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Abstract: Over the last few years, there has been an increase in the studies that consider experiential
(visual) information by building multi-modal language models and representations. It is shown by
several studies that language acquisition in humans starts with learning concrete concepts through
images and then continues with learning abstract ideas through the text. In this work, the curriculum
learning method is used to teach the model concrete/abstract concepts through images and their
corresponding captions to accomplish multi-modal language modeling/representation. We use the
BERT and Resnet-152 models on each modality and combine them using attentive pooling to perform
pre-training on the newly constructed dataset, which is collected from the Wikimedia Commons
based on concrete/abstract words. To show the performance of the proposed model, downstream
tasks and ablation studies are performed. The contribution of this work is two-fold: A new dataset is
constructed from Wikimedia Commons based on concrete/abstract words, and a new multi-modal
pre-training approach based on curriculum learning is proposed. The results show that the proposed
multi-modal pre-training approach contributes to the success of the model.

Keywords: multi-modal dataset; Wikimedia Commons; multi-modal language model; concreteness;
curriculum learning

1. Introduction

After the success of contextual representations, language model pre-training and
fine-tuning the model for downstream tasks have been common practices in natural
language processing (NLP) . The wide-spread adoption of BERT [1] led to several pre-
trained language models that are described as BERT variants [2–5]. Putting BERT at the
core, these models provide extensions with different viewpoints, cross-lingual, multi-task,
multi-modal, and world knowledge, to name a few. Among these models, Albert [3] targets
efficiency by using weight sharing and decreasing memory consumption, RoBERTa [2]
increases the amount of training data and times and removes the next sentence prediction
objective, XLNet [4] uses permutation instead of masking to capture the bidirectional
context and combines BERT with autoregressive language modeling, and ERNIE [5] aims
to exploit world knowledge by masking named entities and phrases rather than random
words, and, in its updated version [6], the pre-training task is organized as a multi-task
objective to capture different relations, such as lexical, syntactic, and semantic.

The earlier approaches to bridge vision and language relied on architectures with a
visual feature extractor, a text encoder, a multi-modal fusion component, and a classification
layer to perform the given multi-modal task, e.g., visual question answering. The robust
pre-trained language models have caused a shift from a task-specific perspective to a
task-agnostic one, multi-modal language model pre-training.

Multi-modality, especially with vision and language, has been implemented in some
BERT variants [7–9], as well. VisualBERT [7] and VideoBERT [8] use similar transformer-
based architectures. The former processes image captions together with image regions
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to discover implicit alignments between language and vision. On the other hand, the
latter works with spoken words paired with a series of images to learn a similar alignment.
Distinctively, ViLBERT [9] has a two-stream transformer model, which processes vision
and language separately but learns their relationships through co-attentions between them.

The primary motivation for combining vision and language in these models has been
visual grounding to learn visual features under the guidance of textual descriptions. Apart
from it, we can leverage visual and language features to mimic human language acquisition.

There have been studies that indicate we can mainly attribute language acquisition
in children to experiential information in early ages [10–12]. It is mentioned in those
works that the language acquisition in children starts with experiential information, where
we mostly learn about concrete concepts in languages and continue with the textual
information in later ages where we mostly know about abstract concepts. Thus, many
researchers tried to build language models with multi-modal information (Refs. [9,13,14],
and many more), leveraging both textual and visual inputs.

This work aims to create a multi-modal language model that uses both textual and
visual features, similar to what humans do. First, we feed the image model concrete
examples. Then, we train the textual model with all of the samples concrete and abstract
combined, in a curriculum learning fashion [15,16]. We rely on University of Western
Australia The Medical Research Council (UWA MRC) Psycholinguistic Dataset [17] for
the lists of the abstract/concrete words. The contribution of this work is two-fold: A new
dataset is constructed from Wikimedia Commons based on concrete/abstract terms, and
a new multi-modal pre-training approach that is based on curriculum learning [15,16]
is proposed.

The results show that the proposed multi-modal pre-training method contributes to
the success of the model in downstream tasks, e.g., visual question answering. In addition,
it can be seen from the ablation study that this increase in performance is consistent among
all fusion techniques used in this work. We obtained the best results when the multi-modal
pre-training scheme is used with attentive pooling as the fusion mechanism. In addition to
the tests mentioned above, we performed several tests for measuring the informativeness
of the newly constructed dataset.

The rest of the manuscript is structured as follows: In Section 2, we give background
information on the task of language modeling/representation. Model details and the new
dataset are explained in Section 3. We share the experimental results in Section 4, along
with the descriptions of the datasets used. In addition, finally, in Section 5, final remarks
are made with possible future directions.

2. Related Work

The idea of building word representations from frequency statistics comes from
the Distributional Hypothesis [18,19]. The distributional hypothesis states that one can
determine the meaning of a word through the words that co-occur with it in the same
context. Famously, Harris (1954 [19]) states that the “words that occur in the same context
tend to have similar meanings”.

Although the count-based methods can leverage the distributional model to learn the
representations of words, they suffer from several drawbacks: lack of word order, unable
to retrieve representations from partial information (generalization power), and the curse
of dimensionality (they create millions, if not trillions, of different possible n-grams which
are very unlikely to be observed in the training data, which leads to a very sparse matrix
with a lot of uninformative zero entries).

Neural network solutions emerged to solve these issues. In such a first attempt,
Hinton et al., in 1986 [20], utilized the idea of distributed representations for concepts. They
proposed to use patterns of hidden layer activations (which are only allowed to be 0 or
1) as the representation of meanings instead of representing words with discrete entities,
such as the number of occurrences, together. They argued that the most critical evidence of
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distributed representations is their degree of similarity to the weaknesses and strengths of
the human mind.

Elman (1990) [21] was the first to implement the distributional model proposed by
Reference [20] in a language model. He presents a specific recurrent neural network
structure with memory, called the Elman network, to predict bits in temporal sequences.
Memory is provided to the network through context units that are fully connected with
hidden units.

Although these models build the basis of neural word representations, Bengio et al.,
in 2003 [22], popularized the distributional representation idea by realizing it through
a language model and lead to numerous other studies that are built on it. Their model
architecture uses a feed-forward network with a single hidden layer and optional direct
connections from the input layer to the softmax layer. The weights of the hidden layer are
then taken as the representations of words.

Once it is shown that neural language models are efficiently computable by Ben-
gio et al., as in 2003 [22], newer language models, along with better word embeddings, are
developed successively. In such an effort, Mikolov et al., in 2013 [23], proposed word2vec
to learn high-quality word vectors. The authors removed the non-linearity in the hidden
layer in the proposed model architecture of Bengio et al., in 2003 [22], to gain an advantage
in computational complexity. Due to this change, the system can be trained using billions
of words efficiently. Thus, it is considered as the initiator of early word embeddings [24].

Despite the success of these earlier word embeddings, there were still many limita-
tions in terms of the accuracy of representations (lack of polysemy, unable to account for
morphology, antonymy/synonymy problem). Many methods have been proposed for
solving the deficiencies of embedding methods. Each of them is specialized on a single
problem, such as sense representations [25,26], morpheme representations [27,28], etc.,
while none of them could combine different aspects into a single model, a single solution.
It is the idea of contextual representations to provide a solution that covers each element
successfully. The main idea behind contextual representations is that words should not
have a single representation to be used in every context. Instead, one should calculate
a representation separately for different contexts. Contextual representation methods
calculate the embedding of a word from the surrounding words each time the word is
seen. This characteristic leads to an implicit solution to many problems, such as sense
representations, since multi-sense words can now have different representations according
to their contexts. Furthermore, character-level processing has been proposed to incorporate
the sub-word information into embeddings. Therefore, contextual representation models
described below can incorporate different aspects together into a single model.

In such a first attempt to create contextual representations, Melamud et al., in 2016 [29],
developed a neural network architecture based on bidirectional-LSTMs to learn context
embeddings with the target word embeddings jointly. CoVe [30] uses Glove [24] as the
initial word embeddings and feeds them into a machine translation architecture to learn
contextual representations. The authors argue that pre-training the contextual represen-
tations on machine learning tasks, where there are vast amounts of data, can lead to
better contextual representations to transfer learning to other downstream tasks. Using
language modeling and learning word representations as a pre-training objective then
fine-tuning the architecture to downstream tasks is first proposed by References [31,32].
ELMO [33] improves on the character-aware neural language model by Reference [34]. The
architecture takes characters as input to a CNN network from where it is fed to a 2-layer
bidirectional-LSTM network to predict a target word. They show that this architecture can
learn various aspects of semantic, syntactic, and sub-word information. Instead of using
words as input, Flair [35] uses a character-level language model to learn contextual word
representations. Unlike ELMO, where character-level inputs are later converted into word
features, authors propose using characters only in this work. BERT [1] uses a bidirectional
transformer [36] architecture to learn contextual word representations. XLNet [4] is an
autoregressive method that combines the advantages of two language modeling methods:
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Autoregressive models (i.e., transformer-XL [37]) and autoencoder models (i.e., BERT).
ALBERT [3] aims at lowering the memory consumption and training times of BERT [1]. To
accomplish this, they perform two changes on the original BERT model: They factorize the
embeddings into two matrices to use smaller dimensions, and they apply weight sharing
to decrease the number of parameters.

The success of uni-modal language models drives the researchers into studies that
examine the use of visual information for training language models. They base this
decision on the advances in cognitive science where it is shown that language acquisition in
children mostly relies on experiential data [10–12]. While some of those studies focused on
producing better representations, [12,38–42], most of these models produce multi-modal
embeddings as a side-product of a multi-modal task. These tasks include image retrieval
with text and caption [43,44], image-text alignment [45,46], image segmentation using a
target text [47], visual question answering [13,14,48], visual common-sense reasoning [49],
and image captioning [42]. Some other studies also contributed to the field of multi-
modal language modeling by encompassing many of these models similar to contextual
embeddings [9] or by enhancing the existing models [50]. As the field is relatively new,
most of these works focus on the fusion of modalities more than the individual models.

Curriculum learning [15,16] used in this study is a progressive training method that
puts the samples in a meaningful order instead of random shuffling. Training is done in
learning steps where, in each step, the difficulty of the examples is increased. Curriculum
learning provides two benefits: faster convergences of neural methods and finding a better
local minimum. Many aspects of multi-modal language models are well studied, and
curriculum learning methods are applied to other NLP subjects. However, to the best of
our knowledge, there has not been a study that explored curriculum learning approaches
in multi-modal language modeling.

3. Method

In this section, we introduce the details of the proposed model and dataset. First, a
newly created dataset from Wikimedia Commons is described in Section 3.1. In the follow-
ing Sections 3.2 and 3.3, the proposed model, along with the training method, is explained.

3.1. Wikimedia Commons Dataset

Wikimedia Commons (https://commons.wikimedia.org/wiki/Main_Page, accessed
on through 1 January 2020 to 13 April 2020) is a repository of free-to-use images that is a part
of Wikimedia Foundation. Wikimedia Commons files are used across all Wikimedia projects
in all languages, including Wikipedia, Wiktionary, Wikibooks, Wikivoyage, Wikispecies,
Wikisource, Wikinews, or downloaded offsite use. It comprises approximately 65 million
images that take about 250 TB of space. The images also contain captions, descriptions,
and timestamps.

To retrieve the images, one must send queries to the Wikimedia Commons website.
To this end, we have used two different sets of query words to construct datasets. For
retrieving the entire dataset, the dictionary of the BERT model [1] is used. As for getting
the subset that we primarily used in this work, UWA MRC psycholinguistic dataset words
are used.

UWA MRC Psycholinguistic Dataset [17] contains 98538 words and their properties,
such as type, meaningfulnes, concreteness, part-of-speech, familiarity, and many more.
Concreteness scores which are used in this research are derived from merging the two
datasets provided by References [51,52].

In this dataset, 4293 out of 98538 words have a concreteness rating, rated by human
annotators. Human annotators are asked to rate the concreteness of words between
(including) 1 and 7, where the higher the score, the more concrete the word is. The mean of
all users’ scores is the final concreteness rating of the word, which is scaled between 100
and 700. Overall, the most abstract term in the dataset is “as” with a rating of 158, and the

https://commons.wikimedia.org/wiki/Main_Page
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most concrete word is “milk” with a score of 670. The mean rating of all terms is 438, and
the standard deviation is 120.

To successfully integrate this dataset into our task, some processing is required. Al-
though the UWA MRC Psycholinguistic dataset successfully identifies the concreteness of
words, it considers the words in isolation, unlike this work, where contextual embeddings
and language models regard words in their context. Therefore, all the stop-words are
removed (stop-words from the NLTK library are used) from the dataset, considering that
they can appear in various contexts with different levels of concreteness and therefore can
lead to misleading results. It is observed from the dataset that the lowest-rated words are
usually stop-words, such as “as”, “therefore”, and “and”. Thus, a lot of abstract words are
removed in the lower bound. The most abstract word in the dataset after the removal is
“apt” with a rating of 183. The final version of the dataset contains 1674 abstract and 2434
concrete words.

For each word, a query is sent to the Wikimedia Commons website with 1000 as
a maximum threshold for the number of results. As a result, we have images, their
corresponding captions, descriptions, and concreteness labels. Figure 1 shows the number
of images returned for each query word in UWA MRC psycholinguistic dataset. As seen
from the graph, most of the query words returned less than 100 results despite a large
threshold. Only around a hundred words have more than 500 images associated with them.
The number of samples collected is shown in Table 1. More than 43 million images are
collected using the dictionary of BERT, while approximately 3.2 million images are collected
using the words in UWA MRC psycholinguistic dataset. We can also observe that not all
images have a description and/or caption associated with them. Some images contain only
captions, some images contain descriptions but no caption, and, finally, some images do
not contain any textual information at all. In total, 630,000 images contain captions, and
approximately 2 million images contain descriptions. Overall, there is an overlap between
both sets which means that some images contain both captions and descriptions.

Figure 1. Histogram of the samples retrieved for words. Horizontal axis shows the number of images
retrieved, while the vertical axis shows the amount of words which have that many images associated
with them.

Table 1. Wikimedia Commons dataset statistics.

Dataset # of Images # of Captions # of Descriptions

Complete Dataset 43,726,268 1,022,829 17,767,000
Subset (queried w/UWA MRC words) 3,206,765 629,561 1,961,567
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The retrieved images have many formats, such as .jpeg, .jpg, .jpe .png, .apng, .gif, .tif,
.tiff, .xcf, .webp, and many image modes, such as RGB (3 × 8-bit pixels, true color), CMYK
(4 × 8-bit pixels, color separation), I (32-bit signed integer pixels), I;16 (16-bit unsigned
integer pixels). Although many of these formats and modes are supported, we eliminated
some of them. Images with the extension .xcf and .webp are filtered because mainstream
image processing libraries do not support them. In addition to this, images with mode I
(and other modes of I, such as I;16, I;16L, I16B, and so on) are eliminated because they are
single-channel image modes, and the neural network models that process these images run
with multi-channel inputs. Nearly 26,000 images are eliminated after this filtering. In the
final version of the dataset, there are approximately 603,000 images with captions, where
177,000 belongs to abstract concepts, while 425,000 belongs to concrete concepts.

Many images in Wikimedia Commons have a very high resolution (resolutions, such
as 3000 × 5000, 6000 × 6000, are very common), therefore requiring huge storage space.
In addition to the filters applied above, a resize operation is performed to cope with this
storage problem. All images are converted to a resolution of 224 × 224 since all the image
models (GoogleNet [53], VGG [54], Resnet [55]) run with those.

Figure 2 shows some example images and their corresponding captions and descrip-
tions from the collected Wikimedia Commons dataset. The selected images have captions
and descriptions, except for the bottom-left image where a description does not exist.

One thing to be observed from these images is, indeed, the images and the texts
convey different information on the relationship of concepts. For example, there is no
textual information in the top-left image, neither in the caption nor in the description, about
the buildings that can be seen in the image. However, streets are primarily located near
buildings (almost 70% of all images from Wikimedia Commons contains buildings when
you search for the keyword “street”), which is captured by the image. Therefore the system
can learn a relationship of concrete concepts, such as “street” and “building”, from the
pictures without relying on the text. Similarly, the image contains no clue about its location,
but it is understandable from both the caption and the description that it is in Mogadishu,
Somalia. In the same vein, in the bottom-left image; there is no mention of a sea/lake in the
text, but the lighthouse and the sea/lake can be seen together (which occur with almost no
exception in real life) in the image, which will help the model to learn their relationships
better. So, a language model trained with both images and text can help to improve the
performances of language models.

Although the collected dataset contains captions and descriptions, captions are used
to train the multi-modal language model. The reason is two-fold. We observed that
descriptions in Wikimedia Commons are unclean. They include many additional texts,
such as copyright notices, information about the photographer, or information about how
the photograph is taken (such an example can be seen in the last sentence of the top-right
image of Figure 2). On the other hand, captions are already cleaned and contain information
only about the picture itself. Because of the requirement of tedious cleaning, we relied
on captions.

The second but most important reason is the image-text alignment issues. Captions
are written to describe the images briefly without giving any other information or making
any further comment classified as common-sense knowledge or real-world knowledge.
Contrarily, descriptions contain much information that cannot be seen in or referred from
the images. Although these additional pieces of knowledge can be essential and valuable
in other tasks, they break the image-text alignment and lead to learning noisy contexts in
language modeling. If we take the top-right image in Figure 2 as an example, we can see
how this can affect the language models. The description of the top-right image provides
many semantically similar words to the context of the image, which is sheep lounging in a
field, such as “breeding”, “slaughtered”, and “vegetation”. However, it also provides a lot
of different or unrelated words, such as “castle”, “ruin”, “municipality”, which has very
little to do with the image itself. Consequently, this leads to learning from an accidental
relationship, for example, between the context of “sheep” and the context of “municipality”.
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On account of this fact, captions are used in all language modeling tasks in this work to
provide a better image-text alignment in training samples.

Caption

Description

Mogadishu, Somalia. 10/10/2015. A man carries
a huge hammerhead shark  through the streets of
Mogadishu. A recent escalation of plunders of 
Somali waters by foreign fishing vessels could
mean the return of  hijackings, locals warn. The
country's waters have been exploited by illegal
fisheries and the economic infrastructure that
once provided jobs has been ravaged.  Somalia
has been at war for the last 25 years, but 2017 is
a turning point. This country in the Horn of
Africa is holding its first free elections since
1969; a whole culture is being overturned. Those
who created it have shot and killed, but finally,
they are on the losing side.

A man carries a huge hammerhead through the
streets of Mogadishu

A flock of sheep (Ovis aries) lounging in the
shade of a tree with the matriarch of the flock
standing outside the shade. The flock was kept in
the enclosed area of Röe Castle ruin to keep the
vegetation in check. The standing matriarch is
tagged in both ears meaning that she is selected
for breeding and will not be slaughtered after her
first year. The rest of the flock have tags in only
one ear and will be slaughtered withing twelve
months after their birth. Röe Castle ruin, Röe,
Lysekil Municipality, Sweden. The image is
stacked manually from two photos (handheld) for
focus and light.

Sheep lounging in the shade of a tree with
matriarch standing guard

Aniva lighthouse on a rocky promontory in
Sakhalin, Russia, with a flock of gulls circling in

the surrounding mists

A Javan Slow Loris (Nycticebus javanicus)
clings to a branch.

-

Caption

Description

The Javan slow loris (Nycticebus javanicus) is a
strepsirrhine primate and a species of slow loris
native to the western and central portions of the
island of Java, in Indonesia. Although originally 
described as a separate species, it was considered
a subspecies of the Sunda slow loris (N.
coucang) for many years, until reassessments of
its morphology and genetics in the 2000s
resulted in its promotion to full species status. It
is most closely related to the Sunda slow loris
and the Bengal slow loris (N. bengalensis). The
species has two forms, based on hair length and,
to a lesser extent, coloration.

Figure 2. Example images and their corresponding captions and descriptions from the Wikimedia
Commons Dataset.



Appl. Sci. 2021, 11, 8241 8 of 18

There have been several other multi-modal datasets proposed in the literature that
consist of image-text pairs, such as Flickr [56], MS COCO [57], Wikipedia, British Library,
and ESP Game[58]. Table 2 shows the collected dataset in comparison with these multi-
modal datasets. The Flickr dataset and MS COCO dataset contain image-caption pairs,
while the Wikipedia dataset provides the images in Wikipedia with their corresponding
articles. The British Library book dataset, on the other hand, contains historical books and
the pictures depicted in them. Finally, the ESP game dataset consists of 5 words for each
image labeled by human annotators. Although both Wikipedia and BL datasets provide
much longer texts, they lack the image-text alignment of caption datasets. Therefore,
caption datasets, such as MS COCO, Flickr, or the proposed dataset in this work, are
more suited to the task of multi-modal language modeling. Compared with these image
captioning datasets, the size of the collected dataset is much greater. As deep neural
representations have massive data requirements, it is preferable to have such a large
amount of data. Recently, the WIT [59] dataset was also proposed, with a large number of
image-text pairs that can be used for multi-lingual, multi-modal pre-training. It contains
11.4 million unique images with captions and descriptive text from Wikipedia articles
for various languages. Among them, 3.98 million images have textual information in
English, where 568,000 of them have captions. In addition to captions, the collection
also includes contextual data, such as page titles, page descriptions, section titles, etc.,
with their descriptions. However, the most significant benefit of the proposed dataset
is the concreteness labels provided for each image-text pair which might be very useful
for various tasks, especially for the multi-modal language modeling. The other datasets
mentioned in this section, including WIT, do not contain that information.

Table 2. Comparison of Wikimedia Commons to other multi-modal datasets.

Dataset # of Images Textual Source Ave. Word Length Additional Info.

Flickr [56] 32,000 Captions 9 -
COCO [57] 123,000 Captions 10.5 -
Wikipedia 549,000 Articles 1397.8 -

BL 405,000 Books 2269.6 -
ESP[58] 100,000 Object Annotations 5 -

11.4 million Captions/Articles - -
WIT[59] 3.98 million Captions/Article (En) - -

568,000 Captions (En) - -

3.2 million - - Concreteness Ratings
Wikimedia Commons 629,000 Captions 10.2 Concreteness Ratings

(ours) 1.96 million Descriptions 57.4 Concreteness Ratings

3.2. Model

The overall architecture of the proposed model can be seen in Figure 3. The model is
comprised of three main parts: text processing part, image processing part, and a fusion
mechanism where the outputs of text and image models are combined. Each piece is
explained below in its respective subsection.
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BERT Resnet-152

Attentive
Pooling

Classifier

Downstream
Task

Prediction

ImageCaption

Figure 3. Proposed black-box model architecture.

3.2.1. Text Model

In this work, BERT is primarily used for processing text input, while we also utilized
DistilBERT in some of the tests.

BERT [1] is a neural network model that uses a bidirectional transformer architec-
ture [36], a self-attention mechanism to learn contextual word embeddings. It has multiple
layers of transformers (12 in BERT-base, 24 in BERT-large) where each layer has 12 attention
heads that span the entire sentence from both right-to-left and left-to-right, learning “where
to look” by producing probabilistic weights for each word.

Different from the earlier language modeling approaches, BERT does not use next
word prediction as an objective. Instead, it uses two training objectives: Masked Language
Modeling (MLM) and Next Sentence Prediction (NSP). For the MLM objective, randomly
selected words are occluded from the model and labeled as masks. The model tries to
predict the masked word as the training objective. Attention heads do not span these
masked words since it would create a bias for the prediction. Using MLM enables the
model to learn contextual dependencies among words very successfully. The embedding
of a word is computed depending on the surrounding terms instead of using the same
vector in the embedding space for every instance of that word. For the NSP objective, the
model tries to predict whether the two sentences provided to the model belong to the same
context or not. It helps BERT to consider multiple sentences as context and to represent
inter-sentence relations.

In addition to the token (word) embeddings, BERT also uses segment (sentence)
embeddings and position embeddings (words’ position in segments) as input. While
sentence embedding determines which sentence the word is in, positional embedding
acknowledges the word order. Therefore, a word’s embedding is fed to the model as the
average of its token embedding, sentence embedding, and positional embedding. This
input structure has many benefits: Positional embeddings raise the model’s awareness
of word order, while segment embeddings help the NSP objective. In addition, giving
multiple sentences as input helps BERT be integrated into most downstream tasks requiring
inter-sentence connections, such as Question Answering and Natural Language Inference
(NLI), easily, without requiring any other architecture.

To integrate BERT to downstream tasks, an additional fully connected layer is used
on top of transformer layers to predict the given text’s class instead of the target (masked)
word. Usually, the Wikipedia dataset is used to pre-train the model on MLM and NSP
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objectives. The resulting parameters are fine-tuned on the downstream task with the
addition of the aforementioned fully connected layer.

In this study, we performed some tests using the DistilBERT language model. Dis-
tilBERT [60] is based on the original BERT model. It is a more efficient version of BERT
in expense for a minor deficiency in classification performance. It retains 97% of BERT’s
performance while using 40% fewer parameters. To accomplish this, they use knowledge
distillation, where a small model is trained to reproduce the behavior of a larger model
(DistilBERT and BERT, respectively, in this case). Knowledge distillation aims to make the
student model (DistilBERT) predict the same values as the teacher model (BERT) using
fewer parameters. This way, one can transfer the knowledge learned by the teacher model
to more efficient student models. Parameter reduction from BERT to DistilBERT comes
from the removal of some of the transformer layers in BERT. The authors of DistilBERT
show that some of the parameters of BERT are not used in the prediction, therefore, do not
contribute to learning downstream tasks. Consequently, they suggest removing some layers
and use the knowledge distillation technique to create a more efficient language model.

3.2.2. Image Model

We used Resnet [55] as the image model due to its success in many image processing
tasks. It is a very deep neural network model that relies on convolutional neural network ar-
chitecture. At the time it is published, it was the state-of-the-art model in the ImageNet [61]
object classification challenge.

Resnet has several different variations in network depth: 34-layered model Resnet34,
50-layered model Resnet50, 101-layered model Resnet101, and, finally, the largest model
with 152-layers Resnet152. Each layer consists of several 1 × 1 and 3 × 3 convolutions.
Each model starts and ends with an average pooling operation before the first layer and
after the last layer.

Stacking so many layers in deep neural networks naively does not immediately lead
to better results; instead, it causes performance degradation problems. An increase in the
depth of a model causes an increase in training errors, and accuracy is saturated. To deal
with this issue and build substantially deeper networks, authors needed a workaround.
Therefore, shortcut connections called residual connections are used. These shortcut
connections are used after every two layers in the architecture, propagating the inputs
to the outputs of those two layers. They are parameter-free, which means that they do
not perform any operation on the inputs, such as pooling, convolution, or multiplication;
therefore, they do not contain any learnable parameters. It is shown that these shortcut
connections can overcome the performance degradation problem in very deep neural
network architectures, making models, such as Resnet, very successful at stacking many
layers and capturing more features than the prior models.

In this work, Resnet152 is used because it outperforms the smaller Resnet models, and
the Wikimedia Commons dataset was large enough to tune such a large model.

3.2.3. Text-Image Combination Method

Combining multiple modalities can be problematic and risks breaking the learned
semantic relationship of words by individual models. Thus, many studies in this field
focus on the fusion of modalities.

We used attentive pooling networks [62] to combine the text and vision parts of the
model. It is a two-way attention mechanism that is aware of both modalities and jointly
learns to attend over them through matrix multiplications and pooling operations.

Attentive pooling takes the hidden states of each word in BERT as textual input and
takes the last layer of Resnet in the form of a matrix as visual input. These inputs are
multiplied with the matrix U , which is composed of parameters to learn and passed
through tanh activation. The result is a single matrix of visual features on the rows and
textual features on the columns. This representation scheme allows features from different
modalities to be jointly represented in a single matrix where max-pooling operation is
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performed over each row and column to find out the most important feature dependent
upon the other modality. Two vectors, Ioutput and Toutput, are the outcomes of the attentive
pooling mechanism. For fine-tuning this model on downstream tasks, these two outputs
are concatenated and passed through an additional fully connected layer to reduce the
dimension to the number of classes.

3.3. Multi-Modal Language Model Training

The idea of pre-training neural language models is borrowed from the advances in
image processing models [32]. It is shown in both vision and text models that pre-training
a model on a preliminary image/text understanding task improves the performance vastly.

For image processing, the pre-training task is usually the object classification task on
the ImageNET dataset [61]. ImageNET dataset has 1.2 million images that are hand-labeled
into 1000 categories. Respective models are trained to predict the objects in each image by
adding a fully connected layer on top to reduce the feature vectors’ size to 1000. The aim
here is to teach the model basic image understanding: Identifying objects and entities in
images. It is shown by many vision models that they are even able to differentiate images
of 120 different dog breeds in the imageNET dataset, such as “Australian terrier” and
“Airedale terrier”. They manage to do this by using the shapes and colors of entities in
the pictures.

The process is similar for language models, with the only difference in pre-training
objectives. Earlier models (before BERT) used next word prediction in huge unlabeled text,
such as Wikipedia and Common Crawl text. The aim was to predict the next word given the
previous set of words. Starting from BERT and onward, the pre-training objective changed
from the next word prediction to masked language modeling. This method allowed the text
models to successfully grasp language understanding by training them on massive datasets
containing billions of words. They learned the meaning and semantic/syntactic relations of
words (due to distributional hypothesis), which are fundamental to any downstream task.

Once the pre-training objective is completed and the image/text model gained basic
image/language understanding, respectively, the last fully connected layer is removed
from the model and replaced with an appropriate classification layer according to the
task at hand. The model is, then, fine-tuned for the downstream task. For image models,
downstream tasks can be object detection, semantic segmentation, etc., while, on the textual
models, they are composed of sentiment analysis, sentence classification, natural language
inference, and so on.

In this work, we adopt a novel multi-modal pre-training objective. The idea is inspired
from the advances in cognitive psychology. It is shown that language acquisition in children
starts with experiential information and continues with textual information [11,12]. As
Kiela et al., in 2015 [63], stated, perceptual information is more relevant for, e.g., elephants
than it is for happiness. In other words, we first learn the language through images and
learn concrete concepts, and then we start learning abstract concepts from textual sources.

Advancements in computational linguistics also reinforce this idea by showing that
concrete examples in language are easier to learn, while abstract ones are more challenging.
Hessel et al., in 2018 [64], showed that the more concrete the downstream task gets,
the easier it becomes for language models. Bruni et al., in 2014 [38], showed that the
semantic/syntactic similarities of concrete examples on the MEN dataset are easier to learn,
while the abstract words can get ambiguous. They prove this by showing that the concrete
examples have a 0.78 Spearman correlation rank, while the abstract examples have 0.52
(contributing to an overall 0.76).

To adopt this learning scheme to this project, the Wikimedia Commons Dataset (see
Section 3.1) is divided into two categories: Abstract samples and concrete samples. We
determined concrete/abstract examples based on the concreteness levels of words from the
UWA MRC Psycholinguistic Database. First, we fed the image model concrete examples.
Then, we trained the textual model with all of the samples concrete and abstract combined,
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in a curriculum learning fashion [15,16]. Therefore, the learning model mimics humans
through this pre-training process.

4. Experiments

The first step of experimentation was to measure the informativeness of the collected
dataset. To meet this objective, we selected concreteness classification and tested the perfor-
mance of captions in this task. Moreover, to show the expressiveness of captions relative to
regular texts, we did the same classification with the regular Wikipedia articles. We worked
with the June 2020 version of wikidumps, which consists of 6, 957, 578 documents in total.

To prepare the dataset for comparison, we search for articles in the Wikipedia dataset
using UWA MRC Psycholinguistic dataset words. Specifically, each article titled with the
corresponding words is retrieved. We concatenated the captions that corresponded to the
same word and removed the terms that do not have a Wikipedia article to match captions
with the Wikipedia articles further. After this, there are 4108 samples remaining in the
dataset, which is partitioned into the train (70%), dev (10%), and test (20%) sets randomly.

Table 3 shows the results of DistilBERT and BERT along with the random baselines
on these datasets. The results show that, although the Wikimedia captions give us worse
than the Wikipedia articles, results are not far off, making the Wikimedia captions almost
as informative as the Wikipedia text itself.

Table 3. Results comparing the informativeness of the proposed dataset.

Model
Wikimedia Captions Wikipedia Articles

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Random 0.5171 0.5171 0.5171 0.5171 0.5255 0.5255 0.5255 0.5255
DistilBERT 80.91 80.89 80.91 80.83 86.54 86.69 86.54 86.58

(−1.47 + 2.28) (−1.47 + 2.31) (−1.47 + 2.28) (−1.41 + 2.36) (−1.97 + 0.53) (−1.08 + 0.83) (−1.97 + 0.53) (−1.99 + 0.50)
BERT 82.37 82.35 82.37 82.31 85.60 85.69 85.60 85.45

(−1.88 + 1.19) (−1.96 + 1.10) (−1.88 + 1.19) (−1.97 + 1.12) (−1.91 + 1.35) (−1.89 + 1.24) (−1.91 + 1.35) (−1.07 + 1.49)

Table 4 shows the experimental results of the multi-modal pre-training task on the test
set. As stated before, we performed this pre-training in a curriculum learning fashion. Our
image model is further pre-trained with concrete samples of the training set, and then the
text model is trained on all the samples on the training set, concrete, and abstract combined.
The results show the performance of each model on the test set of the pre-training dataset.
While the image model obtained 0.8147 F1 on the concrete samples, the text model obtained
0.8707 and 0.6518 F1 on the concrete and abstract samples. Although we did not pre-train
the image model on abstract samples, we also show its results to give an idea.

Table 4. Experimental results of the multi-modal pre-training task.

Model Accuracy Precision Recall F1 F1-abs F1-Conc

Bert 0.8116 0.8057 0.8116 0.8069 0.6518 0.8708
Resnet 0.7001 0.6472 0.7001 0.6383 0.2144 0.8147

We can draw several conclusions from the results. Firstly, the results comply with
References [38,64]: Identifying concrete concepts is much easier than identifying abstract
concepts. Both the Resnet and BERT models perform above 0.8 in terms of F1 scores for the
concrete class. On the other hand, the F1 score of Resnet on the abstract class turns out to
be significantly lower, with a value of 21.5. These results show that both image and text
models struggle more with abstract concepts than concrete ones.

Secondly, the results of Resnet agree with the scientific work (i.e., References [11,12])
on human language acquisition. Thus, they also comply with the curriculum learning
objectives in this work: Experiential information is used early in language acquisition on
concrete concepts, while leaving its place to textual information for learning abstract ones.
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It can be argued that, no matter how abstract an idea is, one needs to find a concrete
example to show that in an image. For example, the image/caption pairs returned for the
search word “dream” frequently contain pictures of places. Although the term itself can
safely be considered abstract, one needs to find a particular and concrete idea/object to
represent it as an image. Therefore, we can conclude that images almost always contain
concrete concepts. To determine abstractness, one should use a diverse set of images
belonging to a particular concept instead of individual images (the variance in images for
the word “tomato” is very low, with the first 25 results are all images of single or a couple
of red tomatoes, while the variance in images for the word “dream” is very high, ranging
from the picture of places, famous people to screenshots of literary work).

To validate the effectiveness of the proposed multi-modal pre-training scheme, we
tested the model’s performance on a downstream NLP task. As a multi-modal task, Visual
Question Answering fits nicely with our objective. Visual Question Answering dataset
is a multi-modal dataset that was proposed by Antol et al., in 2015 [65]. It includes
approximately 200,000 images from the COCO dataset [57]. Each image in this dataset
has multiple questions associated with it in various forms, such as yes/no questions and
open-ended questions. Yes/No questions are binary questions, such as “Is the umbrella
upside down?”, while the open-ended questions, such as “Who is wearing glasses?”,
require more diverse answers. Close to 40% of all questions are yes/no questions, and
the rest is open-ended. Open-ended questions have a variety of types, including but not
limited to “What is . . . ?”, “How many . . . ?”, and “Who is . . . ?”.

Although the dataset requires a lot of inference between modalities, Agrawal et al., in
2018 [13], stated that the dataset includes bias towards some question/answer pairs. In
their work, they showed that questions related to colors (“What is the color of . . . ?” or “is
. . . white?”) almost always lead to the answers of white/no for open-ended and yes/no
questions, respectively. Similarly, Goyal et al., in 2017 [66], suggested that answering the
questions that are starting with the phrase “Do you see a ...?” with yes blindly leads to
an accuracy of 87% among those questions. Therefore, using language priors alone, a
model can correctly predict a significant amount of questions. The authors develop the
second version of the dataset to overcome this problem, which has additional samples
to balance the biased question/answer pairs. This update increased the dataset size to
443 thousand, 214 thousand, and 453 thousand pairs (question, image) for train, dev, and
test sets, respectively. The results reported in this manuscript refer to this new dataset as
v2, while they refer to the former as v1.

Table 5 shows the model’s performance on VQA. The best result is obtained when
both multi-modal pre-training and attentive pooling mechanisms are used, although the
performance is consistent across all configurations. In terms of accuracy, there is a 1.01%
difference between the best performing model (with multi-modal pre-training and attentive
pooling) and the worst (with fully connected layer and without multi-modal pre-training).
Performance difference becomes more significant in F1: a 3.37% increase can be observed
between the best and worst-performing models (model with multi-modal pre-training and
attentive pooling, and model without multi-modal pre-training with a fully connected
layer, respectively, similar to the previous case).

Table 5. Model performance on VQA dataset v2. (FC = Fully-connected, AP = Attentive pooling).

Model Multi-Modal
Pre-Training Combination Method Accuracy F1 Precision Recall

Bert + Resnet 7 FC 53.12 50.71 54.07 53.12
Bert + Resnet 3 FC 53.17 52.79 53.34 53.17
Bert + Resnet 7 AP 53.56 52.91 53.69 53.56
Bert + Resnet 3 AP 54.13 54.08 54.07 54.13

One can better analyze performance differences with ablation studies. Table 6 reports
the relative improvements of each component. Each column represents the percentage
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increase in relative performance when the feature/component in the row is replaced or
enhanced by the feature/component in the column. The results show that multi-modal pre-
training increases the model’s performance regardless of the underlying fusion mechanism
(Fully-connected or attentive pooling). It leads to a 4.1% increase when used with fully
connected layers and leads to a 2.21% increase when used with attentive pooling networks.
Similarly, the attentive pooling mechanism improves the performance of the model in
both cases: When the fully-connected layer is replaced with attentive pooling, it amounts
to an increase of 4.34% without multi-modal pre-training and an increase of 2.44% with
multi-modal pre-training. Additionally, from the first row, we can conclude that replacing
FC with an attentive pooling mechanism is slightly more beneficial than using FC together
with multi-modal pre-training. Overall, as the results suggest, using both attentive pooling
and multi-modal pre-training proved to be useful and led to an increase in performance up
to 6.65% compared to the baseline model.

Table 6. Results of the ablation study. Relative performance improvements (%) of each component in
terms of F1. MMPT = Multi-modal pre-training, FC = Fully-connected, AP = Attentive pooling.

FC MMPT + FC AP MMPT + AP

FC 0 4.10 4.34 6.65
MMPT + FC - 0 0.23 2.44

AP - - 0 2.21
MMPT + AP - - - 0

Table 7 shows the performance of the multi-modal models described in Section 2
on the VQA task. We share the results on version 1 and version 2, though it would only
be fair to compare the models that run on the same version. The models that run on
both versions (stacked attention network (SAN) and GVQA) suggest that a performance
difference between 3–7% can be expected between the versions, most likely due to the
effect of language priors. Human baselines, obtained on the 3000 samples in the training
set of the v1 dataset, are also provided in the top part.

Table 7. Experimental results on VQA task. Top part shows human baselines.

Model Dataset Version Accuracy

Question v1 40.81
Question + Caption v1 57.47
Question + Image v1 83.30

SAN [67] v1 58.9
GVQA [13] v1 51.12

SAN [67] v2 52.2
GVQA [13] v2 48.24

Anderson et al., 2018 [14] v2 70.34
DFAF [48] v2 70.34

VilBERT [9] v2 70.92

ours v2 54.13

Although human baselines are on v1 and our performance is on the v2 version of the
dataset, our 54.13% accuracy indicates that the model can perform similarly to humans
when given only questions and corresponding captions without images. Compared to the
other models, ours performed better than the earlier models but cannot reach the success
obtained by the state-of-the-art model (VilBERT), which has 70.92% accuracy. VilBERT
processes paired visiolinguistic data in the architecture of BERT to exploit visual grounding
in a task-agnostic way.

It should be noted that there are subtle but vital differences between our model and the
VilBERT model. The main focus of VilBERT is to process text and image streams in parallel
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under the transformer architecture to encode their relationship in a pre-trained model to
have optimized performance in downstream tasks. On the other hand, the main focus of
this work is to optimize the model for the fusion of modalities and curriculum learning.
Although our work is much similar to earlier multi-modal works in this regard, our model
is a language pre-training model, not a task-specific architecture. The main difference in
our work is to add curriculum learning methodology on top of the pre-trained models.

Other than the main focus described above, several reasons might lead to the per-
formance discrepancy between the proposed model and the state-of-the-art models, such
as VilBERT. First, the number of learnable parameters in VilBERT is much greater than
the proposed model (~600 million versus ~170 million). Second, VilBERT uses the Faster-
RCNN [68] model to match each word in the text with the corresponding image patch,
while our model uses the Resnet-152 model on the entire image. One could argue that
the better alignment provided by the faster-RCNN method might lead to better learning
since the model also learns which part in the image a particular word corresponds to.
Providing such an alignment could also benefit the proposed model for catching up with
the performance of the state-of-the-art models.

5. Conclusions

This study aims to contribute to one of the oldest and most predominant subjects in
computer science: language modeling. Since the distributional hypothesis in the early
1950s, many models with many different architectures and methodologies have been
introduced in this field. Until recently, models focused on a single modality where a
language learner is trained with plain text. Lately, however, the focus is shifted from single
modality to multi-modal language models. An increase in the success of neural models,
cheaper and more powerful hardware sources, and advances in cognitive science were the
major driving forces behind this change.

Similar to this latest trend, this work aims to create a language model/representation
technique inspired by the advances in cognitive science, which states that language ac-
quisition in humans starts with the experiential information for concrete concepts and
continues with distributional information for abstract concepts. To this end, we com-
bined the BERT and Resnet models with the attentive pooling mechanism to construct
a multi-modal language model and embeddings. The image model is trained with the
concrete samples from Wikimedia samples first, and then the text model is trained with
concrete and abstract examples combined in a curriculum learning fashion. Additionally,
we constructed a new dataset composed of image caption pairs from Wikimedia Commons
based on concrete/abstract metadata.

The contribution of this work is two-fold: First, a new dataset, created from Wikimedia
Commons, is introduced, which has approximately 3.2 million images, with 630,000 cap-
tions, 1.96 million descriptions, and concreteness labels. Second, a new training scheme for
multi-modal pre-training is introduced. We inspired this novel learning scheme from the
curriculum learning approaches in artificial intelligence. The results show that, although
the model could not outperform state-of-the-art results, the multi-modal pre-training ob-
jective can significantly increase the models’ performance. Our results also confirm the
findings in the literature by showing that it is harder to detect and classify abstract samples.
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