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Featured Application: The paper may be an excellent tool for treating the acoustic behaviour of
arbitrary plate shapes and the response to diffuse acoustic fields. The integration scheme used to
solve the Helmholtz equation is robust and efficient when compared to other existing methods.

Abstract: In this study, a method for determining the effects of fluids on the dynamic characteristics
of an aerospace structure and the response of the structure when it is excited by the acoustical loads
produced during a rocket launch, has been developed. Elevated acoustical loads are critical in the
design of large lightweight structures, such as solar arrays and communication reflectors, because of
the high acceleration levels. The acoustic field generated during rocket launch can be considered as a
diffuse field composed of many uncorrelated incident plane waves traveling in different directions,
which impinge on the structure. A boundary element method was used to calculate the pressure
jump produced by an incoming plane wave on an unbaffled plate and the fluid–structure coupled
loads generated through plate vibration. This method is based on Kirchhoff’s integral formulation of
the Helmholtz equation for pressure fields. The generalized force matrix attributed to the fluid loads
was then formulated, taking the modes of the plate in vacuum as base functions of the structural
displacement. These modes are obtained using a finite-element model. An iteration procedure was
developed to calculate the natural frequencies of the fully coupled fluid–plate system. Comparison
of the results obtained using the proposed method with those of other theories and experimental
data demonstrated its efficiency and accuracy. The proposed method is suitable for analyzing plates
of arbitrary shape subjected to any boundary conditions in a diffuse field for low to medium values
of the frequency excitation range.

Keywords: unbaffled plate; diffuse field incidence; boundary element method; fluid damping;
natural frequency

1. Introduction

Spacecraft structures, such as communication reflectors and solar arrays, are excited
by an intense acoustic field during launcher lift-off. The acceleration levels induced by
the acoustic loads can be very high, because of the very low densities of these structures.
Acoustic loads can damage sensitive parts of a structure and the electronic equipment
attached to it. Therefore, light aerospace structures are subjected to intense acoustic tests
in large reverberant chambers. The aerospace industry requires a method to predict the
acceleration levels reached when the acoustic loads excite these structures. Therefore, the
catastrophic damage that occurs when acoustic tests are performed in the reverberant
chamber can be prevented during the design phase.

Two effects need to be considered when the dynamic response of the structure under
acoustic loads is investigated: Plate radiation and external sources generated acoustic wave
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diffraction when the loads impinge on the structure. These effects are coupled and thus
produce continuous feedback between the structural and acoustic behaviors.

The dynamic behavior of these types of structures has recently received attention from
several investigators. Therefore, the stress level and concentration for glass fiber reinforced
polimer composites has been studied by Ferdous et al. [1] and the behaviour under impact
loads by Zangana et al. [2] and He et al. [3].

The problem of coupling between a baffled plate and an acoustic field has been
investigated extensively, e.g., Berry et al. [4], Filippi et al. [5], Lomas and Hayek [6],
Stepanishen [7], Skudrzyk [8], Wu et al. [9] and Sharma and Sarkar [10,11]. Unbaffled
plates have been studied recently because of some additional difficulties identified by
Atalla et al. [12], Gascón and García-Fogeda. [13], Nelisse et al. [14], Laulagnet [15], and
Nowak and Zielinski [16]. For all cases examined in this study, the plate is assumed to be
unbaffled.

The effect of the surrounding air on the dynamic characteristics of these types of
structures cannot be ignored. There may be significant differences between the analysis and
vibration tests, owing to the presence of air. Therefore, the effect of the surrounding air must
be considered during the modeling to validate mathematical models of structural dynamics.
A fluid (including a light fluid, such as air) influences the natural frequency, damping
coefficient, and normal modes when the structure is made of a very low-density material.
Fowler et al. [17], Maidanik [18], Arenas [19], and Mattei [20] provided some examples of
this phenomenon. The assumption of light coupling cannot be applied therefore for this
case.

For complex structures, the governing equations of the fluid–structure interaction
must be solved numerically. Among the different numerical techniques, the boundary
element method (BEM) and the finite element method (FEM) are the most widely used
to solve this type of problem. The advantages of the BEM for solving a vibrating plate
surrounded by the fluid include the satisfaction of the far-field radiation conditions and the
relatively low number of discretization elements. However, the main disadvantage is that
the matrix of influence coefficients is complete with no zeros. Therefore, the BEM method
is more expensive than the FEM method in solving a linear system of equations where the
matrix has a bandwidth diagonal. Ben Mariem and Hamdi [21], Coyette [22], Göranson
et al. [23], and Nowak and Zielinski [16] used the BEM/FEM model to solve acoustical
problems. In relation to the use of FEM models for solving acoustic problems, there are
several commercial software programs based on this method. Among them, it is worth
mentioning COMSOL Multiphysics, whose acoustic module allows modeling acoustic
propagation problems in both solids and fluids (see for example, Gieva et al. [24]). Both
the FEM and the BEM are only valid for low- to medium-frequency ranges to solve fluid-
structure interaction problems. For high-frequency ranges, a method such as statistical
energy analysis (SEA) must be used (e.g., Paolozzi and Peroni, [25]).

Troclet et al. [26] and ESA PSS-03-204 [27] showed that the acoustic lift-off noise of a
launcher could be characterized as a diffuse field. Realistic modeling of the acoustic field
must be conducted to reflect this loading effect on the response of the structure. Nelisse
et al. [14] and Tseng [28] reported that a good representation of the diffuse field could be
determined by superposing uncorrelated incident plane waves traveling throughout space.
The direction of each plane wave was characterized by a pressure spectral density.

In this paper, a numerical method for solving a fully coupled fluid–structure problem
is presented. The method can be used to analyze the effect of the surrounding fluid on the
dynamic characteristics of the unbaffled plate of a trapezoidal planform and the response
of the plate to a diffuse field. The method is based on a BEM for the fluid domain and a
FEM for the structure. The plate can be subjected to any type of boundary conditions. The
normal modes of the plate in vacuum are adopted as basis functions to determine plate
deformation for the fully coupled fluid–structure. Therefore, the number of degrees of
freedom of the structure is significantly reduced, as demonstrated by Grooteman et al. [29].
In the BEM numerical model, the plate is divided into trapezoidal elements, and on each
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element, the pressure that jumps across the plate is assumed to be constant. The influence
coefficient matrix is obtained through numerical integration, taking the finite part when
the integral is singular using the Hadamard method. Numerical results are presented to
demonstrate the robustness of the integration scheme of the method and are compared to
results obtained using more sophisticated methods, such as the Hamdi functional approach
(Hamdi and Jean, [30]).

The method developed is robust due to the integration scheme used and accounts for
the strong coupling between compressible fluids and plates of any shape. The contribution
of the fluid to the damping of the plate is also determined.

The response of the unbaffled rectangular plate to a diffuse field is determined using
the proposed method and the RAYON code used by Hamdi [31]. The differences between
the results obtained using the proposed method and RAYON are negligible. Other results,
such as the effect of the surrounding air on the dynamic characteristics of rectangular and
trapezoidal plates, are also presented in this paper. The physical transcendency of these
results in terms of variation in the natural frequency and additional damping owing to the
fluid is described.

2. Models and Methods

A flat, isotropic, homogeneous, thin plate of arbitrary shape and under any support
condition is considered. The plate is in the z = 0 plane and one of its sides is selected as
the x-axis (Figure 1).
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Figure 1. Example of plate.

The differential equation that governs the transverse displacement w (x, y, t) of the
plate with constant thickness and without structural damping can be expressed as follows
(Laulagnet, [15]):

D∇4w + ρMh
∂2w
∂t2 = ∆P̃(x, y, t) + f (x, y, t) (1)

where D is the flexural rigidity, ρM is the material density, h is the plate thickness, ∆P̃ is the
acoustic pressure jump across the plate, surface, and f (x, y, t) represents the external forces
other than the forces exerted by the fluid. The equations for the plate are completed based
on the boundary conditions at the edge of the plate.

The pressure jump ∆P̃ can be expressed as follows:

∆P̃(x, y, t) = ∆P̃vib(x, y, t) + ∆P̃wave(x, y, t) (2)
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where ∆P̃vib is the pressure jump owing to the plate radiation, and ∆P̃wave is the pressure
jump owing to the load induced by the incident plane wave over its surface when the
plate is rigid. It is assumed that small perturbations occur in a compressible, inviscid and
irrotational fluid, and these pressure distributions can be calculated by solving the wave
equation for the fluid domain, expressed as follows:

∇2 p− 1
a∞2

∂2 p
∂t2 = 0 (3)

where a∞ is the speed of sound in the fluid at rest.
The application of the momentum equation at the plate surface yields the following

boundary condition:
∂p
∂z

= −ρ∞
∂2w
∂t2 at z = ±0 (4)

where ρ∞ is the fluid density.
At an extended distance from the plate, the Sommerfeld radiation condition must be

satisfied. It is assumed that the motion is harmonic for both the fluid and the structure
to solve the system of Equations (1), (3) and (4). Therefore, the transverse displacement
w(x, y, t) and pressure p(x, y, z, t) can be written as follows.

w(x, y, t) = W(x, y)e−iωt

p(x, y, z, t) = P(x, y, z)e−iωt (5)

The deformation of the plate W(x, y) can be expressed as a linear combination of the
normal modes of the plate in vacuum, which are determined using the FEM model. Let
these modes be Wm

(
xj, yj

)
, where

(
xj, yj

)
are the coordinates of the FEM model nodes. An

analytical expression valid for all (x, y) for the plate is obtained through curve fitting in a
Lagrange polynomial form. The deformation of the plate is then derived as follows:

w(x, y, t) =
M

∑
m=1

N

∑
n=1

q0
mnWmn(x, y)e−iωt (6)

where the q0
mn are unknown coefficients to be determined when the coupled fluid–structure

equations are solved, and Wmn(x, y) are the curve-fitted modes. The modes of the plate in
vacuum are chosen as a basis, and the number of degrees of freedom can be significantly
reduced.

Next, the independent variables x, y, and z are nondimensionalized using the plate
characteristic length lc, which is defined as lc =

√
Sp, where Sp is the plate area.

2.1. Calculation of Pressure Jump ∆P̃wave

For harmonic motion, the pressure generated by a plane wave in directions θ and φ at
any point in the space can be expressed as follows (Nelisse et al. [14]):

Pi(x, y, z) = P0e−ik(sin φ cos θ+sin φ sin θ+z cos φ) (7)

where k = ω/a∞ is the acoustic wave number.
The pressure field (the sum of the incident plane wave field and the diffracted field)

must satisfy Equation (3) and the following boundary condition at the plate surface when
the plate is considered perfectly rigid:

∂P
∂z

= 0 at z = ±0 in Sp (8)
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By applying Green’s theorem, the equation for the pressure field can be written as
follows:

P(x, y, z) = Pi(x, y, z) +
1

4π

x

Sp

∆P̃wave(ξ, η)
∂

∂z

(
e−ikR

R

)
dξdη (9)

where
∆P̃(ξ, η) = lim

ε→0
[P(ξ, η,−ε)− P(ξ, η,+ε)] (10)

and e−ikR

R is the free space Green function.
After the boundary condition, Equation (8), is applied, the following integral equation

for calculating ∆P̃wave is derived:

ik cos φP0eik sin φ(cos θx+sin θy) = − 1
4π

x

SP

∆P̃wave(ξ, η)
∂2

∂z2

(
e−ikR

R

)∣∣∣∣∣
z=0

dξdη (11)

2.2. Calculation of Pressure Jump ∆P̃vib

Radiated pressure generated by plate vibration can be expressed as a double layer
distribution on the plate surface (Capitaine and Lome, [32]; Putra and Thompson, [33]).
Applying Green s theorem for a pure harmonic motion, it is possible to express Equation (2)
as a distribution of dipoles on the plate surface (Maidanik, [18]):

P(x, y, z) = − 1
4π

x

Sp

∆P̃vib(ξ, η)
∂

∂z

(
e−ikR

R

)
dξdη (12)

The boundary conditions are applied to the surface of the plate, and Equation (13) is
derived to determine the pressure jump across the plate:

∂P(x, y, z)
∂z

∣∣∣∣
z=0

= ρ∞ω2
M

∑
m=1

N

∑
n=1

q0
mnWmn(x, y) = − 1

4π

x

Sp

∆P̃vib(ξ, η)
∂2

∂z2

(
e−ikR

R

)∣∣∣∣∣
z=0

dξdη (13)

Due to the linearity of Equation (13), the pressure jump
(

∆P̃vib

)
mn

for each plate
deformation mode Wmn is obtained.

2.3. Boundary Element Method

The integral equation (13) is solved as follows. First, the plate is divided into panels
(of trapezoidal/triangular shape), as depicted in Figure 2. The numbers of panels are set as
I in the x-direction and J in the y-direction. Therefore, I·J is the total number of panels. The
pressure in each panel is assumed to be constant and therefore the “jump” in pressure at
panel ij is equal to

(
∆P̃mn

)
ij

due to the normal mode Wmn. The integral on the surface of

the plate is then evaluated as the sum of all panels, resulting in the following expression:

q0
mnρ∞ω2lcWmn(x, y) = − 1

4π

I

∑
i=1

J

∑
j=1

(
∆P̃vib(mn)

)
ij

x

Spij

∂2

∂z2

(
e−ikR

R

)∣∣∣∣∣
z=0

dξdη (14)
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The integral equation at I·J control points located at the geometric center of each panel
is satisfied to obtain a linear system of I·J equations for the pressure jump distribution
(either ∆P̃vib) associated with the mode Wmn.

Condition (14) may be represented in a matrix form as:

[AIC]
{

∆P̃
}

mn
= −4πρ∞ω2lcq0

mn{Wmn} (15)

where the influence coefficients of the matrix [AIC] are defined as follows:

AICrs
ij =

x

Spij

∂2

∂z2

(
e−ikR

R

)∣∣∣∣∣
z=0

dξdη (16)

In the integral expressed in Equation (16), special care must be taken for the singularity
that occurs when the element of integration coincides with the element where the boundary
condition is satisfied. Let the integrand be established as follows.

K(xrs − ξ, yrs − η) = K(x0, y0) (17)

The singular part of function is added and subtracted to prevent numerical instabilities.
Therefore, the integral can be expressed as follow:
x

K(x0, y0)dx0dy0 =
x

[K(x0, y0)− Ks(x0, y0)]dx0dy0 + F.P.
x

Ks(x0, y0)dx0dy0 (18)

The first integral on the right side is no longer singular when x0 → 0 and y0 → 0 ,
and it can be evaluated numerically. The second integral can be analytically evaluated, and
the finite part in Hadamard s sense can be used. The robustness of the integration method
is validated using the following example. For very low frequencies, function Ks(x0, y0) can
be expanded in the form of Taylor series, as follows:

Ks(x0, y0) ≈ −
1

R3 −
k2

2R
+

ik3

3
(19)
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If a rectangular element of sides 2a and 2b is considered, the integration of the ex-
panded form of the function Ks, that is, Equation (19), after the finite part of the integral of
the term, 1/R3, is selected, yields the following expression:

−4
√

a2 + b2

ab
− k2

2
4b ln

∣∣∣∣∣ a +
√

a2 + b2

b

∣∣∣∣∣− k2

2
4a ln

∣∣∣∣∣ b +
√

a2 + b2

ba

∣∣∣∣∣+ ik3

3
(4ab) (20)

The results obtained using Equation (20) are compared with the numerical procedure
described for evaluating the integrals in Equation (18) and Figure 3. Both methods are in
excellent agreement, and the slight difference was attributed to the number of terms used
in the Taylor series expansion. As the procedure for evaluating the integral in Equation (18)
is independent of the nondimensional frequency k, the above results demonstrate the
robustness of the integration method. The method described to treat the singularity
provides accurate results (see Figure 3). Although other methods, such as the ones given
by Nowak and Zielinski [16] and Hamdi and Jean [30], for example, are equally effective
for treating this singularity.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 16 
 

−4√ܽଶ + ܾଶܾܽ − ݇ଶ2 4ܾ ln ቤܽ + √ܽଶ + ܾଶܾ ቤ − ݇ଶ2 4ܽ ln ቤܾ + √ܽଶ + ܾଶܾܽ ቤ + ݅݇ଷ3 (4ܾܽ) (20)

The results obtained using Equation (20) are compared with the numerical procedure 
described for evaluating the integrals in Equation (18) and Figure 3. Both methods are in 
excellent agreement, and the slight difference was attributed to the number of terms used 
in the Taylor series expansion. As the procedure for evaluating the integral in Equation 
(18) is independent of the nondimensional frequency k, the above results demonstrate the 
robustness of the integration method. The method described to treat the singularity pro-
vides accurate results (see Figure 3). Although other methods, such as the ones given by 
Nowak and Zielinski [16] and Hamdi and Jean [30], for example, are equally effective for 
treating this singularity. 

 
Figure 3. Comparison of numerical and exact integration of singular terms of the kernel for low 
frequencies. 

The same procedure is used to solve the integral Equation (9), adopted as the un-
known parameter at panel ij ൫∆ ෨ܲ௪௩൯. 

After all pressure distributions have been calculated, the generalized force for the 
uvth mode is evaluated: 

ܳ௨௩ = ඵ ∆ ෨ܲ ௨ܹ௩݀ߪ = ඵ ∆ ෨ܲ௩ ௨ܹ௩݀ߪ + ඵ ∆ ෨ܲ௪௩ ௨ܹ௩݀ߪௌௌௌ  (21)

The equations of motion for the generalized coordinates associated with the modes 
of plate vibration, including the forces exerted by the plane wave, can then be expressed 
as follows: (−߱ଶሾॸሿ + ሾॶሿ)ሼݍሽ = ሼܳሽ = ሾܳ௩ሿሼݍሽ + ሼܳ௪௩ሽ = ߱ଶሾॸሿሼݍሽ + ሼܳ௪௩ሽ (22)

where ሾॸሿ is the structural mass matrix, ሾॶሿ is the structural rigidity matrix, and ሾॸሿ 
is the fluid mass matrix. The solution of this linear system results in the vector ሼݍሽ. This 
vector represents the participation factor of the vacuum modes in the total response of the 
fluid-loaded plate to an incident wave. 

Equation (22) can be rearranged and expressed as follows: ൫−߱ଶ൫ሾॸሿ + ሾॸሿ൯ + ሾॶሿ൯ሼݍሽ = ሼܳ௪௩ሽ (23)

If no external forces are considered, except those generated by the surrounding fluid 
due to the free vibration of the plate, the resultant homogeneous system will induce the 
natural frequencies and normal modes of the coupled fluid–structure system. 

2.4. Procedure for Computing Natural Frequencies 
The natural frequencies of the system are determined by making the determinant 

formed by the two mass matrices and the stiffness matrix equal to zero. However, the 
added mass matrix ሾॸሿ depends on the oscillation frequency of the plate, and thus, an 

Figure 3. Comparison of numerical and exact integration of singular terms of the kernel for low
frequencies.

The same procedure is used to solve the integral Equation (9), adopted as the unknown
parameter at panel ij

(
∆P̃wave

)
ij

.

After all pressure distributions have been calculated, the generalized force for the uvth
mode is evaluated:

Quv =
x

Sp

∆P̃Wuvdσ =
x

Sp

∆P̃vibWuvdσ +
x

Sp

∆P̃waveWuvdσ (21)

The equations of motion for the generalized coordinates associated with the modes of
plate vibration, including the forces exerted by the plane wave, can then be expressed as
follows:(

−ω2[M] + [K]
)
{q} = {Q} =

[
Qvib

mn

]
{q}+ {Qwave} = ω2[M] f {q}+ {Q

wave} (22)

where [M] is the structural mass matrix, [K] is the structural rigidity matrix, and [M] f is
the fluid mass matrix. The solution of this linear system results in the vector {q}. This
vector represents the participation factor of the vacuum modes in the total response of the
fluid-loaded plate to an incident wave.

Equation (22) can be rearranged and expressed as follows:(
−ω2

(
[M] + [M] f

)
+ [K]

)
{q} = {Qwave} (23)

If no external forces are considered, except those generated by the surrounding fluid
due to the free vibration of the plate, the resultant homogeneous system will induce the
natural frequencies and normal modes of the coupled fluid–structure system.
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2.4. Procedure for Computing Natural Frequencies

The natural frequencies of the system are determined by making the determinant
formed by the two mass matrices and the stiffness matrix equal to zero. However, the
added mass matrix [M] f depends on the oscillation frequency of the plate, and thus, an
iteration procedure must be applied. The developed iteration scheme can be simplified in
the following steps:

The natural frequencies of the system are computed, assuming that the surrounding
fluid is incompressible.

1. A set of reduced frequencies is then determined, defined as k j =
ωj, incompr ·lc

a∞
, whereωj

is the jth natural frequency of the coupled incompressible fluid structure.
2. These results are assumed as an initial guess, and by letting the added mass matrix to

now be a function of k, the natural frequencies of the system are recalculated until
convergence is achieved (for further details, see Gascón and García-Fogeda [8]). For
each natural frequency, the procedure converges after two or three iterations. For a
compressible fluid, the natural frequencies are obtained sequentially, whereas for an
incompressible fluid, all natural frequencies are obtained simultaneously.

3. After the natural frequencies of the coupled fluid–structure system have been deter-
mined, the normal modes can be computed and expressed as a linear combination of
the normal modes of the structure in vacuum.

2.5. Calculation of the Dynamic Response of the Structure Immersed in the Diffuse Field

A diffuse field can be modeled by superpositioning plane waves traveling in different
directions (Nelisse et al. [14]; Kim et al. [34]; Capitaine and Lome, [32]; Tseng [28]. Let us
assume that the elemental power spectral density of the incident wave in the ij direction,
defined by angles θ and φ (Figure 4), is Wpij(ω) (in Pa2/Hz). If the different directions of
the incident waves are uncorrelated, the total power spectral density Ŵp will be the sum of
all the elemental densities. As the acoustic requirement of a launcher is expressed in N dB
per octave for a specific bandwidth (ESA PSS-03-204, [27]), the total power spectral density
Wp is constant over such a bandwidth, which results in the following expression:

N = 10 log
P2

P2
r
= 10 log

Ŵp∆ f
P2

r
(24)

where Pr = 2× 10−5 Pa is the reference pressure. From Equation (24), the power spectral
density equation can be written as follows:

Ŵp =
P2

r
∆ f

10N/10 (25)
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The space field is divided into a finite number of directions θi and ϕj. There is a solid
angle aij associated with each direction. It is assumed that the power spectral density in
the ij direction is aij·Ŵp(ω), where Ŵp is the total power spectral density.

When all problem parameters have been defined, the structural response to the diffuse
field is obtained as follows.

Let Hrij(ω) be the transfer function between the r degree of freedom of the structure
and the plane wave in the ij direction. The power spectral density induced by all plane
waves in the solid angle corresponding to the ij direction for the rth degree of freedom is
obtained using Equation (26):

Ŵr,ij =
∣∣Hr,ij(ω)

∣∣2Ŵpij =
∣∣Hr,ij(ω)

∣∣2aijŴp (26)

As all directions are uncorrelated, it can be demonstrated that for a random field, the
structural response is obtained as the sum of the elemental spectral densities (Nigam and
Narayanan, [35]):

Ŵr(ω) = Ŵp(ω)∑
i,j

∣∣Hr,ij(ω)
∣∣2aij (27)

Thus, the relationship between the power spectral density of the r degree of freedom
of the structure, the acoustic power spectral density Wp, and the transference function
between the r degree of freedom and the plane waves consisting of the diffuse field is
established.

3. Results
3.1. Acoustic Loading on a Rigid Plate

Diffraction of a plane wave impinging on a rigid plate is considered to validate
the code. The results obtained are compared with those of the semi-analytical method
developed by Nelisse et al. [14]. The orientations of the incident plane wave are θ = 0◦ and
φ = 0◦ (i.e., perpendicular to the plate), and the amplitude is unity. Figure 5 shows the
absolute values of the sound pressure jump at the point (0.27, 0.3) in the panel as a function
of the frequency range between 0 and 500 Hz. The results show excellent agreement
between the predictions of both methods. As the influence coefficient matrix is common for
the calculated pressure jump of both rigid and vibrating plates, the code used to calculate
the natural frequencies is validated.
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3.2. Effect of Fluid on Dynamic Plate Characteristics

Next, the effect of the surrounding fluid on the dynamic characteristics of the plate is
investigated. The cases considered are a rectangular simply supported plate, and trape-
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zoidal simply supported and cantilever plates. Table 1 lists the first four values of natural
frequency for the cases of no fluid, incompressible fluid, and compressible fluid. All plates
were of sandwich type, and the acoustic medium surrounding the plates was air. The
material properties and thickness of these plates were as follows: E = 4.41 × 109 N/m2,
υ = 0.29, h = 15.78 × 10−3 m, and ρM = 130.7 kg/m3.

Table 1. Natural frequency and equivalent damping values for rectangular and trapezoidal plates.

Rectangular Simply Supported Plate

Frequency (Hz) Equivalent Damping (kg/s)

In vacuum Incompressible Compressible
1st mode 563.1 525.5 540.8 262.1
2nd mode 1006.4 961.6 1000.0 514.8
3rd mode 1482.0 1432.9 1479.2 143.9
4th mode 1701.0 1647.9 1699.6 180.2

Trapezoidal Plate Simply Supported

Frequency (Hz) Equivalent Damping (kg/s)

In vacuum Incompressible Compressible
1st mode 168.2 148.7 142.9 26.1
2nd mode 350.3 324.8 309.1 11.2
3rd mode 448.2 418.8 410.9 215.1
4th mode 622.2 592.1 604.8 183.4

Trapezoidal Cantilever Plate

Frequency (Hz) Equivalent Damping (kg/s)

In vacuum Incompressible Compressible
1st mode 27.5 24.9 24.9 0.01
2nd mode 84.5 79.5 79.3 1.12
3rd mode 147.2 133.6 133.5 0.14
4th mode 245.1 232.3 229.9 1.87

This type of structure is used in the aerospace industry because it is light and stiff. For
such structures, the fluid effects are very significant. The dimensions of the rectangular
plate are 0.6 m × 0.386 m, and the trapezoidal plate has a base of 1 m, a short base of 0.6 m,
and a height of 1 m.

As expected, it can be observed that the natural frequencies of the plates decrease from
the vacuum values. With respect to the support condition, it is noticed that this effect is
more significant for the simply supported plate than for the cantilever plate, which signifies
that the added mass value of the first plate is higher than that of the second plate. The
reduction in natural frequency decreases with increasing modal order. Arenas obtained
similar findings [19]. With respect to the plate shape, a stronger reduction in the natural
frequencies is observed for the trapezoidal plate than for the rectangular plate for the same
boundary conditions.

In Figures 6–8, the real and imaginary parts of the added mass matrix for the three
plates versus the nondimensional frequency are presented. With these figures, we want
to observe how the real part affects the natural frequencies and how the imaginary part
does it to the damping coefficient, for the plates investigated. For all cases, the value of
the added mass increases from the incompressible case (k = 0) until it reaches a maximum,
and then decreases toward zero. If the nondimensional frequency of the mode in vacuum
is located before the maximum, the natural frequencies are reduced owing to the fluid.
However, the frequencies tend to reach the vacuum value if the nondimensional frequency
is located after the maximum. With respect to the imaginary part of the added mass matrix,
it is observed that for any reduced frequency these terms are always positive, showing
that the fluid influence for these cases is always stabilizing. In relation to the real part
of the added mass, there is a minimum value and then tend towards the value of zero,
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showing that, at very high frequencies, the contribution of the fluid is very small and can
be neglected.
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Figures 9–11 show the fluid damping ratio γ = −miω
Ccr

, where mi is the imaginary
part of the diagonal terms of the added mass matrix for each mode, and Ccr is the critical
damping of the corresponding mode. Perhaps, the most interesting result is the equivalent
fluid damping for the first mode of the trapezoidal cantilever plate. The ratio of the
equivalent damping coefficient to the system critical damping coefficient (corresponding
to this mode) reaches a peak value of 0.95. When this value is compared to the empirical
value (0.2) typically used in design analysis, it could be difficult to predict these values
correctly when the fluid is considered. It may be true that in most cases, the equivalent
damping of the fluid, which tends to have a constant value (as observed in Figures 9–11),
does not exceed 0.2. However, it has been demonstrated that such an approach may be
unrealistic in some cases.
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3.3. Response of a Rectangular Plate to the Diffuse Field

Consider a rectangular plate of 0.386 m × 0.6 m under free–free support conditions
with the following structural characteristics: E = 9 × 109 N/m2, υ = 0.30, h = 16 × 10−3 m,
and ρM = 129 kg/m3.

For this plate, the response to a diffuse field was computed. The numerical results
obtained using the proposed method were compared (Figures 12–14) with those obtained
using a computer code RAYON (Hamdi, [31]). The results of both numerical methods were
in good agreement at a frequency range of 0–1400 Hz, but different BEM models were
established in both methods: Direct formulation and variable approach.
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The inference from this comparison is that the proposed method is as robust as other
well-established methods. The proposed method can analyze complex geometries and be
fully compatible with structural codes, such as NASTRAN.

4. Conclusions

In this study, a method of determining the dynamic characteristics of a plate immersed
in a diffuse field under different support conditions for low- to medium-frequency fre-
quencies was developed. The numerical integration procedure of the kernel function was
validated using existing data and the proposed method showed excellent efficiency and
accuracy. The reduction of the natural frequencies of a sandwich plate due to the surround-
ing fluid has been calculated. The added mass and fluid damping modal coefficients were
described in physical terms as a function of the reduced frequency, and it was demonstrated
that their effects could not be neglected in dynamic calculations.

The response of the rectangular plate to a diffuse field was determined and compared
to that of RAYON. The numerical results were in excellent agreement with those obtained
using RAYON. Further investigations should be conducted for the diffuse field using
another model.

A robust method for fully coupling of a compressible fluid and a plate has been
presented. The method has the capability to predict the influence of the fluid on the
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dynamic characteristics of the plate surrounded by the fluid, and to determine the response
of the coupled fluid structure to external loadings.

A promising application of our method would be to space structures, such as antennas
or solar panels, dynamically tested on earth (surrounded by air) and operating in vacuum.
With the proposed method, the effect of air, when the structure is tested, can be subtracted,
thereby improving the dynamical model of the system.
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