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Abstract: In an era of big data, face images captured in social media and forensic investigations,
etc., generally lack labels, while the number of identities (clusters) may range from a few dozen to
thousands. Therefore, it is of practical importance to cluster a large number of unlabeled face images
into an efficient range of identities or even the exact identities, which can avoid image labeling
by hand. Here, we propose adaptive facial imagery clustering that involves face representations,
spectral clustering, and reinforcement learning (Q-learning). First, we use a deep convolutional
neural network (DCNN) to generate face representations, and we adopt a spectral clustering model
to construct a similarity matrix and achieve clustering partition. Then, we use an internal evaluation
measure (the Davies–Bouldin index) to evaluate the clustering quality. Finally, we adopt Q-learning
as the feedback module to build a dynamic multiparameter debugging process. The experimental
results on the ORL Face Database show the effectiveness of our method in terms of an optimal number
of clusters of 39, which is almost the actual number of 40 clusters; our method can achieve 99.2%
clustering accuracy. Subsequent studies should focus on reducing the computational complexity of
dealing with more face images.

Keywords: adaptive clustering; face clustering; face feature extraction; reinforcement learning

1. Introduction

With the rapid development of computer vision and pattern recognition, face im-
ages, as one of the most common formats of visual information, provide a wide range
of application prospects. Face images can be captured in many fields, including social
media, forensic investigations, and surveillance monitoring, etc. [1–3]. However, these
captured face images generally lack labels, which leads to difficulties in identifying them.
The unknown identities (clusters) can range from a few dozen to thousands, and how to
locate an efficient range or even an exact range raises an essential problem [4]. In addition,
implementation of modern clustering algorithms [5,6] is required to ensure the number
of clusters as well as some adjustable parameters in advance. Therefore, it is important to
design an efficient facial imagery clustering algorithm for image labeling.

Recently, face image clustering has attracted a lot of interest from researchers [7–11].
L. Zhang et al. [7] presented a clustering method based on a spectral clustering and self-
organizing feature mapping (SOM) neural network. C. Qi et al. [8] proposed a deep
face clustering method based on a residual graph convolutional network (RGCN). M.S.
Abdallah et al. [9] proposed a TV media mining system based on a DCNN to rapidly
identify a specific individual in real-time processing video data. I. Ahn et al. [10] proposed
a multiple segmentation technique combined with constrained spectral clustering to label
facial images containing objects with complicated boundaries. C. Otto et al. [11] proposed
an approximate rank-order clustering algorithm for large-scale face image clustering.
Despite the tremendous efforts that have been devoted to image clustering, most previous
studies have not adapted to the illuminance, pose, and complicated background of images.
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In addition, existing studies have failed to estimate the number of clusters and the values
of adjustable parameters.

In general, face clustering involves face representation and a clustering model. Face
representation is generally a numeric vector descriptor of a face image. In the literature [12–15],
most traditional hand-crafted face representations often lack robustness with respect to
adverse factors within the imagery. The quality of the captured images is low due to
the factors of illuminance, pose, and complicated background, etc. M. Versaci et al. [16]
presented a fuzzy geometrical approach based on unit hypercubes for image contrast
enhancement to solve this problem. L. Wang et al. [17] learned the discriminative target
feature by aligning the feature domain globally, while distinguishing the target clusters
locally. Their method reduced the impact of illuminance, pose, and image quality. We adopt
the significant progress that has been achieved in unconstrained face representation [18–20],
which can alleviate the influence of underlying factors by using a convolutional neural
network-based face representation. Spectral clustering is an example of graph-based
clustering algorithms. As compared with other clustering algorithms such as hierarchical
clustering methods and K-means, spectral clustering has more robustness with respect to
the uncertainty of data sparsity and distribution. Therefore, we use spectral clustering as
the partition model. The main aim of this study is to propose an adaptive facial imagery
clustering method, which mainly involves face representations, a spectral clustering model,
and reinforcement learning (i.e., Q-learning used in this study) [21]. With Q-learning,
the clustering model can adaptively search and find the optimal setting for the number
of clusters and dimension reduction (i.e., the core adjustable parameter) in the spectral
clustering model, which helps to dramatically improve the performance of clustering.

The remainder of this paper is organized as follows: In Section 2, we present the
details of adaptive clustering; in Section 3, we briefly introduce the IMM Face Database
and provide some simulations to show the effectiveness of our proposed method; finally,
conclusions and future work are presented in Section 4.

2. Proposed Adaptive Clustering

In this section, we describe the proposed adaptive facial imagery clustering, which
includes the following four components: face representations, spectral clustering, per-
formance evaluation, and a feedback module (Q-learning), as shown in Figure 1. In the
following subsections, we introduce each aspect in detail.

2.1. Face Representations

Since face images are generally captured under unconstrained situations, traditional
face representations lack universal applicability. Considering the superior performance of
deep convolutional neural networks (DCNNs) on feature extraction and representation,
we leverage a DCNN for our face representation. The specific implementation of face rep-
resentation includes facial landmark detection and deep face representation, as illustrated
in Figure 2, and described in detail below.
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Figure 1. The diagram of our proposed adaptive facial imagery clustering. First, the face feature
vectors are obtained. Second, the images are clustered according to the set parameters. Third, the
parameters are adjusted by evaluating the clustering results. Finally, we repeat the second and third
steps, and output the clustering results and parameters when the results meet our set requirements.
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Figure 2. The diagram of the deep face representation. First, we determine the 68 landmark points of the face and crop
them according to the landmark points. Then, we input the image and landmark points into the ResNet model, Finally, we
use L2-normalization to obtain the normalized feature vector.

Facial landmark detection, also known as face alignment, aims to align faces into
the mean face shapes based on facial keypoints (mouth, eye, canthus, etc.). In this way,
the positions of these keypoints on all faces after alignment are almost the same. The
face representations based on these keypoints extracted by a DCNN is more effective and
representative, even if lower dimensions of the representations are adopted to cluster
the faces. We adopt the success of the DLIB implementation of Kazemi and Sullivan’s
method [22], which uses 68 landmarks of the input image to detect a face and return the
position of facial region.

After facial landmark detection, the aligned face is the input of the DCNN to ob-
tain its deep face representation. Specifically, we employ deep architecture ResNet1 pre-
trained on DLIB, which finally outputs a 128-dimension feature vector. Then, we use
L2-normalization [23] to normalize the vector, thus, each dimension of the feature vector
is normalized into a specific interval. In addition, the use of L2 also improves the perfor-
mance of the clustering model. After L2, the 128-dimension normalized vector is the final
representation of the face.
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2.2. Spectral Clustering

Spectral clustering is an algorithm that evolved from graph theory and has been
widely used in different fields such as speech recognition, document analysis, and image
segmentation. Implementation of the spectral clustering model includes construction of a
similarity matrix and clustering partition. The detailed process is as follows:

• Give the face representations (X1, X2, . . . , Xn), and calculate the similarity matrix S
based on the full connection method.

• Construct the adjacency matrix W based on S, and then calculate the degree matrix D.
• Calculate the Laplacian matrix L: L = D−W
• Construct the normalized Laplacian matrix L∗: L∗ = D−1/2LD−1/2

• Create a set of eigenvectors by computing the eigenvectors of L∗ and use dim eigenvec-
tors corresponding to the largest dim eigenvalues. The dim is an adjustable parameter,
which must be less than the dimension of the representation X.

• Create a new face representation matrix F, which uses these dim eigenvectors as
columns; these eigenvectors are also normalized by L2.

• With the new representation matrix F, the final clustering result is generated by using
K-means++.

In the above steps, we use the Gaussian Dadial Basis Function to construct S and W as:

sij = sji =
n

∑
i=1,j=1

exp(−
‖Xi − Xj‖2

2σ2 ), (i, j ∈ 1, 2, . . . , n) (1)

where σ is the radial width parameter, wij is the adjoin metric and sij is the similarity metric
of Xi and Xj, respectively.

2.3. Performance Evaluation

For most practical image clustering, face images generally lack labels or the labels are
incomplete. Therefore, we use the Davies–Bouldin index (DBI) as the internal evaluation
measure to evaluate the clustering performance. The DBI is defined as:

DBI =
1
K

K

∑
i=1

max
i 6=j

(
avg(Ci) + avg(Cj)

DU(Ci, Cj)
) (2)

where K is the number of clusters, DU(Ci, Cj) is the distance of centers of Ci and Cj, U
is the center vector of cluster C, and avg(C) is the average distance within the cluster C.
Obviously, a smaller DBI value means better clustering performance with better intracluster
compactness and intercluster separation.

2.4. Feedback Module

The feedback module adjusts the parameters based on the performance evaluation to
optimize the clustering performance. For this, we adopt Q-learning to debug parameters
adaptively. For this paper to be self-contained, first, we introduce the key idea of Q-learning
before applying it to the parameter updating.

2.4.1. Q-Learning

Reinforcement learning is a goal-directed learning methodology, which constructs a
control strategy to maximize the behavior performance of the agent. Specifically, the agent
can require status information and reward signals from a complex environment. The agent
is not advised which actions to take, but aims to find the best action that brings the best
reward by trying all actions. In addition, the agent can use knowledge learned in the past
to guide future actions. The sketch map of reinforcement learning is shown in Figure 3.
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Figure 3. The sketch of reinforcement learning, in which the agent guides the choice of actions
according to the state feedback information given by the environment, and the choice of actions
affects the changes of the environment, thereby updating the parameters.

The environment model is not necessary because reinforcement learning also supports
a model-free algorithm such as Q-learning that can gradually update the optimal choice
of actions to reach the best state with reward incentives. The process is denoted as the
Bellman Equation (3):

Q(s, a)← (1− α)Q(s, a) + α[r + γmax
a′

Q(s′, a′)] (3)

where Q(·, ·) is the state quality of all possible actions (Q-table), s is the state, a is the action,
r is the reward signal, α is the learning rate, γ is the discount index, s′ is the state of the
next moment, and a′ is the action of the next moment.

2.4.2. The Application of Q-Learning

In our proposed method, we can deem the different parameter settings as actions and
the performance evaluation (DBI) as the reward. The state of the clustering system is con-
stantly updating by trying the possible parameter settings whose clustering performance
can be evaluated with the DBI. With the reward incentive of the optimization to make the
DBI minimum, the dynamic debugging process can be implemented using a Q-learning
algorithm.

In the clustering, there are two parameters for setting: the clustering number (K)
and dimension reduction (dim). Each parameter is given three types of debugging, that
is, increasing, decreasing, and remaining unchanged. Therefore, we obtain nine types
of parameter debugging actions in each state of Q-learning. Each action contains two
independent debugging actions of the two parameters. We set the step values λ and µ
(λ, µ > 0) for K and dim, respectively, to denote the parameter debugging steps in the
debugging. Because the parameters may vary beyond their range, the corresponding
debugging is set to remain unchanged if the parameter debugging is out of range at the
next state.

The aim of the actions is to make the performance evaluation the DBI minimum.
Therefore, the clustering system must give positive incentives when the action facilitates a
reduction in the DBI. For an inapparent change in the DBI, we give tiny incentives, even
no incentives. For a bad action which increases the DBI, we give a negative incentive.
Due to the random initialization of K-means++, the observations of the DBI have small
fluctuations for the same action. Therefore, we repeat the observations of the DBI for each
action ten times and use the largest DBI value as the final DBI. The process is given as:

D(a) = maxDi(a), (i = 1, 2, . . . , 10) (4)

where D(a) is the final evaluated DBI with the action a, and Di(a) is the i-th observation of
the clustering process. We define the variable quantity ∆ of the DBI as:

∆ = D− D′ (5)
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where D is the DBI of the current status, and D′ is the DBI of the next status. Therefore, the
reward r can be expressed as:

r =


√
|∆|, ∆ ∈ (ε,+∞)

−
√
|∆|, ∆ ∈ (−∞,−ε)
0, ∆ ∈ [−ε, ε]

(6)

where r is the reward signal and ε (ε > 0) is a positive threshold.
To prevent the algorithm converging to the local minimum region, we use the β-

greedy strategy to improve Q-learning. Specifically, we use Γ(a|s) to denote the selection
probability function for each action in Q-learning.

Γ(a|s) =

1− β + β
Na

, a = argmax
a

Q(s, a)
β

Na
a 6= argmax

a
Q(s, a)

(7)

where β (0 < β < 1) is a greedy coefficient and Na is the number of actions. Different from
the strategy in which Q-learning always chooses the best action in each state, the β-greedy
strategy has β/Na probability of choosing the remaining nonoptimal actions. In doing this,
Q-learning enhances the exploration of unknown states, which may be potential global
optimal states.

In addition, we terminate the Q-learning algorithm when we have ∆ = 0 for multiple
consecutive states. In this study, we set the number of threshold termination states as10.
The Algorithm 1 pseudo program diagram is as follows.

Algorithm 1: The Q-learning applied in our method.

Input: K, dim, λ, µ, β, ε

Output: K, dim, ∆
Initialize Q(s, a)
Repeat
Initialize counter i = 0
While i < 10 do
Choose a from s using the policy derived form Q with the β-greedy strategy;
take action a, and observe r and s′ by
Q(s, a)← (1− α)Q(s, a) + α[r + γmaxQ(s′, a′)] ;
Parameter updating: K = K± λ, dim = dim± µ;
Calculate ∆, and generate reward signals r;
State updating: s′ ← s .
If r = 0 then
i = i + 1
Else
i = 0

3. Experiments

In this section, we use two face datasets to test our proposed algorithm. We scrambled
all face images and placed them in the same folder, and then used the clustering algorithm
to classify each image label, and finally compared the original label of the dataset to obtain
the final accuracy. First, we introduce the face databases used, and then test our algorithm
in four parts.

In the first part, we adopt the manual investigations of the parameters based on the
variable-controlling approach, and the results prove that the DBI reaches a minimum
value when the correct clustering parameters are set, therefore, the reinforcement learning
method can be used to obtain this optimal value.

In the second part, we guide automatic parametric settings based on manual search
results, and use the asynchronous length to perform the parameter settings test, which
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proves the feasibility of our algorithm, and reduces the parameter setting time by two
times the asynchronous long search.

In the third part, we compare our final clustering results with other algorithms, and
the F-score is used as the evaluation index. The comparison result proves that our algorithm
clustering can achieve high accuracy, which is better than other algorithms. In addition,
our algorithm can automatically set important parameters such as the number of clusters,
thereby greatly reducing the time spent on parameter modulation in the clustering process.

Finally, we test the robustness of the algorithm on larger wild face data.

3.1. Datasets

In this study, the ORL [24] and CFP [25] Face Databases are used to evaluate our
proposed adaptive face clustering algorithm. The ORL Face Database contains 40 people of
different ages, skin colors, and genders. Each person has 10 images with different lighting,
postures, and expressions. There are glasses occluded in some of the images, and the pixels
of each image are 92 × 110, such as the examples of face images shown in Figure 4.
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Figure 4. Example face images from the IMM Face Database.

The CFP Face Database contains 500 unconstrained images of different people. The
pixel size of each image is not the same, which makes it difficult to extract the feature
vectors of the faces. As compared with the above face images collected in a laboratory
environment, these images are obtained from the Internet. Therefore, the expression,
lighting, and posture of the same person’s image are quite different, and the face occlusion
situation is more serious. We use 10 images that are close to the front of each person.
Figure 5 is an example of some pictures in the CFP Face Database.
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3.2. Manual Investigation of Parameter Settings

We assume that the best number of clusters is unknown. However, for 400 facial
images, we reasonably consider that they are divided into no more than 80 categories
(i.e., the expected maximum number of clusters). Thus, the number of clusters K ranges
from 0 to 80. In addition, the dimension reduction of spectral clustering should not
exceed the original maximum dimension and retain the primary information of the face
representations. Generally, it is reasonable to reserve no more than 50% of the original
dimensions, that is to say, due to the original dimension 128, the dimension reduction (dim)
can range from 0 to 60.

We observe several settings of K and dim using the variable-controlling approach.
Specifically, when one parameter changes within its range, the other is an invariable param-
eter. Due to this investigation over a wide range of parameters, we make a rough global
observation in which the interval of the changing parameters is five and the invariable
parameter is 10. The observation results of the manual investigations are illustrated in
Figures 6 and 7.
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As shown in Figure 6, different parameter settings result in the difference of the
performance evaluation DBI. Specifically, the optimal value of K is about 40 because most
of the dimension settings at this value make the clustering performance better (smaller
DBI). In fact, this conclusion is of practical significance due to the fact that the ORL Face
Database is indeed comprised of 40 different persons.

As shown in Figure 7, there are some valuable conclusions. First, the clustering
performance deteriorates shapely when the reserved dimension of the face representations
is less than 15. Second, more reserved dimensional information does not mean that the
performance of clustering is better. On the contrary, it becomes worse, especially when dim
is over 50 in most curves. Third, we can see that the red curve, which has the invariable
parameter setting K = 40, in fact, corresponds to the optimal setting of K. The curve
indicates that changing dim has less impact on the ideal K within the range of dim from 20
to 45. It implies that the closer K gets to the optimal value, the less dim changes. Therefore,
it requires a smaller step size in the optimal field when we use searching methods for the
parameter setting.

3.3. Adaptive Face Clustering

Our proposed adaptive face clustering achieves the optimal parameter setting by
Q-learning. To reduce the runtime and computational complexity, we follow the principle
that the clustering takes the smaller value within the range as the initial searching point.

3.3.1. Algorithm Complexity

The computational complexity of the clustering mainly depends on the spectral clus-
tering and parameter adjustment. Let OK and Odim, respectively, denote the computational
complexity of parameter searching K and parameter searching dim, satisfying:

OK =
K− K0

λ

[
OQ(dim2Km) + ODBI(dimKm)

]
(8)

Odim =
dim− dim0

µ

[
OQ(dim2Km) + ODBI(dimKm)

]
(9)

Here, K0 is the starting point clustering number, dim0 is the starting point dimension
reduction, λ and µ are step values, and m is the number of face images. OQ is the com-
putational complexity of spectral clustering, ODBI in the computational complexity of the
Davies–Bouldin index.

When K and dim increase, the time and space complexity of the system are shapely
increasing, and the starting points have a greater impact on the algorithm. Therefore, it is
necessary to run the searching algorithm with a smaller initial value within the searching
range.

3.3.2. Parameter Searching

In this simulation, we want to compare the performance of rough searching and exact
searching, and then perform exact searching on the basis of the rough searching results to
speed up the search. For the rough searching, we search the optimal fields of K and dim
synchronously with a large step. The system is trained 10 times from the same starting
point to update the Q-table. The initial parameters of the Q-learning are shown in Table 1,
second column.
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Table 1. Initial parameters of Q-learning for searching.

Parameters Rough Observation Exact Observation

Starting point K 10 30
Starting point dim 10 30

Step values of λ and µ 5 1
Given threshold ε 0.05 0.01

Learning rate α 0.5 0.2
Discount index γ 0.5 0.2

Greedy coefficient β 0.2 0.2
Maximum iteration 50 50

Training times 10 10

For the exact searching, we search the exact setting of K and dim synchronously with
a small step in the optimal field. The initial parameters of the Q-learning are shown in
Table 1, third column. The searching paths of K and dim are plotted in Figures 8 and 9. In
order to show the convergence of the algorithm, the threshold interrupt algorithm is not
used.
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As shown in Figures 8 and 9, the searching path of the adaptive clustering system is
convergent. In rough searching, the system converges to the field in which the K and dim
are both 40 as the center. Therefore, we acquire the optimal field based on the center and
the large searching step as K, dim ∈ [35, 45]. In exact searching, the results indicate that
the optimal setting of K and dim is 41. We analyze some valid reasons why we obtain the
clustering number of 41 instead of 40 for the ORL. First, the difference in the DBI value
within the optimal field is inapparent, which causes inefficiency of the rewards in the
Q-learning. Second, the value of the DBI rests with the face representations. Therefore, the
architectures of the DCNN lead to representations that are not unique for the same face.
Third, the given threshold ε is too large, which is set, in advance, as small as possible but
does not always meet the expected effect.

We use a combination of rough searching and exact searching to speed up the cluster-
ing. The final adaptive clustering takes 77.01 s, and each spectral clustering takes about
0.185 s. However, manual clustering parameter adjustment requires multiple comparisons
of all image clustering results, and then multiple adjustments to the parameters. This
process requires a lot of time and effort.

3.4. Comparison of Clustering Accuracy

On the ORL Face Database, we use an adaptive algorithm to obtain clustering re-
sults, and compare the results with other algorithms, including k-means, LGC [26], and
AEWLP [27]. We use dlib to extract the facial features in the image, and then we use
k-means clustering to add the clustering results to the comparison. Using F-score as a
comprehensive index for evaluating the accuracy of clustering, it calculates the harmonic
average of the precision rate P and the recall rate R, as shown in Formula (8). The accuracy
rate P refers to the prediction result, which represents the proportion of the correct predic-
tion being positive to the total prediction being positive. The recall rate R is for the original
sample, which represents the proportion of the correct prediction that is positive to all that
is actually positive. We use scikit-learn and MTALAB to reproduce the above algorithm
and F-score, respectively:

F1 =
2PR

P + R
=

2TP
2TP + FP + FN

(10)

where TP is true positive, FP is true negative, and FN is false negative. Since random
parameters are used in the clustering of the k-means algorithm, we evaluate the results of
multiple clustering and take the average. The final results are shown in Table 2.

Table 2. Initial parameters of q-learning for searching.

k-Means LGC AFWLP Dlib-k-Means Ours

1 0.743 0.840 0.960 0.976 0.986
2 0.856 0.950 0.960 0.996 0.986
3 0.776 0.940 0.960 0.923 0.993
4 0.783 0.950 1 0.942 1
5 0.696 0.980 1 0.915 0.993

Avg 0.771 0.932 0.976 0.950 0.992

It can be seen from the above table that our clustering effect can exceed other algo-
rithms, and the F-score can reach 99.2%, indicating that only 2–3 face images in the ORL’s
400 images will be classified into the wrong category. Comparing the result of directly
using k-means for clustering and the result of using dlib for face feature extraction, and
then using k-means clustering, the accuracy has been greatly improved, therefore, showing
the effectiveness of the feature extraction technology we used.
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3.5. CFP Face Database Clustering Test

We use 5000 images in the CFP Face Database for the clustering test. We mainly search
for the number of clusters automatically, because as the number of identities in the data
increases, the number of required features also continue to increase, as shown in Figure 7.

We randomly select 50, 100, 200, 300, 400 and all human images in the dataset for
adaptive clustering, and compare the F-score value calculated by the clustering results with
the k-means algorithm. As shown in Table 3, the clustering accuracy of our algorithm is
still higher than the k-means algorithm, and it can automatically search for the appropriate
number of clusters K. As the number of clusters increases, there is still some deviation
between the number of searched clusters K and the actual number of people.

Table 3. Clustering test results for the CFP Face Database.

Actual Number Clustering Number K
F-Score

Ours K-Means

50 50 0.9912 0.7756
100 100 0.9775 0.6458
200 206 0.8357 0.5026
300 314 0.7750 0.4647
400 420 0.7563 0.4421
500 532 0.7483 0.4367

The images with incorrect clustering are presented separately, as shown in Figure 10.
There is a huge age gap between different images of the same person, leading to morpho-
logical differences and making clustering errors. The algorithm judges young images into
different categories to increase the number of clusters. However, the untagged images
acquired through video surveillance, medical equipment, and social media over a period
of time are basically the same age. The deviation in the number of clusters caused by age
changes is not a big problem.
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Figure 11 shows the path for searching on the CFP Face Database of 5000 images. The
number of clusters is large, so the first step is 20 for rough searching, but it is difficult
to converge in the final result. Because a large step size will cause a large change in the
number of clusters, and then a large change in the DBI value. However, the optimal domain
range of the number of clusters 450, 580 can be obtained through a rough search. Then,
the final optimal number of clusters is 532 through an exact search with a step size of
two. Although there are some deviations, it proves that the clustering parameter adaptive
algorithm we designed can still obtain a suitable number of clusters. The F-score calculated
for the final clustering result is 0.7483, which is better than 0.4367 obtained by the k-means
algorithm.
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We also tested the method on the LFW face dataset [28], which contained 13,233 images
of 5749 people. First, we deleted the images that contained multiple faces in the same
image. The 12,323 images of the remaining 5484 people are clustered, and the final cluster
number K is 5622, and the F-score is 0.6492. Because the data samples provided in the LFW
dataset are not balanced (the number of images for each person is different), the clustering
accuracy is not high.

We conducted a test on the YouTube Faces Dataset [29]. First, the video was intercepted
into images at 20-frame intervals, and images containing multiple faces and no faces
were removed through face detection. While obtaining enough face images, we also
ensured that there would be a certain amount of deflection angle, illumination, and other
changes between the images of the same person. In the end, we constructed a dataset of
27,650 images containing 1595 people. Using the proposed approach to cluster the dataset,
the final cluster number K is 1684, and the F-score is 0.7724. Although the number of
images increases, accuracy is better than the results achieved on the CFP dataset, because
the changes between images of the same person captured in a video are small.

From the above test, it can be found that when the number of identities and the number
of images increase, the clustering accuracy decreases. Therefore, in practical applications,
a large number of face images can be split into multiple folders, and then clustered.
Automatic searching of clustering parameters can save a lot of parameter adjustment time
in the clustering process, because for a large number of unlabeled face images, manual
parameter adjustment needs to compare and confirm the clustering results one by one, and
then adjust the clustering parameters. This step needs to be performed many times, and it
is difficult to adjust manually when the number of images reaches thousands. Therefore,
the adaptive clustering algorithm we proposed still has application value.

4. Conclusions

In this study, we proposed an adaptive face clustering method via a spectral clustering
model and reinforcement learning. The method involved face representations, spectral
clustering, and Q-learning. First, we used a DCNN to obtain the deep representations of
face images. Then, we used the spectral clustering algorithm to achieve the partition of
these face representations. To cluster these representations efficiently, we used internal
clustering measures to evaluate the clustering quality. To seek the optimal parameters
for the unknown identity datasets, we employed Q-learning as the feedback module to
build the dynamic multparameter debugging process. The simulation results on the ORL
and CFP Face Databases demonstrated that our proposed method effectively searched the
optimal parameters, which helped to improve the clustering quality and accuracy. Due to
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the use of reinforcement learning to realize the parameter search, it can effectively cluster
unknown face datasets and can reduce the time of manual parameter modulation.

In future studies, we plan to focus on the inefficiency of the exact searching within
the optimal field. In addition, we plan to pay more attention to reducing the running
complexity of our method and modifying the clustering method to improve the accuracy
of image clustering for large amounts of data.
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