Dynamics of Mechanisms with Superior Couplings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometric Synthesis
2.2. Distribution of Forces and Determination of Efficiency a Classic Mechanism with Rotating Cam and Translucent Flat Ratchet
2.3. Approximate Solution of the Lagrange Equation of Motion
2.4. Swivel Cam Mechanisms and Translated Adept with Roll
2.5. Mechanism with Rotating Cam and Rotating Adept with Roller
2.6. The Mechanism with Rotating Cam and Rotating Adept (Flat Rocker)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Petrescu, F.I.T. Theoretical and Applied Contributions about the Dynamic of Planar Mechanisms with Superior Joints. Ph.D. Thesis, Polytechnic University of Bucharest, Bucharest, Romania, 2008. [Google Scholar] [CrossRef]
- Hren, I.; Hejma, P.; Michna, S.; Svoboda, M.; Soukup, J. Analysis of torque cam mechanism. MATEC Web Conf. 2018, 157, 06004. [Google Scholar] [CrossRef]
- Zhao, H.F.; Zhang, Y.Q.; Zhang, S.Q. Production equipments and properties of low relaxation PC steel bar used for high railway ballastless track plates. Heat Treat. Met. 2010, 35, 101–103. [Google Scholar]
- Hiltcher, Y.; Guingand, M.; De Vaujauy, J.P. Numerical simulation and optimization of worm gear cutting. Mech. Mach. Theory 2006, 41, 1090–1110. [Google Scholar] [CrossRef]
- Zukovic, M.; Cveticanin, L.; Maretic, R. Dynamics of the cutting mechanism with flexible support and non-ideal forcing. Mech. Mach. Theory 2012, 8, 1–12. [Google Scholar] [CrossRef]
- Xueyan, H.; Kang, L.; Herong, J. Design of high precision online sizing cutter for PC Steel Bars. Adv. Mater. Res. 2013, 746, 520–523. [Google Scholar]
- Zheng, G.; Mao, S.M.; Li, X.E. Research on the theoretical tooth profile errors of gears machined by skiving. Mech. Mach. Theory 2016, 11, 1–11. [Google Scholar]
- Song, Y.M.; Tian, G.C.; Zhang, J. Prediction for dynamic characteristics of ring-plate planetary indexing cam mechanism. Mech. Mach. Theory 2001, 36, 143–152. [Google Scholar] [CrossRef]
- Tsai, C.Y. Mathematical model for design and analysis of power skiving tool for involute gear cutting. Mech. Mach. Theory 2016, 4, 195–208. [Google Scholar] [CrossRef]
- Zhang, J.F.; Zhang, J. A new dynamics modeling and simulation for eccentric cam mechanism. China Mech. Eng. 2010, 21, 535–539. [Google Scholar]
- Gao, J.H. Study on the sinusoid and polynomial curve. J. Mech. Transm. 2010, 34, 31–35. [Google Scholar]
- Yan, H.S.; Tsai, M.C. An experimental study of the effects of cam speeds on cam-follower systems. Mech. Mach. Theory 1996, 31, 397–412. [Google Scholar] [CrossRef]
- Gatti, G.; Mundo, D. On the direct control of follower vibrations in cam–follower mechanisms. Mech. Mach. Theory 2010, 45, 23–35. [Google Scholar] [CrossRef]
- Hamza, F.; Abderazek, H.; Lakhdar, S.; Ferhat, D.; Yıldız, A.R. Optimum design of cam-roller follower mechanism using a new evolutionary algorithm. Int. J. Adv. Manuf. Technol. 2018, 99, 1267–1282. [Google Scholar] [CrossRef]
- Hirschhorn, J. Pressure angle and minimum base radius. Mach. Des. 1962, 34, 191–192. [Google Scholar]
- Fenton, R.G. Determining minimum cam size. Mach. Des. 1966, 38, 155–158. [Google Scholar]
- Terauchi, Y.; El-Shakery, S.A. A computer-aided method for optimum design of plate cam size avoiding undercutting and separation phenomena. Mech. Mach. Theory 1983, 18, 157–163. [Google Scholar] [CrossRef]
- Bouzakis, K.D.; Mitsi, S.; Tsiafis, I. Computer aided optimum design and NC milling of planar cam mechanisms. Int. J. Mach. Tool Manuf. 1997, 37, 1131–1142. [Google Scholar] [CrossRef]
- Lampinen, J. Cam shape optimization by genetic algorithm. Comput. Aided Des. 2003, 35, 727–737. [Google Scholar] [CrossRef]
- Carra, S.; Garziera, R.; Pellegrini, M. Synthesis of cams with negative radius follower and evaluation of the pressure angle. Mech. Mach. Theory 2004, 39, 1017–1032. [Google Scholar] [CrossRef]
- Tsiafis, I.; Paraskevopoulou, R.; Bouzakis, K.D. Selection of optimal design parameters for a cam mechanism using multi-objective genetic algorithm. Ann. Constantin Brancusi Univ. TarguJiu Rom. Eng. Ser. 2009, 2, 57–66. [Google Scholar]
- Shigley, J.E. Theory of Machines and Mechanisms, 1st ed.; Oxford University Press: New York, NY, USA, 2011. [Google Scholar]
- Angeles, J.; Cajún, L.; Carlos, S. Optimization of Cam Mechanisms, 1st ed.; Springer: Cham, The Netherlands, 2012. [Google Scholar]
- Flores, P. A computational approach for cam size optimization of disc cam follower mechanisms with translating roller followers. J. Mech. Robot. 2013, 5, 041010. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo-Martinez, M.; Sanmiguel-Rojas, E.; Burgos, M.A. Design of cams with negative radius follower using Bézier curves. Mech. Mach. Theory 2014, 82, 87–96. [Google Scholar] [CrossRef]
- Gheadnia, H.; Cermik, O.; Marghitu, D.B. Experimental and theoretical analysis of the elasto-plastic oblique impact of a rod with a flat. Int. J. Impact Eng. 2015, 86, 307–317. [Google Scholar] [CrossRef]
- Yi, W.; Li, X.; Gao, L.; Zhou, Y.; Huang, J. ε constrained differential evolution with pre-estimated comparison using gradient-based approximation for constrained optimization problems. Expert Syst. Appl. 2016, 44, 37–49. [Google Scholar] [CrossRef]
- Hsu, K.L.; Hsieh, H.A. Positive-drive cam mechanisms with a translating follower having dual concave faces. J. Mech. Robot. 2016, 8, 044504. [Google Scholar] [CrossRef]
- Jana, R.K.; Bhattacharjee, P. A multi-objective genetic algorithm for design optimisation of simple and double harmonic motion cams. Int. J. Des. Eng. 2017, 7, 77–91. [Google Scholar] [CrossRef]
- Hammoudi, A.; Djeddou, F.; Atanasovska, I. Adaptive mixed differential evolution algorithm for bi-objective tooth profile spur gear optimization. Int. J. Adv. Manuf. Technol. 2017, 90, 2063–2073. [Google Scholar]
- Halicioglu, R.; Dulger, L.C.; Bozdana, A.T. Modeling, design, and implementation of a servo press for metal-forming application. Int. J. Adv. Manuf. Technol. 2017, 91, 2689–2700. [Google Scholar] [CrossRef]
- Thompson, J.M.; Thompson, M.K. ANSYS Mechanical APDL for Finite Element Analysis, 1st ed.; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Yu, C.; Meng, X.; Xie, Y. Numerical simulation of the effects of coating on thermal elastohydrodynamic lubrication in cam/tappet contact. Proc. Inst. Mech. Eng. J Eng. Tribol. 2017, 231, 221–239. [Google Scholar] [CrossRef]
- Torabi, A.; Akbarzadeh, S.; Salimpour, M. Comparison of tribological performance of roller follower and flat follower under mixed elastohydrodynamic lubrication regime. Proc. Inst. Mech. Eng. J Eng. Tribol. 2017, 231, 986–996. [Google Scholar] [CrossRef]
- Qin, W.; Zhang, Z. Simulation of the mild wear of cams in valve trains under mixed lubrication. Proc. Inst. Mech. Eng. J Eng. Tribol. 2017, 231, 552–560. [Google Scholar] [CrossRef]
- Yousuf, L.S.; Marghitu, D.B. Non-linear dynamic analysis of a cam with flat-faced follower linkage mechanism. In Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017, Tampa, FL, USA, 3–9 November 2017. [Google Scholar]
- Fei, G.; Liu, Y.; Liao, W.H. Cam profile generation for cam-spring mechanism with desired torque. J. Mech. Robot. 2018, 10, 041009. [Google Scholar]
- Umar, M.; Mufti, R.A.; Khurram, M. Effect of flash temperature on engine valve train friction. Tribol. Int. 2018, 118, 170–179. [Google Scholar] [CrossRef]
- Alakhramsing, S.S.; de Rooij, M.B.; Schipper, D.J.; Drogen, M.V. Lubrication and frictional analysis of cam–roller follower mechanisms. Proc. Inst. Mech. Eng. J Eng. Tribol. 2018, 232, 347–363. [Google Scholar] [CrossRef] [Green Version]
- Halicioglu, R.; Dulger, L.C.; Bozdana, A.T. Improvement of metal forming quality by motion design. Robot. Comput.-Integr. Manuf. 2018, 51, 112–120. [Google Scholar] [CrossRef]
- Al-Hamood, A.; Jamali, H.U.; Abdullah, O.I.; Senatore, A.; Kaleli, H. Numerical analysis of cam and follower based on the interactive design approach. Int. J. Interact. Des. Manuf. 2019, 13, 841–849. [Google Scholar] [CrossRef]
- Alakhramsing, S.S.; de Rooij, M.; Akchurin, A.; Schipper, D.J.; van Drogen, M. A mixed-TEHL analysis of cam-roller contacts considering roller slip: On the influence of roller-pin contact friction. J. Tribol. 2019, 141, 011503. [Google Scholar] [CrossRef]
- Ciulli, E.; Pugliese, G.; Fazzolari, F. Film thickness and shape evaluation in a cam-follower line contact with digital image processing. Lubricants 2019, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Jamali, H.U.; Al-Hamood, A.; Abdullah, O.I.; Senatore, A.; Schlattmann, J. Lubrication analyses of cam and flat-faced follower. Lubricants 2019, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Pugliese, G.; Ciulli, E.; Fazzolari, F. Experimental aspects of a cam-follower contact. In Advances in Mechanism and Machine Science; Uhl, T., Ed.; Springer: Cham, Switzerland, 2019; Volume 73, pp. 3815–3824. [Google Scholar]
- Yousuf, L.S.; Hadi, N.H. Contact Stress Distribution of a Pear Cam Profile with Roller Follower Mechanism. Chin. J. Mech. Eng. 2021, 34, 24. [Google Scholar] [CrossRef]
- Yang, T.H.; Jo, G.; Koo, J.H.; Woo, S.Y.; Kim, J.U.; Kim, Y.M. A compact pulsatile simulator based on cam-follower mechanism for generating radial pulse waveforms. Biomed. Eng. Online 2019, 18, 1. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Xiong, H.; Pirbhulal, S.; Wu, D.; Li, Z.; Huang, W.; Zhang, H.; Wu, W. Heart-carotid pulse wave velocity a useful index of atherosclerosis in Chinese hypertensive patients. Medicine 2015, 94, e2343. [Google Scholar] [CrossRef]
- Nelson, M.R.; Stepanek, J.; Cevette, M.; Covalciuc, M.; Hurst, R.T.; Tajik, A.J. Noninvasive measurement of central vascular pressures with arterial tonometry: Clinical revival of the pulse pressure waveform? Mayo Clin. Proc. 2010, 85, 460–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsuhiko, K.; Yasuharu, T.; Akira, O.; Yoshinori, M.; Tatsuya, K.; Tetsuro, M. Radial augmentation index: A useful and easily obtainable parameter for vascular aging. Am. J. Hypertens. 2005, 18, 11S–14S. [Google Scholar]
- Kuniharu, T.; Toshitake, T.; Johnny, C.H.; Hyunhyub, K.; Andrew, G.G.; Paul, W.L.; Ronald, S.F.; Ali, J. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 2010, 9, 821–826. [Google Scholar] [CrossRef]
- Turner, M.; Speechly, C.; Bignell, N. Sphygmomanometer calibration—Why, how and how often? Aust. Fam. Phys. 2007, 36, 834–837. [Google Scholar]
- Bae, J.H.; Ku, B.; Jeon, Y.J.; Kim, H.; Kim, J.; Lee, H.; Kim, J.Y.; Kim, J.U. Radial pulse and electrocardiography modulation by mild thermal stresses applied to feet: An exploratory study with randomized, crossover design. Chin. J. Integrat. Med. 2017. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.M. Precise measurement method of radial artery pulse waveform using robotic applanation tonometry sensor. J. Sens. Sci. Technol. 2017, 26, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Petrescu, F.I.; Petrescu, R.V. Otto Motor Dynamics. Rev. Geintec-Gestao Inov. Tecnol. 2016, 6, 3392–3406. [Google Scholar]
- Petrescu, F.I.T.; Petrescu, R.V. Dynamics of the Distribution Mechanism with Rocking Tappet with Roll. Indep. J. Manag. Prod. 2019, 10, 951–965. [Google Scholar] [CrossRef]
- Petrescu, F.I.T.; Petrescu, R.V.; Mirsayar, M.M. The Computer Algorithm for Machine Equations of Classical Distribution. J. Eng. Struct. 2017, 4, 193–209. [Google Scholar]
- Petrescu, F.I.T.; Petrescu, R.V. High-Efficiency Gears. Facta Univ.-Ser. Mech. Eng. 2014, 12, 51–60. [Google Scholar]
- Petrescu, F.I.; Petrescu, R.V. Machine Equations to the Classical Distribution. Int. Rev. Mech. Eng. 2014, 8, 309–316. [Google Scholar]
- Petrescu, F.I.; Petrescu, R.V. An Algorithm for Setting the Dynamic Parameters of the Classic Distribution Mechanism. Int. Rev. Modell. Simul. 2013, 6, 1637–1641. [Google Scholar]
- Petrescu, F.I.; Petrescu, R.V. Forces and Efficiency of Cams. Int. Rev. Mech. Eng. 2013, 7, 507–511. [Google Scholar]
- Petrescu, F.I.T. Geometrical Synthesis of the Distribution Mechanisms. Am. J. Eng. Appl. Sci. 2015, 8, 63–81. [Google Scholar] [CrossRef]
- Petrescu, R.V.; Aversa, R.; Apicella, A.; Petrescu, F.I. Future Medicine Services Robotics. Am. J. Eng. Appl. Sci. 2016, 9, 1062–1087. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ungureanu, L.M.; Petrescu, F.I.T. Dynamics of Mechanisms with Superior Couplings. Appl. Sci. 2021, 11, 8207. https://doi.org/10.3390/app11178207
Ungureanu LM, Petrescu FIT. Dynamics of Mechanisms with Superior Couplings. Applied Sciences. 2021; 11(17):8207. https://doi.org/10.3390/app11178207
Chicago/Turabian StyleUngureanu, Liviu Marian, and Florian Ion Tiberiu Petrescu. 2021. "Dynamics of Mechanisms with Superior Couplings" Applied Sciences 11, no. 17: 8207. https://doi.org/10.3390/app11178207
APA StyleUngureanu, L. M., & Petrescu, F. I. T. (2021). Dynamics of Mechanisms with Superior Couplings. Applied Sciences, 11(17), 8207. https://doi.org/10.3390/app11178207