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Abstract: Ultrafast chip nanocalorimetry opens up remarkable possibilities in materials science by
allowing samples to be cooled and heated at extremely high rates. Due to heat transfer limitations,
controlled ultrafast cooling and heating can only be achieved for tiny samples in calorimeters with a
micron-thick membrane. Even if ultrafast heating can be controlled under quasi-adiabatic conditions,
ultrafast controlled cooling can be performed if the calorimetric cell is located in a heat-conducting
gas. It was found that the maximum possible cooling rate increases as 1/r0 with decreasing radius
r0 of the hot zone of the membrane. The possibility of increasing the maximum cooling rate with
decreasing r0 was successfully implemented in many experiments. In this regard, it is interesting to
answer the question: what is the maximum possible cooling rate in such experiments if r0 tends to
zero? Indeed, on submicron scales, the mean free path of gas molecules lm f p becomes comparable
to r0, and the temperature jump that exists at the membrane/gas interface becomes significant.
Considering the limitation associated with thermal resistance at the membrane/gas interface and
considering the transfer of heat through the membrane, we show that the controlled cooling rate can
reach billions of K/s, up to 1010 K/s.

Keywords: chip-nanocalorimetry; ultrafast nanocalorimetry; interfacial thermal resistance

1. Introduction

Ultrafast membrane-based nanocalorimetry opens up exciting opportunities for ma-
terials science [1–15]. This calorimetry makes it possible to measure the size-dependent
properties of nanosized samples [1,5,9] and films as thin as about 0.1 nm [2,3], as well
as measure the melting and synthesis characteristics of a single-layer lamella [7,8], and
directly measure the desorption of polymer chains [12]. The ultrafast calorimetry method
is described in detail in [10]. A review of microchip-based nanocalorimeters is presented
in [11]. It is very important that ultrafast calorimetry allows nano- and microsamples
to be heated or quenched at extremely high, controlled rates, creating non-equilibrium
states under well-defined conditions, and to study the kinetics of phase transitions on a
sub-millisecond time scale. A review of such experiments is presented in [14]. For example,
crystallization and recrystallization kinetics [15–20], as well as interfacial thermal con-
ductance [21,22], can be measured in ultrafast membrane nanocalorimeters during rapid
melting and crystallization. It was shown that calorimetric measurements with controlled
cooling and heating rates up to 108 K/s are possible using membrane sensors; in the
experiment, an uncontrolled cooling rate of about 108 K/s was achieved [23]. However, the
fundamental limitations on controlled cooling rates need to be investigated. Indeed, even
if ultrafast heating can be controlled in a nanocalorimeter under quasi-adiabatic conditions,
ultrafast cooling can only be performed under non-adiabatic conditions [23–26]. In fact, the
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central hot zone of the membrane is used as a calorimetric cell. The heat transfer between
the hot zone and the environment determines the maximum cooling rate achievable in an
experiment. It was found that uniform ultrafast controlled cooling can be accomplished for
nanogram samples if the measuring calorimetric cell is placed in heat-conducting nitrogen
gas or helium gas [23–26]. For several sensors of different size and geometry, it was shown
that the maximum possible controlled cooling rate is proportional to the ratio λ/r0, where
λ is the thermal conductivity of the surrounding gas and r0 is the radius of the central hot
zone of the membrane [23–26]. The possibility of increasing the maximum cooling rate
with decreasing r0 has been successfully used in many experiments [10–26]. The goal of
this article is to answer the question: what is the maximum possible cooling rate in such
experiments if r0 tends to zero? Indeed, on submicron scales, the mean free path of gas
molecules lm f p becomes comparable to r0. In fact, there is a jump in temperature ∆TC at
the membrane/gas contact. The temperature jump ∆TC increases with the increase of the
temperature gradient in the gas near the membrane hot zone; this temperature gradient
is about (T − Tt)/r0, where T is the temperature of the hot zone, Tt is the temperature of
the thermostat. Thus, for r0 on a submicron scale, a comprehensive analysis of the thermal
processes occurring in the calorimetric sensor located in a heat-conducting gas is required.

In the first part of the paper, we consider the thermal resistance at the membrane/gas
interface and obtain the fundamental limitation on the maximum possible cooling rate in a
membrane-based calorimeter with the calorimetric cell located in a heat-conducting gas.
In the second part of the paper, the effect of the heat transfer from the central hot zone of
the membrane to the periphery of the membrane is considered. Finally, it is shown that
the controlled cooling rate in membrane calorimeters can reach up to ten billion K/s in
helium gas.

2. Membrane-Based Ultrafast Nanocalorimeter

The considered membrane-based calorimeter consists of an amorphous silicon nitride
membrane with a thin-film resistive heater and a thermocouple located in the center
of the membrane, see Figure 1. The central hot zone of the membrane is used as the
calorimetric cell. The sample to be measured is placed in the center of this zone, next to the
measuring hot junction of the thermocouple, see Figure 1. The thermocouple, heater, and
electrical leaders are formed by p- and n-type polysilicon tracks with suitable thermoelectric
properties and resistivity. For the protection and electrical insulation, the measuring circuit
is covered with a submicron amorphous silicon nitride layer so that the total membrane
thickness dm is about 1 µm. The membrane is attached to a silicon frame at a distance of
b0 = 350 µm from the center of the membrane. The frame is mounted on a standard TO-5
housing. The calorimetric cell is located in a thermostat with controlled temperature Tt and
gas pressure p.
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Figure 1. Schematic sectional view of a membrane-based nanocalorimeter, not to scale.

The heat generated by the heater in the hot zone of the membrane is transferred
to the surrounding gas and membrane. Consider the transfer of heat to the gas. Let α
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denote the coefficient of heat transfer from the membrane surface to the surrounding
gas. This coefficient, measured in W/m2K, describes the heat loss from the central hot
zone of the membrane to the gas. The heat losses are mainly associated with the thermal
conductivity λ of the surrounding gas [23–26]. This heat loss is proportional to λ(T−Tt)

L ,
where L is the characteristic length of the problem. Since r0 is small with respect to the
distance Lt from the hot zone to the thermostat, the heat loss is proportional to λ(T−Tt)

r0
.

In fact, the hot zone can be considered as a spherical (point) heat source embedded in
the gas. Consequently, α = λ/r0 with good accuracy for a radius r0 of tens of microns or
less [23–26]. The convective and radiative contributions to the heat losses are negligible for
such a small r0, see Appendix A. Thus, the cooling rate R of the hot zone of the membrane
depends on the heat transfer parameter α = λ/r0 at Lt � r0 � lm f p.

Typically, nitrogen gas or helium gas is used to cool the membrane [10–26]. In differ-
ential scanning calorimetry, the calorimetric cell loaded with the sample and the reference
unloaded cell are maintained at the same temperature T(t) in the central hot zone; this
temperature is controlled at the desired scanning rate R(t). The difference in input power
required to match the temperature of the loaded cell to the temperature of the reference cell
is equal to the power PS(t) absorbed or released from the sample being measured [27]. This
study aims to estimate the maximum possible controlled cooling rate Rmax for membrane
calorimeters. Thus, we estimate Rmax for an unloaded cell, considering the limiting case
when the heat capacity of the sample is negligible.

3. Interfacial Thermal Resistance at the Membrane/Gas Interface

Let us consider the change in the gas temperature near the hot zone of the membrane
at distances comparable to lm f p. Note that for distances of the order of lm f p, it is necessary
to clarify the concept of the gas temperature. Temperature is commonly defined as the
average local energy of gas molecules, assuming that the distribution function is the same
as for large volumes [28]. Consider the temperature jump ∆TC at the membrane/gas
contact. This jump in temperature means that there is a contact thermal resistance at
the interface between the gas and the calorimeter membrane. In this case, the so-called
temperature jump distance δ can be introduced [29,30]. In fact, the effect of the temperature
jump increases the length of the heat transfer path through the gas by an amount of δ,
which is of the order of lm f p. Usually, the boundary condition that takes into account the
temperature jump at the membrane/gas interface is represented by Equation (1) [29,30]:

TK − Tm = δ
∂T
∂z

, (1)

where Tm is the temperature of the membrane, and TK is the gas temperature extrapolated
to the membrane, as if the temperature gradient in the gas ∂T

∂z was not distorted due
to the temperature jump at the interface. The temperature jump distance δ depends
on the following gas parameters: mean free path lm f p, heat capacity ratio γ, kinematic
viscosity ν, and thermal diffusivity D = λ/ρcp, where ρ and cp are the density and specific
heat capacity at constant pressure, respectively. The temperature jump distance δ can be
represented by Equation (2) [29,30]:

δ =

(
2− σ

σ

)(
2γ

1 + γ

)(
λ

νρcp

)
lm f p, (2)

where σ is the thermal accommodation coefficient in the boundary condition, see Equation (3).

Tr = σTm + Ti(1− σ), (3)

where Ti and Tr are the temperatures of the incident and reflected gas molecules; Tm is the
membrane temperature [29,30]. In fact, σ denotes the fraction of molecules that are diffusely
reflected from the membrane at the temperature Tm. The remaining fraction of molecules
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is reflected specularly, which means that their velocity components, perpendicular to the
membrane surface, only change sign. Thus, it follows from Equation (3) that σ can be
represented as:

σ = (Tr − Ti)/(Tm − Ti). (4)

Equation (4) reveals the physical meaning of the thermal accommodation coefficient σ.
The parameter σ depends on the gas molecules and the solid surface with which the gas
molecules interact. This parameter becomes close to 1 for a blackened surface [30]. σ is
relatively small for light gas molecules. For example, for helium gas and bright platinum σ
is about 0.5, and 0.9 for blackened platinum [30]. However, for CO2 gas, σ is about 1 for
various solids [30].

Let us consider the thermal contact conductance GC at the membrane/gas interface.
By definition, the thermal contact conductance GC is equal to the ratio qC/∆TC, where qC is
the heat flux through the interface [30]. qC is equal to the product of λ and the temperature
gradient in the gas near the interface. ∆TC is equal to the product of δ and the temperature
gradient in the gas near the interface. Thus, the thermal contact conductance GC is:

GC =λ/δ. (5)

Kennard calculated the energy flux Gmax(T − Tt) from a unit area of a solid in a
gas at a constant pressure p, which is the maximum possible heat flux at the solid/gas
interface [29,31].

Gmax = ( f + 1)kB
σ

(2− σ)

p√
2πmkBT

, (6)

where m and f are the mass and number of degrees of freedom of the gas molecule,
respectively. kB = 1.38 · 10−23 J/K is Boltzmann constant [30]. In fact, Gmax is equal to
the thermal contact conductance GC = λ/δ. Indeed, from Equations (2), (5) and (6) we
obtain the equality GC = Gmax taking into account the equation for the mean free pass
lm f p = ν

√
πm/2kBT [32].

Thus, Rmax for an unloaded cell can be estimated as

Rmax =
2Gmax(T − Tt)

ρmcmdm
, (7)

where dm = 1 µm is the membrane thickness and ρmcm = 2.3 · 106 J/m3K is the volumetric
heat capacity of the membrane at the density ρm = 3.2 g/cm3 and the specific heat capacity
cm = 0.71 J/gK [33]. Suppose T − Tt = 500 K, σ = 1 for a blackened membrane surface,
and rmin = δ. Then the rate Rmax can be estimated for several gases, see Table 1. A similar
Table 2 is represented for σ corresponding to a bright surface. Data on λ, ν, and lm f p
for gases are available in [33] and are collected in Tables 1–3. The temperature jump
distance δ is calculated using Equation (2). The results of measurements of the thermal
accommodation parameter of various gasses on several material are summarized in [30].
A significant scatter of these results shows that uncontrolled defects of the material surface
also affect the parameter σ [30]. Since our goal is not to accurately calculate the cooling
rate, but to estimate the maximum possible rate, we use the available data for bright and
blackened surfaces. In fact, σ depends not so much on the material but significantly on the
quality of the surface, therefore in Table 2 we use the data available for some bright solid
surfaces and several gases [30].
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Table 1. Thermal and contact parameters of gases for a blackened membrane at 300 K and 105 Pa.

Gas

Number of Degrees of
Freedom of Gas Molecules

Mean Free Path of
Gas Molecules

Temperature Jump
Distance

Thermal
Conductivity

Maximum Possible
Parameter

Maximum Interfacial
Thermal Conductance

Maximum Cooling
Rate

f lm f p δ λ α = λ
rmin

Gmax Rmax

Dimensionless µm µm W/m·K MW/m2K MW/m2K K/s

H2 5 0.126 0.21 0.192 0.90 0.90 3.9 · 108

He 3 0.200 0.38 0.156 0.41 0.42 1.8 · 108

N2 5 0.068 0.11 0.026 0.24 0.24 1.04 · 108

CO2 6 0.045 0.07 0.017 0.22 0.22 0.96 · 108

Table 2. Thermal and contact parameters of gases for a bright membrane at 300 K and 105 Pa.

Gas

Thermal Accom-Modation
Coefficient

Mean Free Path of
Gas Molecules

Temperature Jump
Distance

Thermal
Conductivity

Maximum Possible
Parameter

Maximum Interfacial
Thermal Conductance

Maximum Cooling
Rate

σ lm f p δ λ α = λ
rmin

Gmax Rmax

Dimensionless µm µm W/m·K MW/m2K MW/m2K K/s

H2 0.7 0.126 0.40 0.192 0.48 0.48 2.1 · 108

H2 0.5 0.126 0.64 0.192 0.30 0.30 1.3 · 108

N2 0.95 0.068 0.12 0.026 0.21 0.22 0.9 · 108

He 0.5 0.200 1.13 0.156 0.14 0.14 0.6 · 108

Table 3. Thermal parameters of gases at 300 K and 105 Pa.

Gas
Mean Free Path Thermal Diffusivity Thermal Diffusion Time Average Velocity of Gas Molecules Average Time between Collisions

lm f p D τD = r2
0/D Vm =

√
8kBT/πm τm = lm f p/Vm

µm m2/s s km/s s

H2 0.126 1.6 · 10−4 6.2 · 10−9 1.78 0.7 · 10−10

He 0.200 1.9 · 10−4 5.3 · 10−9 1.26 1.6 · 10−10

N2 0.068 2.2 · 10−5 45 · 10−9 0.476 1.4 · 10−10
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Figure 2 shows the dependence of the rate R on r0 for different gases, obtained by
Equation (8).

R =
2λ(T − Tt)/r0

ρmcmdm
. (8)

R increases as 1/r0 up to the maximum possible rate corresponding to the maximum
possible heat flux Gmax(T − Tt), see Equation (6). For the estimation of Rmax, the thermal
parameters of the gas and membrane are considered independent of temperature. In fact,
the heat capacity of the membrane changes insignificantly at temperatures above 300 K [33].
The increase in gas thermal conductivity λ with increasing temperature [33] is compensated
by an increase of the temperature jump distance δ. Thus, we get approximately the
same Rmax (with an accuracy of about 30%) for thermal parameters corresponding to
600 K; these parameters are available in [33]. The uncertainty in σ (which depends on the
surface quality) is more significant. Thus, we obtain an estimate of the maximum possible
interfacial thermal conductance (Gmax) and the minimum radius (rmin ≥ δ) of the hot zone
of the membrane.
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In fact, it makes no sense to reduce the radius r0 to less than 1 µm, at least for the most
heat-conducting hydrogen and helium gases, see Table 2 and Figure 2b. Thus, a cooling rate
108 K/s is possible at r0 of about 1 µm. However, the maximum possible cooling rate Rmax
is even higher due to the additional heat transfer from the hot zone of the membrane to the
periphery of the membrane. Thus, it is necessary to consider the problem of heat transfer
for the entire membrane-gas system. Next, we estimate the rate Rmax for helium gas as
one of the most suitable and heat-conducting gases at r0 = 1 µm and different thermal
conductivity λm of the membrane.

4. Maximum Possible Controlled Cooling Rate in the Membrane-Gas System

Heat in gases is transferred by molecules moving at a speed sufficient to achieve high
cooling rates. In fact, a cooling rate of about 108 K/s was achieved in the experiment [23].
The diffusion Fourier heat equation for gasses is a good approximation on a time scale
that is much larger than the average time between collisions of gas molecules [28,34].
Denoted by τm = lm f p/Vm the average time between collisions of gas molecules, where
Vm =

√
8kBT/πm is the average velocity of gas molecules [32,33]. In fact, τm = 0.07 ns,

0.16 ns, and 0.14 ns for hydrogen, helium, and nitrogen gases at Vm = 1.78 km/s, 1.26 km/s,
and 0.476 km/s, respectively (see Table 3). The thermal perturbation in the gas around the
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heated region of radius r0 relaxes during the thermal diffusion time τD = r2
0/D. In fact,

τD = 6.2 ns, 5.3 ns, and 45 ns at D = 1.6 · 10−4 m2/s, 1.9 · 10−4 m2/s, and 2.2 · 10−5 m2/s for
hydrogen, helium, and nitrogen gases, respectively, at r0 = 1 µm. The thermal parameters
of the gases are available in [33] and collected in Table 3. Thus, τD is much longer than
the average time between collisions of gas molecules, τD � τm, and about 102 collisions
per molecule occurs during τD. In this case, the diffusion Fourier heat equation can be
used [28,34]. However, the limited rate of relaxation of thermal perturbations in the gas
imposes the following limitation on the cooling rate: R < ∆T/τD, where ∆T is the interval
of the temperature scanning. Assume ∆T = 1000 K, then the cooling rate R is limited to
about 1.6 · 1011 K/s, 2 · 1011 K/s, and 2 · 1010 K/s for hydrogen, helium, and nitrogen gases,
respectively. This limitation is not the most significant. The main restriction is associated
with thermal relaxation of the membrane–gas system; this relaxation depends on the heat
loss from the membrane, which mainly depends on the thermal conductivity of the gas λ.

Let us consider the temperature distribution T(t, r) in the lateral direction of the
membrane for a ring-shaped heater. The temperature difference in the z direction is
insignificant, since λ is much less than the membrane thermal conductivity λm. Note
that the temperature gradients near the central hot zone in the gas and membrane are
approximately the same and equal to (T − Tt)/r0. Therefore, ∂T/∂z is about (λ/λm)∂T/∂r,
as follows from the boundary condition for the heat flux at the membrane/gas interface.
Thus, gradients along the z direction in the membrane can be neglected at λ<<λm. In
addition, the temperature distribution T(t, r) tends to zero at a distance of the order of
r0, see below. Thus, the shape of the membrane at the periphery does not matter at
r � r0. Therefore, we consider a boundary value problem with a homogeneous boundary
condition T(t, b0) = 0, where b0 is the distance from the center of the membrane to the
silicon frame, the temperature of which is equal to the temperature of the thermostat, and
the temperature T(t, r) is measured from Tt. Thus, for the membrane–gas system, we have
an equation for T(t, r) in cylindrical coordinates, see Equation (9). The second term (−T/τ)
on the right-hand side of Equation (9) describes the heat loss from the membrane to the gas.

∂T
∂t

= Dm

(
∂2T
∂r2 +

1
r

∂T
∂r

)
− T

τ
+ Φ(t, r), (9)

where Dm = λm/ρmcm is the thermal diffusivity of the membrane, τ = ρmcmdm/α, α = λ/r0,
Φ(t, r) = HF(t, r)/ρmcmdm, and HF(t, r) is the surface density of the heat flux generated by
the heater [35]. The solution to the problem can be represented as a series expansion:

T(t, r) = ∑N
n=1 J0(µnr/b0)ψn(t), (10)

where J0(µnr/b0) are the orthogonal Bessel functions of the first kind and of zero order,
{µn} is a monotonously increasing sequence of positive roots of the equation J0(µn) = 0 for
n = 1, 2, 3 . . ., and N is the number of terms in the series expansion sufficient to achieve the
required accuracy. Note that the structure within the hot zone can be accurately calculated
if the number N is large compared to b0/b1, where b1 is the thickness of the thinnest heater
structure. Good accuracy can be achieved with N ≥1000 for b1 =1/3 µm and b0 = 350 µm.
Further calculations are performed at N =2000. In fact, the difference in the results for
N = 1000 and 2000 was insignificant.

The functions ψn(t) can be obtained from the Fourier components of Equation (9).

∂ψn(t)/∂t +
(

τ−1 + τ−1
n

)
ψn(t) = Bn(t), (11)

where τn = 1/Dm(µn/b0)
2 and

Bn(t) =
2

b2
0 J1(µn)

2

∫ b0

0
J0(µnr/b0)Φ(t, r)rdr. (12)
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Consider the solution T(t, r) for a ring heater. Suppose Φ(t, r) = q(t)F(r), where
F(r) = 1 in the ring r ∈ (r1, r0) and F(r) = 0 outside this ring. Thus,

Bn(t) =
q(t)

ρmcmdm

2r0 J1(µnr0/b0)− 2r1 J1(µnr1/b0)

µnb0 J1(µn)
2 , (13)

where q(t) = P(t)/π
(
r2

0 − r2
1
)

and P(t) is the heater power. Therefore, with a zero initial
condition T(t, r) = 0 at t ≤ 0, we obtain a solution to Equation (11):

ψn(t) =
∫ t

0
Bn
(
t′
)
exp

(
−
(

τ−1 + τ−1
n

)(
t− t′

))
dt′. (14)

For model calculations, in order to obtain approximately constant heating and cool-
ing rates, we take the power P(t) increasing as (t/t0)

β1 during heating and decreasing
as 1− ((t− t0)/t1)

β2 during cooling, where t0 and t1 are the duration of temperature
scanning during heating and cooling, respectively, β1 and β2 are positive parameters less
than 1. Thus, we obtain the temperature distribution T(t, r) calculated at R = 108 K/s
and 3 · 108 K/s, see Figure 3. The calculations were carried out for helium gas with
λ = 0.156 W/m·K at r0 = 1 µm, r1 = 2r0/3, dm = 1µm, λm = 3W/m·K, Dm = 1.3 · 10−6 m2/s,
ρmcm = 2.3 · 106 J/m3K, and the scanning temperature range ∆T = 1000 K. The temper-
ature profile T(t0, r) was calculated at the end of heating for t0 = 10.8 µs and 3.65 µs at
R = 108 K/s and 3 · 108 K/s, respectively.
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Thus, controlled cooling is possible at R = 108 K/s and even 3 · 108 K/s. Note that
at R = 3 · 108 K/s, ballistic (uncontrolled) cooling begins at some critical temperature
difference (TC − Tt) of about 400 K. This critical temperature difference (TC − Tt) increases
with increasing R, so that controlled cooling above 5 · 108 K/s is practically impossible,
even with a scanning interval as large as ∆T = 1000 K.

However, the controlled cooling rate can be increased by additional heat transfer in a
membrane with a higher thermal conductivity λm. The thermal conductivity λm can be
increased by depositing an additional heat-conducting Au layer on the membrane. This
idea was successfully demonstrated on a commercially available chip calorimeter with a hot
zone radius r0 of about 5 µm [23]. A rate of about 108 K/s was achieved in helium gas for a
sensor with an additional heat-conducting Au layer on the membrane [23]. In this article,
we estimate the maximum possible cooling rate as r0 decreases. In fact, for an additional
Au layer with a thickness dAu and thermal conductivity λAu = 317 W/m·K [33], we obtain
a membrane with λm = λAu(dAu/d0) + λ0(d/d0) in the lateral direction of the membrane,
where d0 is the thickness of the silicon nitride layer. Suppose d0 = 0.8 µm and dAu = 0.4 µm,
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then dm = 1.2 µm, λm = 100 W/m·K, and the average volumetric heat capacity of the
membrane is ρmcm = 2.4 · 106 J/m3K at ρAucAu = 2.5 · 106 J/m3K for Au [33]. In this
case, controlled cooling is possible at R = 109 K/s and even at 6 · 109 K/s, see Figure 4.
The calculations were carried out for helium gas with λ = 0.156 W/m·K at r0 = 1 µm,
r1 = 2r0/3, dm = 1.2 µm, λm = 100 W/m·K, Dm = 4.2 · 10−5 m2/s, ρmcm = 2.4 · 106 J/m3K,
and ∆T = 1000 K. The temperature profile T(t0, r) was calculated at the end of heating for
t0 = 1.03 µs and 0.177 µs at R = 109 K/s and 6 · 109 K/s, respectively.
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green crosses, respectively. The heater acts uniformly in the disk 𝑟 ∈ (0, 𝑟). Thermal conductivity of the membrane 𝜆 = 
100 W/m·K. 
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Figure 4. Normalized scanning rate ∂T/∂t vs. temperature in the center of the membrane for the power P(t) shown in the
inset (a) and the temperature profile T(t0, r) (b) for R = 109 K/s and 6 · 109 K/s—black squares and red circles, respectively.
The heater acts uniformly in the ring r ∈ (r1, r0) at r1 = 2r0/3. Thermal conductivity of the membrane λm = 100 W/m·K.

The maximum possible rate of controlled cooling can be even higher if the heater is
uniformly distributed over the entire hot zone for r ∈ (0, r0). However, in this case, the
temperature profile in the middle of the hot zone is not as flat as in the case of the ring
heater, see Figures 4 and 5. Controlled cooling is possible at R = 109 K/s, 6 · 109 K/s,
and even 1010 K/s, see Figure 5. The calculations were carried out for helium gas with
λ = 0.156 W/m·K at r0 = 1 µm, dm = 1.2 µm, λm = 100 W/m·K, Dm = 4.2 · 10−5 m2/s,
ρmcm = 2.4 · 106 J/m3K, and ∆T = 1000 K. The temperature profile T(t0, r) was calculated
at the end of heating for t0 = 1.03 µs, 0.175 µs, and 0.105 µs at R = 109 K/s, 6 · 109 K/s, and
1010 K/s, respectively.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 14 
 

0 200 400 600 800 1000

-1.0

-0.5

0.0

0.5

1.0

controlled cooling

 109 K/s
 6x109 K/s

N
or

m
al

iz
ed

 R
at

e 
(d

im
.le

ss
)

Temperature difference (T-Tt)  in K

heating

ballistic cooling

0.0 0.5 1.0 1.5 2.0
0

200
400
600

Po
w

er
 in

 m
W

Time in μs

 

-15 -10 -5 0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

λm = 100 W/m⋅K

N
or

m
al

iz
ed

 T
em

pe
ra

tu
re

 (d
im

.le
ss

)

Distance in μm

 109 K/s
 6x109 K/s

 
(a) (b) 

Figure 4. Normalized scanning rate 𝜕𝑇/𝜕𝑡 vs. temperature in the center of the membrane for the power 𝑃(𝑡) shown in 
the inset (a) and the temperature profile 𝑇(𝑡, 𝑟) (b) for R = 109 K/s and 6·109 K/s − black squares and red circles, respec-
tively. The heater acts uniformly in the ring 𝑟 ∈ (𝑟ଵ, 𝑟) at 𝑟ଵ = 2𝑟/3. Thermal conductivity of the membrane 𝜆 = 100 
W/m·K. 

The maximum possible rate of controlled cooling can be even higher if the heater is 
uniformly distributed over the entire hot zone for 𝑟 ∈ (0, 𝑟). However, in this case, the 
temperature profile in the middle of the hot zone is not as flat as in the case of the ring 
heater, see Figures 4 and 5. Controlled cooling is possible at R = 109 K/s, 6·109 K/s, and even 
1010 K/s, see Figure 5. The calculations were carried out for helium gas with 𝜆 = 0.156 
W/m·K at 𝑟 =  1 µm, 𝑑 =  1.2 µm, 𝜆 =  100 W/m·K, 𝐷 =  4.2·10−5 m2/s, 𝜌𝑐 = 
2.4·106 J/m3K, and ∆𝑇 = 1000 K. The temperature profile 𝑇(𝑡, 𝑟) was calculated at the 
end of heating for 𝑡 = 1.03 µs, 0.175 µs, and 0.105 µs at R = 109 K/s, 6·109 K/s, and 1010 
K/s, respectively. 

0 200 400 600 800 1000

-1.0

-0.5

0.0

0.5

1.0
 109 K/s
 6x109 K/s
1010 K/s

controlled coolingN
or

m
al

iz
ed

 R
at

e 
(d

im
.le

ss
)

Temperature difference (T-Tt)  in K

heating

ballistic cooling

0.0 0.5 1.0 1.5 2.0
0

200
400
600

Po
w

er
 in

 m
W

Time in μs

 

-15 -10 -5 0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

λm = 100 W/m⋅K

N
or

m
al

iz
ed

 T
em

pe
ra

tu
re

 (d
im

.le
ss

)

Distance in μm

 109 K/s
 6x109 K/s
1010 K/s

 
(a) (b) 
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green crosses, respectively. The heater acts uniformly in the disk 𝑟 ∈ (0, 𝑟). Thermal conductivity of the membrane 𝜆 = 
100 W/m·K. 
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Figure 5. Normalized scanning rate ∂T/∂t vs. temperature in the center of the membrane for the power P(t) shown in
the inset (a) and the temperature profile T(t0, r) (b) for R = 109 K/s, 6 · 109 K/s, and 1010 K/s—black squares, red circles,
and green crosses, respectively. The heater acts uniformly in the disk r ∈ (0, r0). Thermal conductivity of the membrane
λm = 100 W/m·K.
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5. Conclusions

The controlled maximum possible cooling rate is limited due to the fundamental heat
transfer limitation associated with the thermal resistance at the membrane/gas interface.
Heat losses from the membrane due to thermal conductivity λ of the surrounding gas are
proportional to the heat transfer parameter α = λ/r0, which increases with decreasing of
the radius of the membrane hot zone r0 if Lt � r0 � lm f p. However, the possibility of
decreasing the radius r0 is limited by the temperature jump distance δ. Thus, it makes
no sense to reduce the radius r0 to less than 1 µm, at least for the most heat-conducting
gases hydrogen and helium. In fact, this limitation is associated with the maximum
possible value of the heat flux Gmax(T − Tt) at the membrane/gas interface, where the
maximum interfacial thermal conductance Gmax is about 0.9 MW/m2K and 0.42 MW/m2K
for a blackened membrane (σ = 1) and the most heat-conducting gases hydrogen and
helium, respectively. Thus, for a free blackened membrane, the maximum cooling rate
2Gmax(T − Tt)/(ρmcmdm) is about 3.9 · 108 K/s and 1.8 · 108 K/s at (T − Tt) = 500 K
for hydrogen and helium gases, respectively. Solving the heat transfer problem for the
complete membrane-gas system, we find that the maximum possible controlled cooling
rate is about 3 · 108 K/s for a silicon nitride membrane with a thickness of 1 µm in helium
gas. However, the controlled cooling rate can be increased using the combined membrane
with a higher thermal conductivity. Thus, a controlled cooling rate of the order of billions
of K/s (up to 1010 K/s) is possible for helium gas, r0 = 1 µm, and (T − Tt) = 1000 K.
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Nomenclature
Latin Symbols
b0 distance from the center to the periphery of the membrane (m)
cp, cm specific heat of gas and membrane at constant p (J/kgK)
D, Dm thermal diffusivity of gas and membrane (m2/s)
dm membrane thickness (m)
f number of degrees of freedom of a gas molecule (dimensionless)
g acceleration of gravity (m/s2)
GC thermal contact conductance (W/m2K)
Gmax membrane/gas maximum thermal conductance (W/m2K)
Gr Grashof number (dimensionless)
kB Boltzmann constant (J/K)
lm f p mean-free-path (m)
Lt distance from the membrane hot zone to the thermostat (m)
m mass of a gas molecule (kg)
Nu Nusselt number (dimensionless)
Pr Prandtl number (dimensionless)
p pressure (Pa)
P(t) heater power (W)
qC heat flux through thermal contact (W/m2)
R(t) temperature scan rate (K/s)
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Rmax maximum possible cooling rate (K/s)
r0 radius of the hot zone of the membrane (m)
rmin minimum radius of the hot zone (m)
t0 scan duration on heating (s)
Tt thermostat temperature (K)
TC − Tt critical temperature difference of controlled cooling (K)
Vm average velocity of gas molecules (m/s)
Greek Symbols
α heat transfer coefficient W/m2K
αC convective contribution to the heat transfer coefficient W/m2K
αr radiative contribution to the heat transfer coefficient W/m2K
γ heat capacity ratio (dimensionless)
δ temperature jump distance (m)
∆T scanning temperature range (K)
∆TC temperature jump at the membrane/gas contact (K)
ε membrane emissivity (dimensionless)
λ, λm thermal conductivity of gas and membrane (W/K ·m)
ν kinematic viscosity of gas (m2/s)
ρ, ρm density of gas and membrane (kg/m3)
σ thermal accommodation coefficient (dimensionless)
σr Stefan-Boltzmann constant (W/m2K4)
τ time constant (s)
τD thermal diffusion time (s)
τm average time between collisions (s)
τn time constant of nth component (s)
Φ(t, r) reduced heat flux (K/s)
ψn(t) nth Fourier component (K)

Appendix A. Radiative and Convective Contributions to Membrane Heat Loss

The radiative contribution to the heat transfer coefficient is αr = εσt
(
T4 − T4

t
)
/(T − Tt), where

the Stefan-Boltzmann constant σr = 5.67 · 10−8 W/(m2K4) [33] and the emissivity of the silicon
nitride membrane ε ≤ 0.2 [36,37]. Therefore, αr = 16 W/(m2K) at T = 1000 K and Tt = 300 K. Thus,
αr/α is about 0.01% at α = λ/r0, which is about 1.56 · 105 W/(m2K) for helium gas λ = 0.156 W/m·K
and r0 = 1 µm. Then αr is negligible compared to α.

The convective component αC of the heat losses from the membrane decreases with a decrease in
the characteristic length of the problem [21,22,35]. Convective heat losses arise due to the temperature
dependence of the gas density in the gravitational field in the presence of temperature gradients.
The ratio αC/α is equal to the Nusselt number Nu = (Gr)1/4 f (Pr) [38]. The Prandtl number Pr

and f (Pr). for gases are about 1 [33,38]. The Grashof number Gr =
r3

0 g
ν2

(T−Tt)
T [38], where g is the

acceleration due to gravity. Thus, the Nusselt number Nu decreases as r3/4
0 with decreasing r0. In

fact, (Gr)1/4 is about or less than
(
r3

0g/ν2)0.25
= 5 · 10−3 at r0 =1 µm and ν = 1.24 · 10−4 m2/s [33],

that is, Nu < 0.005. Convective heat loss only acts on the upper side of the membrane. However,
heat losses due to thermal conductivity λ of the surrounding gas act on both sides of the membrane.
Thus, the convective contribution to the membrane heat loss Nu/2α is about 0.25% for r0 = 1 µm.
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