate a correction variable δ if we subtract this value from the centers distance of the
ellipsoids, we can calculate the distance between ellipsoids, as we show in (3):

dist(E1, E2) = ||Center1 −Center2||2 − δ. (3)

The δ correction factor depends only on the relative position of the obstacle ellipsoid
and the UAV ellipsoid and their orientations. We can approximate this correction factor
with a neural network. In Figure 4, we present the normalized input vector and the neural
network architecture.

yaw
pitch
roll
ux
uy

uz

c1

c2

c3

c4

c5

c6

c7

c8

c9

u
UAV ellipsoid

Obstacle ellipsoid

Dense
 layer

ReLU
n=64

ReLU
n=32

Dense
 layer

Linear
Neuron

δ

Figure 4. Neural network architecture.

We generate 185,000 random examples that took one day to calculate. We distribute
these samples the following way: 149,850 samples for training, 16,650 for validating
and hyper-parameter tuning, and 18,500 for testing. We trained this neural network for
50 epochs. In Figure 5, we show the training and validation evolution on the mean squared
error (MSE). We got 0.0016 final MSE for training and 0.0017 final MSE for validation.

Figure 5. Neural Network Training Results.

In Table 2, we present the training results. In particular, we present the R2-score
where the best possible value is one, we also show the mean absolute error (MAE) and the
median absolute error (MedianAE), in order to give a good sense of the capabilities of the
neural network.
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Table 2. Neural Network training results.

R2-Score MAE (Meters) MedianAE (Meters)

Train set 0.9928 0.0302 0.0238
Test set 0.9922 0.0308 0.0241

The neural network achieves a high performance in predicting the correction factor
and by using (3), we can accurately calculate the distance between the UAV and the obstacle
ellipsoids. The Network was programmed on Keras/Tensorflow, then the network natively
can run on a graphical process unit (GPU) for high performance. After testing, we can
calculate the distance between a UAV ellipsoid and 200 obstacles in a mean time of 0.1208 s
(We use a RTX 2060 GPU). With this result, we can assure that the application of path
planning over ellipsoidal maps is computationally affordable.

Finally, we run an experiment on a virtual environment by placing the UAV in a grid
position and calculating the minimum distance to the closest object. In Figure 6, we show
the result of the experiment. The warmer colors represent greater distances. Notice that
the neural network can calculate an accurate map that is compact in memory and rich
in information.

Figure 6. Distance map. The warmer colors represent greater distances (20 random ellipsoids).

In the next section, we develop the path planning algorithm based on this neural
network by using a bio-inspired algorithm with a greedy approach.

3. Teaching-Learning Based Optimization

TLBO is an optimization algorithm based on the teaching of knowledge from a teacher
to his or her students on a classroom [20]. This population based algorithm has two main
phases, in which it generates new knowledge: the teacher and the learner phase.

The teacher phase is inspired by the transmission of knowledge from a teacher to the
students, and centers efforts to increase the average score of the class. The learner phase is
inspired by the knowledge shared among students; the students with more information
will be beneficial as the other learners learn new information from them. The teacher is the
best solution so far in the current iteration.

3.1. Teacher Phase

A good teacher will try to increase the knowledge of the students/learners based
on his or her own knowledge over time/iterations. But no matter how good a teacher is,
because of many factors this can only be done to some extent in a classroom composed of n
students. It can be said that the mean of the new knowledge of the class will be moved in
some extent towards the teacher’s knowledge, but it will also depend on the capabilities of
the class [21].
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The following equation shows the intent of the teacher XT to influence, to some degree,
each individual Xi (composed of the drones (x, y, z, yaw, pitch, roll) values) with the help
of the mean of knowledge of the whole class x̄:

X′i = Xi + r(XT − Tf x̄), (4)

where Tf ∈ {1, 2} is a random value of only two possible values, named the teaching factor;
and r ∈ [0, 1] is a random number. If f (X′i) provides a better solution than f (Xi) (where f
is a fitness function), X′i replaces Xi as a solution.

3.2. Learner Phase

The learner phase depends on the interchange of knowledge between students.
A learner with new information will have an influence on the overall knowledge of the
class [22].

This phase consists of adjusting each learner Xi based on another learner Xk, where i
and k ∈ [1, n] : i 6= k [9].

There are two alternatives that could happen for learners X; when the f (Xi) is better
than f (Xk) which generates the following learner:

X′i = Xi + r(Xi − Xk) (5)

or vice versa, when f (Xk) is better than f (Xi),

X′i = Xi + r(Xk − Xi), (6)

X′i replaces Xi as a solution if it represents a better solution. As can be seen, this phase also
includes the teacher solution from the previous phase, but in a less important role.

3.3. Fitness Function

We designed a fitness function that is composed of four terms:

f (Xi) = dt + c + h ∗ (dt + 1) + s ∗ (dt + 1), (7)

where dt is the Euclidean distance between a learner Xi and the target point θ (composed
of only by x, y and z values); by itself this term helps to attract the population towards the
target. c is the obstacle collision indicator:

c =

{
∞ if any oj ≤ 0,
0 otherwise

(8)

where oj is the distance between the leaner Xi and the obstacle j, which is obtained using
the neural network described in Section 2. The collision indicator’s function is to heavily
penalize collisions, since it is of utmost importance to guarantee the UAV’s safety.

h represents a heat factor that indicates the proximity of Xi to a set of obstacles
od ∈ oj : 0 < od ≤ r1, where r1 is a user defined range of proximity:

h = ∑(−log2(0.001 ∗ od) + log2(r1)). (9)

To give the drone the capability to avoid large convex obstacles inside a room (usually
obstacles that go from floor to ceiling), a stuck factor s is added. To obtain s it is necessary to
create a set of stuck zones sz; when the euclidean distance of the (x, y, z) values of teachers
τt−1 and τt (where τ is the last teacher obtained from a TLBO run and t is the current run)
is less than a user defined threshold α, a zone is added to sz. If the condition is met the
(x, y, z) values from τt are queued to sz. The stuck factor is obtained as follows:

s = ∑(−log2(0.001 ∗ sk) + log2(r2)), (10)
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where sk is the set of Euclidean distances from a learner Xi to any point in sz, where
0 < sk ≤ r2, and r2 represents a user defined range of proximity. The pseudocode for path
planning is presented in Algorithm 1.

Algorithm 1 Path Planning Algorithm.

1: procedure OPTIMIZE
2: actual_pos← starting position
3: Xi ← create learner population
4: X′i ← initialize to zero
5: XT ← obtain teacher from population as a separate value
6: ngens← number of generations
7: stop← stopping value
8: tqueue← teachers queue
9: Sz ← set stuck zones list to empty

10: XT f itness ← f itness(Xi, Sz)
11: α← 0.1 . User defined threshold
12: while XT f itness > stop do
13: for gen← 1 to ngens do
14: for every Xi do
15: X′i ← teacher_phase(Xi) . This step corresponds to (4)
16: X′i ← bound_increments(Xi, actual_pos)
17: X′i f itness ← f itness(X′i , Sz) . Evaluates (7)
18: Xi ← select_best(Xi, X′i) . Selects the best candidate between Xi and X′i
19: for every Xi do
20: X′i ← learner_phase(Xi) . This step corresponds to (5) and (6)
21: X′i ← bound_increments(Xi, actual_pos) . Described in Section 4

22: X′i f itness ← f itness(X′i , Sz)

23: (Xi, Xi f itness)← select_best_learners((Xi, Xi f itness), (X′i , X′i f itness))

24: (XT , XT f itness)← update_teacher(Xi, Xi f itness)

25: tqueue← append(XT , tqueue) . Add XT to queue
26: dist = norm(XT [0 : 3]− actual_pos[0 : 3]) . Euclidean norm
27: actual_pos← XT
28: Xi ← initialize() . Initialize and obtain fitness values
29: X′i ← set_to_zero()
30: mi← max_index(Xi f itness)
31: if dist < α then
32: Sz ← append(XT)
33: else
34: Xmi ← XT

return tqueue

4. Simulation and Results

To define the whole path, TLBO was run several times, and each time (except the
first one) the learners were initialized randomly within the proximity of τt−1; for the first
iteration the (x, y, z, yaw, pitch, roll) base values where defined arbitrarily. Each TLBO run
consisted of 20 iterations and a population of five individuals; r1 and r2 were assigned
values of 0.35 and 1.5, respectably. As a stopping condition, the Euclidean distance from τt
and the target θ was used (a distance value less than 0.1). At the end of a run, τt is added
to the path. As Figure 7 shows.

The values that could be achieved by a learner were bounded, so that the drone
could not make abrupt changes that could make it behave unstably from one state to
another or fly at very pronounced angles. In each iteration, the values of the learners were
bounded by τt−1 ± (0.5, 0.5, 0.5, 0.15, 0.15, 0.25). The drone’s (yaw, pitch, roll) values were
also bounded globally to ±[π, 0.7, 0.7] radians, respectively. The bounds and other values



Appl. Sci. 2021, 11, 7997 9 of 17

were empirically selected. We included the pitch and roll angles in the search space because
some control schemes for UAV such as Backstepping or Inverse Optimal Control need
these references [23–25]. However, our proposal can work even when ignoring pitch and
roll angles.

Compared to [9], our approach involving the path planning algorithm offers several
advantages. Firstly, our approach was designed to work indoors and outdoors alike.
Ref. [9] shows several limitations avoiding large convex obstacles inside a room since it
does not take them into consideration and this prevents the algorithm to be trapped in
certain local minimums. Tthe influence of the obstacles in our approach also only takes
into account the nearest obstacles in the range and adds smaller penalty values that do not
heavily obfuscate the influence of the distance to a target in the fitness function.

Figures 8–12 show several maps where paths were generated for a drone to follow.
All the maps were contained in a room composed of ellipsoids. The room was not plotted
for display purposes.

Figure 7. Room composed of ellipsoids looking from the outside (700 ellipsoids represent the walls,
floor and roof, and 25 random ellipsoids represent the obstacles).

(a) Upper view. (b) Lower view.

(c) Side view.
Figure 8. Path of map 1 generated with TLBO. The green ellipsoids represent the path obtained, the asterisk represent the
target and the multicolor ellipsoids represent the obstacles. It can be seen that the path is sufficiently smooth for a drone to
follow it.
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(a) Upper view. (b) Lower view.

(c) Side view.
Figure 9. Path of map 2 generated with TLBO. The green ellipsoids represent the drone path and the multicolor ellipsoids
represent the obstacles. Although it shows difficulties to find a path, it is safely pushed away the obstacles at the start.

(a) Upper view. (b) Lower view.

(c) Side view.
Figure 10. Path of map 2 without the room of ellipsoids. In this case, the ellipsoids, where the map is contained, have been
removed. As can be seen, now the UAV can easily find a path above and beside the obstacles.
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(a) Upper view. (b) Lower view.

(c) Side view.
Figure 11. Path of map 3 generated with TLBO. The path represented by the green ellipsoids, are sufficiently smooth for
the UAV.

(a) Upper view. (b) Lower view.

(c) Side view.
Figure 12. Path of map 4 generated with TLBO. The algorithm founds a smooth path in presence of convex obstacles.

The figures display the path followed by the drone (green ellipsoids) to its target (red
asterisk), avoiding on the way several obstacles (multicolor ellipsoids). As can be seen,
the drone can easily follow the paths obtained by the algorithm. Maps, like those shown
in Figures 8 and 9, show little difficulty finding a path; even in the presence of convex
obstacles at the start, the drone is safely pushed away until it finds a way to circumnavigate
the obstacles. Comparing Figures 9 and 10 it can be seen that, without the room, the path
simply passes above and beside the obstacles.
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Comparison with State of the Art Algorithms

In order to validate the proposed method, we compared it with other evolutionary
techniques and a well-known path planning algorithm. Firstly, we describe the Rapidly-
exploring Random Tree Star (RRT*) [26].

The RRT* algorithm, presented in Algorithm 2, finds a free path from the initial point
zinit to the final point zgoal . We created a tree T with an initial node zinit. Next, we grew the
tree up for N attempts.

Algorithm 2 Rapidly-exploring Random Tree Star (RRT*).

1: T ← InitializeTree()
2: T ← InsertNode(∅, zinit, T)
3: for i = 1 to N do
4: zrand ← SampleSpace()
5: znearest ← Nearest(T, zrand)
6: (znew, Unew)← Steer(znearest, zrand)
7: if ObstacleFree(znew) then
8: znear ← Near(T, znew)
9: zmin ← ChooseParent(znear, znearest,znew)

10: T ← InsertNode(zmin, znew, T)
11: T ← Rewire(T, znear,zmin,znew)

return T

To find the next node in the tree, we randomly sampled a point on the map zrand that
is not with an obstacle. We found the nearest node of the tree and renamed it znearest. After
steering from znearest to zrand, this function has heuristics about the robot’s kinematics. Then
we renamed zrand as znew and found a path Unew.

The ObstacleFree function search for collision with obstacles on the line from znearest
to znew; if there were no collisions, we proceeded to add the znew point. We collected the
points close to znew within a certain radius. Then we chose the parent node that carried the
least cost and renamed zmin. Finally, we added the link between zmin and znew and rewired
the tree to find the minimum cost.

To apply the RRT* algorithm on an ellipsoidal map we developed a collision detection
function. We used the Cholesky factorization of the covariance matrices that represent the
obstacles. We show this in (11). In the case of the evolutionary algorithms, we can expect
longer run-times because of the neural network prediction.

Σ = LLT . (11)

Using the triangular matrix L, we can calculate if a point x is inside an ellipsoid on the
map by using the inequality (12), where µ is the center of the ellipsoid.

||LT(x− µ)||2 ≤ 1. (12)

In Figure 13, we show the resulting path of the RRT* algorithm in the same four maps.
Notice that the found paths avoid the obstacles but do not consider the ellipsoid that
represents the UAV. We used a maximum of 5000 iterations, but for the mean convergence
on the four maps it was 1348 iterations.

Furthermore, we also present experiments with other state-of-the-art evolutionary
optimization algorithms. We ran the same tests for the the Differential Evolution (DE) [27]
algorithm, the Particle Swarm Optimization (PSO) [28] algorithm, and the Firefly (FF) [29]
algorithm.
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(a) RRT* result of Map 1 (b) RRT* result of Map 2

(c) RRT* result of Map 3 (d) RRT* result of Map 4
Figure 13. RRT* results of the maps 1 to 4. We show the constructed tree in black and the best found path in red.

All the evolutionary algorithms used the same fitness function presented in (7). All
the proposed methods are non-deterministic. To ensure the validity of the results, we ran
each algorithm experiment 30 times on the same computer. The start and endpoints were
the same for all the experiments. In Table 3, we present the comparison of the different
methods. Notice that the evolutionary schemes have the best mean performance for maps 1,
3, and 4. In Figure 14, we show the box-and-whisker plots for each map and each method.

Table 3. Experimental results, mean and standard deviation of the distance of the found path for
each algorithm.

Algorithm Map 1 Map 2 Map 3 Map 4

TLBO
mean 25.2912 61.5385 32.9653 34.9789

STD 2.2956 34.9912 2.5192 9.3455

DE
mean 29.7900 51.7444 35.8763 39.0414

STD 4.9021 22.3003 3.5688 8.2239

PSO
mean 27.8994 46.1655 32.5432 33.5899

STD 4.5297 29.2296 1.8954 7.6463

FF
mean 25.6914 46.5815 31.9210 32.5309

STD 3.1752 19.2983 2.1017 5.0559

RRT*
mean 37.7490 37.0365 39.6117 40.9821

STD 8.5628 5.1285 3.4001 4.3958
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(a) Comparison results for map 1.
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(b) Comparison results for map 2.
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(c) Comparison results for map 3.
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(d) Comparison results for map 4.
Figure 14. Comparison results for four experimental maps and for the five proposed methods.

In Table 4, we include the number of steps in each evolutionary algorithm and the
number of nodes in the RRT* algorithm.

Table 4. Experimental results, mean steps to goal point.

Algortihm Map 1 Map 2 Map 3 Map 4

TLBO 40.70 47.60 52.80 50.80
DE 52.84 47.10 61.30 59.30
PSO 46.33 45.30 49.40 47.93
FF 42.57 56.23 51.83 51.43
RRT* 1412.34 1115.10 1342.47 1516.24

We proved the novel algorithm in a real environment. We used the map from [19],
and we created the ellipsoidal map. In Figure 15, we offer the resulting path planning.
Notice that this path planning has a good performance even in non-structural environments.
In Table 5, we show how the Cholesky factorization allows lower complexity in the RRT*
algorithm.
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Table 5. Experimental results, mean and standard deviation of the run-time of each algorithm
in seconds.

Algorithm Map 1 Map 2 Map 3 Map 4

TLBO
mean 77.1916 221.7160 98.1027 100.3328

STD 9.1466 145.9610 9.8856 35.7067

DE
mean 57.8452 110.2755 66.7537 71.6009

STD 10.3801 52.5747 8.0530 19.4613

PSO
mean 107.8372 196.9315 111.1351 114.3043

STD 24.4556 15.5697 9.4505 37.8680

FF
mean 130.9127 257.07965 153.2906 151.7518

STD 19.7207 118.1890 13.2743 30.2673

RRT*
mean 5.3038 2.4780 5.8014 4.8056

STD 0.4246 1.0391 0.9550 0.3053

Figure 15. Path planning in a real ellipsoidal map, we show the point cloud for a better understanding
of the image. The cloud point has 100,000 points but the map only has 700 ellipsoids.

5. Conclusions and Future Work

In this work we presented a geometrically explicit and simple algorithm that takes
advantage of the ellipsoidal representation of maps generated to plan collision-free and
smooth paths regardless of the concavity of the obstacles or whether the environment is
indoor or outdoor.

Our method solves the non-trivial problem of computing the distance between two
ellipsoids by using a neural network. To train the neural network, it was necessary to
produce a training dataset and design a novel normalization method for these data. So, we
obtain an accurate approximation for the distance, which allows the computation of the
free-space and occupied-space of an environment, as is shown in Table 2 and Figure 6.

In order to obtain paths and to keep the computational costs of our approach low,
a bio-inspired algorithm named TLBO was used. We have chosen TLBO because it has
had the best performance in previous comparisons with other techniques [9]. The fitness
function was designed taking into account four desired features for the path obtained: to
keep a safe distance between obstacles’ ellipsoids and the UAV ellipsoid; to avoid collisions;
to reduce the total amount of the UAV’s proximity range throughout the whole path; and
to give the drone the capability to avoid large convex obstacles (walls inside a room, dense
and tall vegetation).
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It is important to mention that, based on our design of the fitness function, the com-
puted paths are not optimal. Because it was used as a greedy approach, it cannot get
the optimal path but is more versatile and can manage dynamical maps without extra
computational costs.

We compare the proposed approach with other evolutionary algorithms, DE, PSO,
and FF. We also compare with RRT*, and we constructed the collision detection function
for the ellipsoidal map. In most cases, evolutionary techniques with the presented fitness
function obtained a better performance than RRT*, but clearly RRT* has a better perfor-
mance on time. Furthermore, the evolutionary methods also calculate the UAV orientation
and not just the (x, y, z) position.

Future Work

The proposed algorithm uses a greedy strategy to find a nearby optimal position.
Therefore, the algorithm is locally optimal. To compare different path planning algorithms,
a cost function must be developed, which has non dependency on the map abstraction.

We are working on substituting the greedy politic used to compute the path as well as
the bio-inspired algorithm by a reinforcement learning algorithm so the system can learn
policies of navigation instead of computing paths.

Furthermore, we are designing an intelligent low-level control algorithm that considers
the dynamical model of the UAV to follow the planned path.
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