Fluorescence Properties of the Air- and Freeze-Drying Treatment on Size-Fractioned Sediment Organic Matter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sediment Collection and Treatment
2.2. SHS Size Separation
2.3. UV/Vis Measurements
2.4. Fluorescence Spectroscopy and Fluorescence Region Integration (FRI)
2.5. Statistical Analysis and Calculation of Fluorescence Data
3. Results and Discussion
3.1. DOC Concentrations and Carbon Mass Fractions of the Size-Fractioned SHS
3.2. Optical Indices of SHS
3.3. Fluorescence EEM and Fluorescence Regional Integration (FRI)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, M.; Hur, J. Pre-treatments, characteristics, and biogeochemical dynamics of dissolved organic matter in sediments: A review. Water Res. 2015, 79, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Guo, L. Intriguing changes in molecular size and composition of dissolved organic matter induced by microbial degradation and self-assembly. Water Res. 2018, 135, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zou, L.; Guan, D.; Li, W.; Jiang, H. Molecular weight-dependent spectral and metal binding properties of sediment dissolved organic matter from different origins. Sci. Total Environ. 2019, 665, 828–835. [Google Scholar] [CrossRef]
- Burdige, D.J.; Komada, T. Sediment pore waters. In Biogeochemistry of Marine Dissolved Organic Matter; Elsevier: Amsterdam, The Netherlands, 2015; pp. 535–577. [Google Scholar]
- He, W.; Chen, M.; Schlautman, M.A.; Hur, J. Dynamic exchanges between DOM and POM pools in coastal and inland aquatic ecosystems: A review. Sci. Total Environ. 2016, 551, 415–428. [Google Scholar] [CrossRef]
- Hur, J.; Lee, D.-H.; Shin, H.-S. Comparison of the structural, spectroscopic and phenanthrene binding characteristics of humic acids from soils and lake sediments. Org. Geochem. 2009, 40, 1091–1099. [Google Scholar] [CrossRef]
- Sun, W.; Ni, J.; Xu, N.; Sun, L. Fluorescence of sediment humic substance and its effect on the sorption of selected endocrine disruptors. Chemosphere 2007, 66, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Liljestrand, H.M.; Shimizu, Y.; Morita, M. Effects of physical−chemical characteristics on the sorption of selected endocrine disruptors by dissolved organic matter surrogates. Environ. Sci. Technol. 2003, 37, 2646–2657. [Google Scholar] [CrossRef]
- Yeh, Y.-L.; Yeh, K.-J.; Hsu, L.-F.; Yu, W.-C.; Lee, M.-H.; Chen, T.-C. Use of fluorescence quenching method to measure sorption constants of phenolic xenoestrogens onto humic fractions from sediment. J. Hazard. Mater. 2014, 277, 27–33. [Google Scholar] [CrossRef]
- Shi, M.-S.; Huang, W.-S.; Hsu, L.-F.; Yeh, Y.-L.; Chen, T.-C. Fluorescence of Size-Fractioned Humic Substance Extracted from Sediment and Its Effect on the Sorption of Phenanthrene. Int. J. Environ. Res. Public Health 2019, 16, 5087. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.K.; Lee, M.-H.; Hur, J. A new molecular weight (MW) descriptor of dissolved organic matter to represent the MW-dependent distribution of aromatic condensation: Insights from biodegradation and pyrene binding experiments. Sci. Total Environ. 2019, 660, 169–176. [Google Scholar] [CrossRef]
- Chin, Y.-P.; Aiken, G.R.; Danielsen, K.M. Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity. Environ. Sci. Technol. 1997, 31, 1630–1635. [Google Scholar] [CrossRef]
- Hur, J.; Park, M.-H.; Schlautman, M.A. Microbial transformation of dissolved leaf litter organic matter and its effects on selected organic matter operational descriptors. Environ. Sci. Technol. 2009, 43, 2315–2321. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, L.; Liu, X.; Li, Y.; Fang, H.; Wang, X.; Alharbi, N.S.; Li, J. Sorption of 17β-estradiol to the dissolved organic matter from animal wastes: Effects of composting and the role of fulvic acid-like aggregates. Environ. Sci. Pollut. Res. 2018, 25, 16875–16884. [Google Scholar] [CrossRef]
- Chen, G.; Lin, C.; Chen, L.; Yang, H. Effect of size-fractionation dissolved organic matter on the mobility of prometryne in soil. Chemosphere 2010, 79, 1046–1055. [Google Scholar] [CrossRef]
- McPhedran, K.N.; Seth, R.; Drouillard, K.G. Investigation of Hydrophobic Organic Carbon (HOC) partitioning to 1 kDa fractionated municipal wastewater colloids. Environ. Sci. Technol. 2013, 47, 2548–2553. [Google Scholar] [CrossRef]
- Chuang, W.-C.; Hsu, L.-F.; Tsai, H.-C.; Liu, Y.-Y.; Huang, W.-S.; Chen, T.-C. Nickel Binding Affinity with Size-Fractioned Sediment Dissolved and Particulate Organic Matter and Correlation with Optical Indicators. Appl. Sci. 2020, 10, 8995. [Google Scholar] [CrossRef]
- Hsieh, S.-H.; Chiu, T.-P.; Huang, W.-S.; Chen, T.-C.; Yeh, Y.-L. Cadmium (Cd) and Nickel (Ni) Distribution on Size-Fractioned Soil Humic Substance (SHS). Int. J. Environ. Res. Public Health 2019, 16, 3398. [Google Scholar] [CrossRef] [Green Version]
- Hur, J.; Kim, G. Comparison of the heterogeneity within bulk sediment humic substances from a stream and reservoir via selected operational descriptors. Chemosphere 2009, 75, 483–490. [Google Scholar] [CrossRef]
- Hur, J.; Lee, B.-M.; Shin, K.-H. Spectroscopic characterization of dissolved organic matter isolates from sediments and the association with phenanthrene binding affinity. Chemosphere 2014, 111, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Wang, P.; Wang, C.; Qian, J.; Bao, T.; Shi, Y. Investigating spectroscopic and copper-binding characteristics of organic matter derived from sediments and suspended particles using EEM-PARAFAC combined with two-dimensional fluorescence/FTIR correlation analyses. Chemosphere 2019, 219, 45–53. [Google Scholar] [CrossRef]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation−emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef]
- Derrien, M.; Yang, L.; Hur, J. Lipid biomarkers and spectroscopic indices for identifying organic matter sources in aquatic environments: A review. Water Res. 2017, 112, 58–71. [Google Scholar] [CrossRef]
- Hansen, A.M.; Kraus, T.E.; Pellerin, B.A.; Fleck, J.A.; Downing, B.D.; Bergamaschi, B.A. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. Limnol. Oceanogr. 2016, 61, 1015–1032. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Xi, B.; Wei, Z.; Guo, X.; Li, M.; An, D.; Liu, H. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste. Chemosphere 2011, 82, 541–548. [Google Scholar] [CrossRef]
- He, X.-S.; Xi, B.-D.; Wei, Z.-M.; Jiang, Y.-H.; Yang, Y.; An, D.; Cao, J.-L.; Liu, H.-L. Fluorescence excitation–emission matrix spectroscopy with regional integration analysis for characterizing composition and transformation of dissolved organic matter in landfill leachates. J. Hazard. Mater. 2011, 190, 293–299. [Google Scholar] [CrossRef]
- Tian, W.; Li, L.; Liu, F.; Zhang, Z.; Yu, G.; Shen, Q.; Shen, B. Assessment of the maturity and biological parameters of compost produced from dairy manure and rice chaff by excitation–emission matrix fluorescence spectroscopy. Bioresour. Technol. 2012, 110, 330–337. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Yang, C.; Wang, Q.; Jiang, D. Variations of DOM quantity and compositions along WWTPs-river-lake continuum: Implications for watershed environmental management. Chemosphere 2019, 218, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Yu, J.; Wang, S.; Du, J.; Tan, J.; Xue, K.; Wang, Y.; Huang, X. Relationship between fluorescence excitation-emission matrix properties and the relative degree of DOM hydrophobicity in wastewater treatment effluents. Chemosphere 2020, 254, 126830. [Google Scholar] [CrossRef] [PubMed]
- He, X.-S.; Xi, B.-D.; Li, X.; Pan, H.-W.; An, D.; Bai, S.-G.; Li, D.; Cui, D.-Y. Fluorescence excitation–emission matrix spectra coupled with parallel factor and regional integration analysis to characterize organic matter humification. Chemosphere 2013, 93, 2208–2215. [Google Scholar] [CrossRef]
- Tang, Z.; Yu, G.; Liu, D.; Xu, D.; Shen, Q. Different analysis techniques for fluorescence excitation–emission matrix spectroscopy to assess compost maturity. Chemosphere 2011, 82, 1202–1208. [Google Scholar] [CrossRef]
- Hung, W.-N.; Lin, T.-F.; Chiu, C.-H.; Chiou, C.T. On the use of a freeze-dried versus an air-dried soil humic acid as a surrogate of soil organic matter for contaminant sorption. Environ. Pollut. 2012, 160, 125–129. [Google Scholar] [CrossRef]
- Xu, G.; Sun, J.; Xu, R.; Lv, Y.; Shao, H.; Yan, K.; Zhang, L.; Blackwell, M. Effects of air-drying and freezing on phosphorus fractions in soils with different organic matter contents. Plant Soil Environ. 2011, 57, 228–234. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wang, S.; Shan, X.-Q. Effect of sample pretreatment upon the metal speciation in sediments by a sequential extraction procedure. Chem. Speciat. Bioavail. 2001, 13, 69–74. [Google Scholar] [CrossRef]
- Swift, R.S. Organic matter characterization. In Methods of Soil Analysis: Chemical Methods; Soil Science Society American: Madison, WI, USA, 1996; Volume 5, pp. 1011–1069. [Google Scholar]
- Helms, J.R.; Stubbins, A.; Ritchie, J.D.; Minor, E.C.; Kieber, D.J.; Mopper, K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 2008, 53, 955–969. [Google Scholar] [CrossRef] [Green Version]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef]
- Ohno, T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ. Sci. Technol. 2002, 36, 742–746. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Kinniburgh, D. An R script for visualising and analysing fluorescence excitation–emission matrices (EEMs). Comput. Geosci. 2009, 35, 2160–2163. [Google Scholar] [CrossRef] [Green Version]
- Matilainen, A.; Gjessing, E.T.; Lahtinen, T.; Hed, L.; Bhatnagar, A.; Sillanpää, M. An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere 2011, 83, 1431–1442. [Google Scholar] [CrossRef]
- Fei, Y.-H.; Li, X.-D.; Li, X.-Y. Organic diagenesis in sediment and its impact on the adsorption of bisphenol A and nonylphenol onto marine sediment. Mar. Pollut. Bull. 2011, 63, 578–582. [Google Scholar] [CrossRef] [Green Version]
- Dabrin, A.; Roulier, J.-L.; Coquery, M. Colloidal and truly dissolved metal (oid) fractionation in sediment pore waters using tangential flow filtration. Appl. Geochem. 2013, 31, 25–34. [Google Scholar] [CrossRef]
- Jarvie, H.; Neal, C.; Rowland, A.; Neal, M.; Morris, P.; Lead, J.; Lawlor, A.; Woods, C.; Vincent, C.; Guyatt, H. Role of riverine colloids in macronutrient and metal partitioning and transport, along an upland–lowland land-use continuum, under low-flow conditions. Sci. Total Environ. 2012, 434, 171–185. [Google Scholar] [CrossRef] [Green Version]
- Town, R.M.; Filella, M. Size fractionation of trace metal species in freshwaters: Implications for understanding their behaviour and fate. Rev. Environ. Sci. Biotechnol. 2002, 1, 277–297. [Google Scholar] [CrossRef]
- Xu, H.; Houghton, E.M.; Houghton, C.J.; Guo, L. Variations in size and composition of colloidal organic matter in a negative freshwater estuary. Sci. Total Environ. 2018, 615, 931–941. [Google Scholar] [CrossRef]
- Fellman, J.B.; Spencer, R.G.; Hernes, P.J.; Edwards, R.T.; D’Amore, D.V.; Hood, E. The impact of glacier runoff on the biodegradability and biochemical composition of terrigenous dissolved organic matter in near-shore marine ecosystems. Mar. Chem. 2010, 121, 112–122. [Google Scholar] [CrossRef]
- Li, P.; Hur, J. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 131–154. [Google Scholar] [CrossRef]
- Birdwell, J.E.; Engel, A.S. Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy. Org. Geochem. 2010, 41, 270–280. [Google Scholar] [CrossRef]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.-M.; Parlanti, E. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Bilal, M.; Jaffrezic, A.; Dudal, Y.; Le Guillou, C.; Menasseri, S.; Walter, C. Discrimination of farm waste contamination by fluorescence spectroscopy coupled with multivariate analysis during a biodegradation study. J. Agric. Food Chem. 2010, 58, 3093–3100. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, K.; Shang, Y.; Shao, T.; Wen, Z.; Lv, L. Characterization of CDOM of river waters in China using fluorescence excitation-emission matrix and regional integration techniques. J. Geophys. Res. Biogeosci. 2017, 122, 1940–1953. [Google Scholar] [CrossRef]
- Li, X.; Xing, M.; Yang, J.; Zhao, L.; Dai, X. Organic matter humification in vermifiltration process for domestic sewage sludge treatment by excitation–emission matrix fluorescence and Fourier transform infrared spectroscopy. J. Hazard. Mater. 2013, 261, 491–499. [Google Scholar] [CrossRef]
- Chiu, T.-P.; Huang, W.-S.; Chen, T.-C.; Yeh, Y.-L. Fluorescence characteristics of dissolved organic matter (DOM) in percolation water and lateral seepage affected by soil solution (SS) in a lysimeter test. Sensors 2019, 19, 4016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Wang, S.; Jiang, X.; Zheng, B.; Zhao, L.; Zhang, B.; Chen, J. Differences in fluorescence characteristics and bioavailability of water-soluble organic matter (WSOM) in sediments and suspended solids in Lihu Lake, China. Environ. Sci. Pollut. Res. 2018, 25, 12648–12662. [Google Scholar] [CrossRef] [PubMed]
Sample | pH | TOC (g/kg) | OM (%) | TOC/OM (%) |
---|---|---|---|---|
AD | 6.78 ± 0.17 * | 44.1 ± 11.0 | 7.45 ± 1.1 | 58.8 ± 12.1 |
FD | 7.19 ± 0.05 | 50.4 ± 11.0 | 7.92 ± 0.9 | 64.2 ± 15.0 |
Sample | BHS * | HHS * | MHS * | LHS * |
---|---|---|---|---|
AD | 201 ± 12 | 1203 ± 102 | 445 ± 83 | 28.2 ± 3.9 |
FD | 368 ± 63 | 2455 ± 576 | 915 ± 186 | 56.9 ± 11.5 |
Sample | PI,n (%) | PII,n (%) | PIII,n (%) | PIV,n (%) | PV,n (%) |
---|---|---|---|---|---|
ADBHS | 18.3 ± 0.9 | 22.0 ± 0.3 | 23.7 ± 0.2 * | 15.7 ± 0.4 | 20.1 ± 0.6 |
FDBHS | 19.3 ± 0.3 | 22.7 ± 0.1 | 22.1 ± 0.2 | 16.6 ± 0.3 | 19.3 ± 0.1 |
ADHHS | 18.8 ± 0.1 * | 20.8 ± 0.3 | 21.2 ± 0.6 | 18.5 ± 0.9 | 20.7 ± 0.1 * |
FDHHS | 20.1 ± 0.3 | 21.4 ± 0.3 | 20.0 ± 0.6 | 19.0 ± 0.5 | 19.5 ± 0.3 |
ADMHS | 18.9 ± 1.0 | 24.8 ± 0.6 | 26.1 ± 1.0 | 11.5 ± 0.5 | 18.6 ± 0.6 |
FDMHS | 20.5 ± 0.8 | 25.6 ± 0.5 | 25.3 ± 0.6 | 10.9 ± 0.2 | 17.6 ± 0.7 |
ADLHS | 14.7 ± 0.8 * | 25.9 ± 2.4 | 29.8 ± 0.8 * | 11.2 ± 0.4 | 18.4 ± 2.5 |
FDLHS | 16.5 ± 0.6 | 26.3 ± 0.6 | 27.7 ± 0.8 | 11.6 ± 0.5 | 17.8 ± 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuang, C.-W.; Huang, W.-S.; Liu, Y.-Y.; Hsieh, C.-Y.; Chen, T.-C. Fluorescence Properties of the Air- and Freeze-Drying Treatment on Size-Fractioned Sediment Organic Matter. Appl. Sci. 2021, 11, 8220. https://doi.org/10.3390/app11178220
Chuang C-W, Huang W-S, Liu Y-Y, Hsieh C-Y, Chen T-C. Fluorescence Properties of the Air- and Freeze-Drying Treatment on Size-Fractioned Sediment Organic Matter. Applied Sciences. 2021; 11(17):8220. https://doi.org/10.3390/app11178220
Chicago/Turabian StyleChuang, Cheng-Wen, Wei-Shiang Huang, Yung-Yu Liu, Chi-Ying Hsieh, and Ting-Chien Chen. 2021. "Fluorescence Properties of the Air- and Freeze-Drying Treatment on Size-Fractioned Sediment Organic Matter" Applied Sciences 11, no. 17: 8220. https://doi.org/10.3390/app11178220
APA StyleChuang, C. -W., Huang, W. -S., Liu, Y. -Y., Hsieh, C. -Y., & Chen, T. -C. (2021). Fluorescence Properties of the Air- and Freeze-Drying Treatment on Size-Fractioned Sediment Organic Matter. Applied Sciences, 11(17), 8220. https://doi.org/10.3390/app11178220