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Abstract: The Zienkiewicz–Zhu (ZZ) super-convergent patch recovery technique based on a node
neighborhood patch configuration is used most widely for recovery of the stress field of a finite
element analysis. In this study, an improved ZZ recovery technique using element neighborhood
patch configuration is proposed. The improved recovery procedure is based on recovery of the
stress field in the least-squares sense over an element patch that consists of the union of the elements
surrounding the element under consideration. The proposed patch configuration provides more
sampling points and improves the performance of the standard ZZ recovery technique. The effective-
ness and reliability of the improved ZZ recovery approach is demonstrated through plane elastic
and plastic plate problems. The problem domain is discretized with triangular and quadrilateral
elements of different sizes. A comparison of the quality of error estimation using the ZZ recovery of
derivative field and recovery of the displacement field using similar element neighborhood patch
configurations is also presented. The numerical results show that the ZZ recovery technique and
the displacement recovery technique, using a modified patch configuration, yield better results,
convergence rate, and effectivity as compared with the standard ZZ super-convergent patch recovery
technique. It is concluded that the improved ZZ recovery technique-based adaptive finite element
analysis is very effective for converging a predefined accuracy with a significantly smaller number
of degrees of freedom, especially in an elastic problem. It is also concluded that the improved ZZ
recovery technique captures the plastic deformation problem solution errors more reliably than the
standard ZZ recovery technique.

Keywords: error estimation; effectivity; Zienkiewicz–Zhu techniques; stress recovery; displacement
recovery; patch recovery; least-squares techniques

1. Introduction

The finite element method is the most used numerical tool for solving industrial prob-
lems. Recently, there has been interest in overcoming the drawbacks of the finite element
analysis method, and therefore improving the quality of finite element analysis results using
a priori and a posteriori error estimators. A comprehensive review on the diverse applica-
bility of the finite element approach is given by Cen et al. [1]. The different types of error
estimation techniques have been reviewed by Gratsch and Bathe [2]. Ainsworth et al. [3]
showed that the Zienkiewicz–Zhu error estimation was effective, convergent, and asymp-
totically exact when the exact stress boundary conditions were implemented. The classical
super-convergent patch recovery (SPR) technique or ZZ recovery technique [4] has been
proposed to recover the lost accuracy and continuity of the stress field by interpolating
from a stress surface fitted to the super-convergent stress points in a node neighborhood
patch. They emphasized that the error estimation would be asymptotically exact if the
recovery of the finite element solution was super convergent. An in-depth discussion on
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improving the SPR technique was presented by R’odenas et al. [5]. Wiberg and Abdulwa-
hab [6] proposed a recovery procedure (SPR-E technique) for improving the accuracy of
the recovered stresses by imposing additional constraints on the equilibrium equations.
Blacker and Belytschko [7] extended the ZZ recovery technique (SPR-EB technique) by
including the squares of the residual of equilibrium equations and natural boundary condi-
tions. A new conjoint polynomial for interpolation of the local patch stresses on the element
was proposed which improved the derivative field within the element as compared with
standard nodal interpolation. Li and Wiberg [8] presented a post-processing technique for
determining more accurate solutions by fitting a higher order polynomial expansion to
the computed solution at super-convergent points in the element patch that represented
the union of the considered element and its neighbors. Wiberg et al. [9] proposed a patch
recovery scheme for all stress components and coupling of the stress components was
achieved through the equilibrium equations. Lee et al. [10] proposed a super-convergent
stress recovery technique (LP technique) for obtaining stress interpolation polynomials
over a patch of elements formed around a vertex node using the virtual work form of the
equilibrium residual, while, employing a similar idea, Park et al. [11] proposed a recovery
technique (SP technique) assuming stress field over a single element.

The Trefftz patch recovery (TPR) technique using Trefftz fields was proposed by Maun-
der [12] to obtain patch interpolation polynomials which satisfied the internal equilibrium
and compatibility equations. R´odenas et al. [13] presented a modified SPR technique, the
so-called SPR-C technique using the appropriate constraint equations, to produce stress
interpolation polynomials that exactly satisfied the internal and boundary equilibrium
equations. The explicit-type recovery error estimator in energy norm was proposed by
Nadal et al. [14] for the linear elasticity problem using a smooth solution. Ulku et al. [15]
developed a recovery-based error estimation technique for the Aifantis’ gradient elasticity
theory to avoid the occurrence of singularities in the stress and strain fields. The super-
convergent patch recovery (SPR) method was modified by Gu et al. [16] to improve the
method accuracy and stability using an integration point as a sampling point, additional
nodes, and weighted average procedure. Zhang and Naga [17] developed the polynomial
preserving recovery (PPR) method to recover the accuracy in a finite element solution. A
gradient recovery method, the so-called super-convergent cluster recovery method, was
presented by Huang and Yi [18] in which a linear polynomial approximation was obtained
by a least-squares fitting to the finite element solution at certain sample points. An error
recovery procedure based on the least-squares fitting of the displacement field over an ele-
ment neighborhood patch configuration was proposed by Ahmed et al. [19]. Boo et al. [20]
proposed an error estimation procedure to accurately estimate the relative eigenvalue
errors and to recover the solution error in an automated multilevel substructure method.
Chen and Chen [21] presented a super convergence in the L2 norm using the patch recovery
method to recover linear finite element solutions. Cai et al. [22] proposed a hybrid error
recovery technique, consisting of the explicit residual and an enhanced Zienkiewicz–Zhu
(ZZ) error recovery technique, for the conforming finite element method, and verified that
the developed technique was accurate for all meshes. Sharma et al. [23] proposed a stress
recovery procedure for low-order finite elements in three dimensions. Dong et al. [24]
proposed an error estimation based on the element energy projection technique for adaptive
finite element analysis. There has also been interest in developing support domain or mesh
independent patch recovery techniques. Ahmed et al. [25] developed element-free Galerkin
(EFG) approach-based error recovery techniques for finite element analysis employing
mesh independent node patches.

From the literature review, it is clear that the quality of recovery-based error estimation
depends on the approach for recovering the stress or displacement field that satisfies the
equilibrium and boundary conditions. The ZZ recovery technique uses the least-squares
fitting of stress field by the same order polynomial as that present in the basis function over
a patch of neighborhood nodes. The number of polynomial terms in the basis function
should be limited, in order that the number of unknown parameters in the interpolation
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equation does not exceed the number of independent equations for a particular patch
configuration. The interpolation equation should be used with utmost care at boundaries
where too few linear independent equations can be established within the patch. The
improved ZZ method of error recovery, especially at a boundary, is proposed using a
patch configuration (element neighborhood patch) larger than the standard patch (node
neighborhood patch). The advantage of the proposed patch configuration is that it provides
more sampling points near the boundary and improves the error recovery of boundary
regions. The effectiveness and reliability of the improved ZZ recovery approach is assessed
through plane elastic and plastic plate problems. The problem domains are discretized with
triangular and quadrilateral (regular/irregular) elements with different sizes of regular
and irregular subdivisions. We also carried out the least-squares fitting of the displacement
field by a higher order polynomial to extract stress over a similar element neighborhood
patch configuration. The quality of error estimation using the ZZ recovery of the derivative
field was compared with that of error estimation using extracted stress from the recovery
of a more accurate displacement field in terms of effectivity, rate of convergence, and
adaptively refined meshes.

2. Node Patch Zienkiewicz–Zhu (ZZ) Stress Error Recovery Technique

The ZZ super-convergent patch recovery technique [4] for finite element solution
errors recovery assumes that the node values of field variable derivatives (σ) belong to
a polynomial expansion of the same complete order as that of the basis function and is
valid over a patch of neighboring nodes of the vertex (Figures 1 and 2). The following
polynomial expansion may be used for each component of stress:

σ∗(x) = P(x)· a, (1)

where P(x) is the basis function of the assumed polynomial, x = (xi, yi), are the coordinates
of the sampling points, and a is the unknown parameters vector.
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A least-squares fit of σh values over the nodes patch, may be made by minimizing the
following functional:

π f (a) =
1
2 ∑np

i=1 [σ
h(xi, yi)− P(xi, yi ) · a]

2
, (2)

On simplification, it results into the following equation:

A a = b, (3)

The matrices A and b are given as:

A = ∑np
i=1 [P

T(xi, yi) P(xi, yi )], (4)

b = ∑np
i=1[P

T(xi, yi) σh(xi, yi )], (5)

where np is the number of nodes in a patch.

3. Element Patch Displacement Error Recovery Technique

The recovery of the field variable (displacement) is obtained by the least-squares fit of
the computed nodal field variable (u) using a higher order polynomial over an element
neighborhood patch that consists of the union of the elements surrounding an element
(Figure 1). To perform least-squares fitting, the following function is minimized:

π f (a) =
1
2 ∑np

i=1 [u
h
i (xi, yi)− u(xi, yi)]

2
, (6)

where ui (xi, yi) = Pi (xi, yi) . a

ui = [uivi ]
T , a = [auav ]T , (7)

where ui and vi are the nodal parameters of field variables in the x and y directions,
respectively, and a is the vector of unknown parameters au and av.

Pi =

[
pi 0
0 pi

]
, (8)

Pi =
[
1, xi, yi, x2

i , xiyi, y2
i , . . .

]
, (9)

where (xi, yi) are the sampling points (np) coordinates.
The minimization condition of πf (a) implies that a satisfies the following relation:

∑np
i=1 PT

i (xi, yi).Pi(xi, yi)·a = ∑np
i=1 PT

i (xi, yi)x uh
i (xi, yi), (10)

Solving for a, the following relation is obtained:

a = A−1 b, (11)

where A = ∑
np
i=1 PT

i (xi, yi)Pi(xi, yi) and b = ∑
np
i=1 PT

i (xi, yi)uh
i (xi, yi).

4. Error Estimator and Adaptive Mesh Improvement

The error in computing the state variable or state variable derivative, i.e., displacement
(u) or stress (σ), eu* (or eσ*) is defined as the difference between the exact (or recovered)
values of u (or σ) and respective numerical values, uh (or σh) as follows:

eσ∗ = σ− σh (12)
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The finite element solution errors may be quantified in appropriate norms. The energy
norm (E) giving integral measure of the error in energy may be defined as follows:

||e||E =

[∫
Ω

e∗Tσ De∗σdΩ
] 1

2
, (13)

where Ω is problem domain and D is the elasticity matrix of linear isotropic materials.
The effectivity (θ) of the evaluated error is defined as the ratio of evaluated error and

true error. An error estimator is asymptotically exact for a particular problem if the problem
global and local (element) effectivity (θ) converge to one when the mesh size approaches
zero [1]. The accuracy (η) of a finite element solution may be defined as follows:

η =
||e∗||
||σ∗|| , (14)

||σ∗||2 = ||σh||2 + ||e||E
2 (15)

The solution is acceptable if accuracy (η) is less than the predefined accuracy(ηallow). If
the solution accuracy is more than the predefined accuracy, the mesh may be improved in
an adaptive way in guidance of error estimator. The permissible global error is given as
follows:

||e||allowable(i) = ηallowable||e|| (16)

The allowable error in the ith element is calculated using the following relation:

||e||allowable(i) =
ηallowable||e||√

N
, (17)

The so-called element refinement parameter ξi given below, guides the refinement:

ξi =
||e||allowable
||e||allowable(i)

, (18)

If ξi > 1, improvement of mesh is needed. The new element size (hnew) is found with
the help of the following relation:

hnew =
hnew

ξ
1/p
i

, (19)

5. Elastic Plate Examples

The quality of recovery procedure, i.e., error convergence, effectivity, and adaptively
improved meshes are obtained by adaptive finite element analysis of two plane elastic plate
problems, for which an exact solution is available in [4], employing the ZZ stress recovery
method with the standard (node neighborhood) and a modified (element neighborhood)
patch configuration, and a modified patch-based displacement recovery method. The
problem domains are discretized with triangular (linear/quadratic elements) and quadri-
lateral (linear elements) meshes. The analysis results are compared for the effect of patch
configuration on the ZZ stress recovery of the finite element solution. The results are also
compared for least squares-based recovery using an element neighborhood patch configu-
ration to interpolate stresses and displacements. The standard or node neighborhood patch
is the patch of nodes around a vertex node. The modified or element neighborhood patch
configuration is the union of the elements surrounding the element under consideration.
The standard and modified patches for triangular/quadrilateral elements are shown in
Figures 1 and 2.
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6. Square Plate Example

The quality of the stress (ZZ) and displacement recovery is demonstrated through
the finite element analysis of a plane square plate example. The example was used by
Zienkiewicz and Zhu [4] to validate the effectiveness of the ZZ error estimation. The
example was a 1 × 1 square domain subjected to the action of body forces (bx, by). The
exact solution for displacement (u, v) and body forces in the form of polynomials, are given
in Equations (20) to (22):

u = 0; y = −x y(1− x) × (1− y), (20)

bx = (α + β) × (1− 2x) × (1− 2y), (21)

by = −2 β y × (1− y)− (α + 2 β) 2x × (1− x), (22)

The constants α and β are given as:

α = E ν/[(1−2ν) (1+ ν)]; β = E/[2(1 + ν)], (23)

where E and ν are the modulus of elasticity and Poisson’s ratio, respectively, with values of
1.0 N/mm2 and 0.3, respectively.

A two-dimensional computer software is developed, incorporating the adaptive finite
element procedures explained above, to simulate the elastic and plastic plate problems.
The square plate domain is discretized as regular and irregular meshes using triangu-
lar/quadrilateral elements. The triangular/quadrilateral element meshes for plate domain
are shown in Figure 3. The error convergence with different orders of mesh in the finite
element analysis and effectivity of error estimation using a standard/modified patch-based
ZZ stress recovery and a modified patch-based displacement recovery, for triangular ele-
ments, are listed in Tables 1–4. The analysis results for error convergence and effectivity
using quadrilateral elements are shown in Tables 5 and 6. The solution errors were mea-
sured in the energy norm. The convergence rate of error with regular subdivision for the
linear/quadratic triangular elements and the linear quadrilateral element in the original
solution, the recovered solution using a standard patch-based ZZ recovery, a modified
patch-based ZZ recovery, and a modified patch-based displacement recovery are obtained,
respectively, as (0.97875, 1.37313, 1.87252, and 1.88603), (1.97848, 2.50622, 3.19768, and
2.88449), and (1.00169, 1.65603, 2.35230, and 2.02723). The error convergence rates are
obtained in finite element results as (0.58530, 0.848150, 0.95638, and 1.11017), (1.07415,
1.26349, 1.57042, and 1.61414), and (0.54163, 0.98011, 0.94495, and 0.98600), respectively, for
linear/quadratic triangular elements and linear quadrilateral element considering irregular
subdivisions.
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Table 1. Solution error and global effectivity for the plate problem using stress/displacement recovery and patch configura-
tion (regular linear triangular element).

Mesh Size (1/h)
FEM Error

(×10−3)

ZZ (Standard Patch) ZZ (Modified Patch) LS (Modified Patch)

Error (Stress)
(×10−3) Effectivity Error (Stress)

(×10−3) Effectivity Error (Displacement)
(×10−3) Effectivity

1/4 93.7491 144.2486 1.4313 50.5738 0.97347 58.4784 0.929995
1/16 24.4409 22.6413 1.2449 3.2715 0.98795 4.4621 0.989587
1/32 12.2480 8.29942 1.14508 1.0301 0.99498 1.1581 0.997014

Rate of Conv. 0.97875 1.37313 1.87252 1.88603

Table 2. Solution error and global effectivity (θ) for the plate problem using stress/displacement recovery and patch
configuration (irregular linear triangular element).

Mesh
FEM Error

(×10−3)

ZZ (Standard Patch) ZZ (Modified Patch) LS (Modified Patch)

Elem. Dof Error (Stress)
(×10−3) Effectivity Error (Stress)

(×10−3) Effectivity Error (Displacement)
(×10−3) Effectivity

88 118 50.1775 62.0040 1.39816 11.2714 0.97133 21.9027 0.97577
395 454 21.7763 18.3460 1.22994 2.4864 0.99156 8.4368 0.97830
1978 2106 9.2888 5.3814 1.12589 0.7161 0.99821 0.8934 0.99580

Table 3. Solution error and global effectivity for the plate problem using stress/displacement recovery and patch configura-
tion (regular quadratic triangular element).

Mesh Size (1/h)
FEM Error

(×10−3)

ZZ (Standard Patch) ZZ (Modified Patch) LS (Modified Patch)

Error (Stress)
(×10−3) Effectivity Error (Stress)

(×10−3) Effectivity Error (Displacement)
(×10−3) Effectivity

1/4 13.1683 4.9321 0.95024 9.7741 1.10601 12.2577 1.25556
1/12 1.51492 0.29653 0.95295 0.25279 0.97335 0.52885 1.04045
1/24 0.3802 0.0553 0.95729 0.0316 0.98134 0.0698 1.01265

Rate of Conv. 1.97848 2.50622 3.19768 2.88449

Table 4. Solution error and global effectivity for the plate problem using stress/displacement recovery and patch configura-
tion (irregular quadratic triangular element).

Mesh
FEM Error

(×10−3)

ZZ (Standard Patch) ZZ (Modified Patch) LS (Modified Patch)

Elem. Dof Error (Stress)
$(×10−3) Effectivity Error (Stress)

(×10−3) Effectivity Error (Displacement)
(×10−3) Effectivity

88 410 3.4529 1.4263 0.93743 1.3562 0.92285 2.8478 1.24041
395 1696 0.7502 0.2302 0.95072 0.1300 0.95475 0.6746 1.09216
925 3876 0.3190 0.0965 0.95235 0.0468 0.96886 0.0775 1.02221

Table 5. Solution error and global effectivity for the plate problem using stress/displacement recovery and patch configura-
tion (regular linear quadrilateral element).

Mesh Size (1/h)
FEM Error

(×10−3)

ZZ (Standard Patch) ZZ (Modified Patch) LS (Modified Patch)

Error (Stress)
(×10−3) Effectivity Error (Stress)

(×10−3) Effectivity Error (Displacement)
(×10−3) Effectivity

1/4 60.2610 19.0382 1.09566 55.5321 1.39422 13.6672 1.08099
1/16 15.0154 2.1981 1.01340 1.7520 1.01266 0.8131 1.00512
1/32 7.5071 0.6082 1.00390 0.4174 1.00322 0.2031 1.00127

Rate of Conv. 1.00169 1.65603 2.35230 2.02723
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Table 6. Solution error and global effectivity (θ) for the plate problem using stress/displacement recovery and patch
configuration (irregular linear quadrilateral element).

Mesh
FEM Error

(×10−3)

ZZ (Standard Patch) ZZ (Modified Patch) LS (Modified Patch)

Elem. Dof Error (Stress)
(×10−3) Effectivity Error (Stress)

(×10−3) Effectivity Error (Displacement)
(×10−3) Effectivity

99 238 28.4543 13.0304 1.05646 6.079 1.03387 10.6720 1.12167
455 1002 10.9201 1.6531 1.00757 1.100 1.00726 4.2731 1.07592
1945 4066 6.117 0.8072 1.00343 0.4161 1.00153 0.6504 1.00492

7. Square Plate with a Circular Opening Example

The finite element analysis of the plate with an opening example, employing the im-
proved ZZ recovery technique was also carried out to compare the analysis results obtained
using the classical ZZ recovery and least-squares displacement recovery techniques in a
stress concentration condition. Due to symmetry, only the upper left square quadrant of the
plate is modeled. Along the symmetry line, the shear stress and the normal displacement
component are zero. Equations (24) to (26) show the analytical solution for stresses in the
plate with opening [4]:

σx = σ∞

[
1− a2

r2 (1.5 cos 2θ − cos 4θ)− 1.5
a4

r4 cos 4θ

]
, (24)

σy = σ∞

[
0− a2

r2 (0.5 cos 2θ − cos 4θ)− 1.5
a4

r4 cos 4θ

]
, (25)

σxy = σ∞

[
0− a2

r2 (0.5 sin 2θ − sin 4θ)− 1.5
a4

r4 sin 4θ

]
, (26)

where r2 = y2 + x2 and σ∞ is the uniaxial traction applied at infinity.
Figure 4 shows the holed plate domain discretized with three-node linear triangular,

six-node quadratic triangular, and four-node linear quadrilateral elements. The computa-
tional results obtained from the analysis, related to error quality, i.e., errors and effectivity
with decreasing element size, are tabulated in Tables 7–9.
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Figure 4. Triangular/quadrilateral elements mesh for plate domain with opening.

Table 7. Solution error and global effectivity for the plate with an opening problem using stress/displacement recovery and
patch configuration (linear triangular element).

Mesh
FEM Error

(×10−3)

ZZ (Standard Patch) ZZ (Modified Patch) LS (Modified Patch)

Elem. Dof Error (Stress)
(×10−3) Effectivity Error (Stress)

(×10−3) Effectivity Error (Displacement)
(×10−3) Effectivity

166 202 10.232 9.197 0.99926 7.093 0.93243 7.589 0.91881
355 404 7.326 6.068 1.06652 3.980 0.91516 4.339 0.91687
1002 1084 4.048 3.122 1.08850 1.605 0.92551 1.742 0.92674
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Table 8. Solution error and global effectivity for the plate with an opening problem using stress/displacement recovery and
patch configuration (quadratic triangular element).

Mesh
FEM Error

(×10−3)

ZZ (Standard Patch) ZZ (Modified Patch) LS (Modified Patch)

Elem. Dof Error (Stress)
(×10−3) Effectivity Error (Stress)

(×10−3) Effectivity Error (Displacement)
(×10−3) Effectivity

68 318 2.391 1.845 0.83612 3.389 1.41650 8.194 3.29350
131 588 1.698 1.363 0.67366 1.630 0.90573 4.559 2.56915
355 1516 1.495 1.247 0.56854 1.332 0.73770 3.133 1.96228

Table 9. Solution error and global effectivity for the plate with an opening problem using stress/displacement recovery and
patch configuration (linear quadrilateral element).

Mesh
FEM Error

(×10−3)

ZZ (Standard Patch) ZZ (Modified Patch) LS (Modified Patch)

Elem. Dof Error (Stress)
(×10−3) Effectivity Error (Stress)

(×10−3) Effectivity Error (Displacement)
(×10−3) Effectivity

188 430 5.206 2.853 0.93465 3.521 0.99604 4.123 1.05608
358 786 4.070 1.878 0.94003 2.049 0.96181 2.615 1.06141
1217 2558 2.367 1.536 0.87953 1.349 0.83577 1.628 0.88195

8. Plastic Sheet under Stretching Process Problem

To demonstrate the quality of the improved ZZ stress recovery under large defor-
mations, the problem of the axisymmetric sheet stretching process was analyzed using
adaptive finite element analysis. The finite element formulation, error recovery, and adap-
tive procedures are followed, as explained in [26]. The sheet material is considered to be
rigid plastic. The punch and die used in the process are assumed to be rigid. Friction
is present at the punch-sheet and die-sheet interfaces. The downward displacement of
the punch is modeled in incremental steps. The schematic diagram of the axisymmetric
sheet forming process is shown in Figure 5. Due to symmetry, only one half of the sheet is
modeled. The input parameters for the process are as follows:
Radius of sheet, Rb = 66.0 mm and radius of the die corner, Rd = 6.35 mm;
Velocity of punch V = 1 mm/sec and sheet thickness (h) = 2 mm;
Blank to punch radius ratio (Rb/Rp) = 1.33 and the stress–strain relation is given as:

σ = 589 [0.0001 + ε ]0.216, (27)

where σ and ε are effective stress and effective strain, respectively.
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The sheet is discretized using six nodded triangular elements. The number of elements
of uniform mesh that have four layers of elements are 737 and the degrees of freedom
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are 3228 (Figure 6a). The target accuracy limit was taken as 14% of the global error. An
adaptively modified mesh is generated during the analysis, based on the computed error
by uniform distribution of the square of error in the elements of the domain, to attain
the predefined solution accuracy. The meshes and deformed shapes at 2.0 mm punch
displacements are shown in Figure 6 using the standard patch-based ZZ recovery, modified
patch-based ZZ recovery, and modified patch-based displacement recovery techniques.

 

2 

 

Figure 6. Adaptively modified meshes in sheet stretching problem using stress/displacement recovery and patch configura-
tion (triangular elements initial mesh = 737, with 14% target error).

9. Discussion

The accuracy of the recovery of stress field using the standard ZZ recovery technique
has been improved through a larger patch configuration based on an element neighborhood
pattern. In the so-called super-convergent patch recovery technique (ZZ technique), a nodal
patch which represents the union of the element surrounding the node is defined and the
recovery is made in the patch by least-squares fitting of polynomial expansion to the super-
convergent stresses at some known points (usually gauss points) inside the elements. The
improved recovery procedure is based on recovery of the stress field in the least-squares
sense over an element patch that consists of the union of the elements surrounding the
element under consideration. The proposed patch configuration provides more sampling
points near the boundary and improves the performance of the ZZ recovery at boundary
regions. The effectiveness and efficiency of the improved ZZ recovery approach is tested
on benchmark plane elastic plate problems (given in [6]) involving four-node quadrilateral
elements and three- and six-node triangular elements. The finite element analysis numerical
results are also obtained using the same elemental patch for the extraction of more accurate
displacement field. The computational results employing the recovery technique for
plate problems are presented in Tables 1–9. The results obtained for the improved ZZ
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recovery technique and displacement recovery technique are compared with the ZZ super-
convergent patch recovery technique.

The solution errors shown in the tables depict that the order of error obtained by
employing recovery procedures is much lower than the FEM solution error and the error
convergence is also higher as compared with the FEM solution error with a reduction in
mesh size. The effect on error order, although with a reduced rate, is further improved
taking higher order elements for domain discretization. It is clear from the tables that
the ZZ recovery technique and displacement recovery technique using a modified patch
configuration yield better results as compared with the standard ZZ super-convergent
patch recovery technique when applied on two benchmark problems in elasticity. The
rate of convergence and effectivity of the ZZ recovery technique using a modified patch
configuration is higher than the displacement recovery technique using a modified patch
configuration, indicating a higher efficiency and effectivity of the proposed modified
ZZ recovery procedure. The optimal performance of the ZZ recovery technique using a
modified patch is obtained with a four-node linear quadrilateral element.

The improved ZZ recovery technique-based error estimation for guiding the error
controlling strategies of adaptive analysis is also demonstrated. Adaptively improved
meshes of the elastic problem analyses are obtained for the ZZ super-convergent patch
recovery, ZZ recovery technique, and displacement recovery technique using a modified
patch configuration at a target error of 4%. Table 10 shows the global errors, the number of
elements, and the DOF in refined meshes, obtained from the triangular and quadrilateral
element meshes, to bring the solution accuracy to the target error level. The number of
elements required to achieve the target error depends on the global error and distribution
of error. The adaptively refined meshes with target error using different recovery-based
error estimations are given in Figures 7–9. The initial meshes are adaptively refined to
bring the solution error within the target error limit. It is clear from the figures that
the improved ZZ recovery technique-based finite element analysis is very effective for
converging a predefined accuracy in a solution with a significantly smaller number of
degrees of freedom for elastic plates.

Table 10. Global errors (FEM and projected) and number of element (N) with DOF of adaptively refined meshes in a plate
problem using stress/displacement recovery and patch configuration (4% target error).

Elem. Types
Mesh

FEM Error

ZZ-Stress
(Standard Patch)

ZZ-Stress
(Modified Patch)

LS-Displacement
(Modified Patch)

N Dof Error N Dof Error N Dof Error N Dof

Triangular
Elements

88 118 20.89 31.20 5696 5435 20.11 2861 3034 21.64 3247 3432
395 454 9.07 11.36 3445 3670 8.93 2613 2786 9.38 2638 2808

Quadrilateral
Elements 99 238 11.84 12.79 1271 2666 12.01 1280 2682 13.07 1797 3740
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The performance of the improved ZZ recovery technique is also assessed under large
or plastic deformation using a sheet stretching process analysis. The adaptive analysis
results considering the various stress/displacement recovery techniques are shown in
Figure 6. From the adaptively modified meshes, it can be observed that the elements
become finer in some parts of the sheet and coarsening in other parts. The meshes become
finer in stress concentration zones of the problems. It is also clear from the large deformation
problem analysis that the improved ZZ recovery technique-based finite element analysis
recovers the errors more reliably, and a larger fine element zone across the full sheet
thickness at the sheet-punch contact and at the sheet-die contact is created.
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10. Conclusions

In this study, the classical ZZ recovery technique based on the standard node neigh-
borhood patch configuration was improved using a larger element neighborhood patch
configuration. The derivatives at any point in the element domain or node domain are cal-
culated through better approximated stress/displacement fields through the least-squares
fit of computed nodal stress/displacement using a higher order polynomial over an el-
ement patch that consists of the union of the elements surrounding the element under
consideration. It is demonstrated through elastic and plastic plate examples involving
four-node quadrilateral elements and three- and six-node triangular elements that the
performance of the ZZ recovery technique is greatly improved using a modified patch
configuration. It is observed that the relative error decreases and the convergence rate
increases with mesh refinement. The quality of error estimation using the ZZ recovery
of the derivative field, considering the standard and a modified patch configuration, was
also compared with that of error estimation using extracted stress from recovery of a more
accurate displacement field using the element neighborhood patch configuration in terms
of effectivity, rate of convergence, and adaptively refined meshes. The quality of error
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estimation using the ZZ stress recovery technique employing an element neighborhood
patch configuration is better as compared with the quality of error estimation using the
displacement recovery technique. It is concluded that the improved ZZ recovery technique-
based finite element analysis is very effective for converging a predefined accuracy in
a solution with a significantly smaller number of degrees of freedom. The numerical
results also show that the improved ZZ recovery technique using an element neighborhood
patch configuration can effectively be incorporated into the adaptive computations, as
performance is good with both coarser and finer element meshes. It is concluded that the
improved ZZ recovery technique captures the large deformation errors more reliably than
the standard ZZ recovery technique.
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