Intelligent System for Railway Wheelset Press-Fit Inspection Using Deep Learning
Abstract
:1. Introduction
2. Deep Siamese Neural Networks
3. Intelligent Railway Wheelset Inspection System
3.1. System Overview and Description
3.2. Deep Learning Architecture Used in This Study
4. Experimental Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thames, L.; Schaefer, D. Software-defined Cloud Manufacturing for Industry 4.0. Procedia CIRP 2016, 52, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Sahal, R.; Breslin, J.G.; Ali, M.I. Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive maintenance use case. J. Manuf. Syst. 2020, 54, 138–151. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Q.; Luo, Y. A review of applications of visual inspection technology based on image processing in the railway industry. Transp. Saf. Environ. 2019, 1, 185–204. [Google Scholar] [CrossRef] [Green Version]
- Bracciali, A. Railway Wheelsets: History, Research and Developments. Int. J. Railw. Technol. 2016, 5, 23–52. [Google Scholar] [CrossRef]
- Lu, J.; Xiao, J.; Gao, D.-J.; Zong, S.-Y.; Li, Z. Research on Standard and Automatic Judgment of Press-fit Curve of Locomotive Wheel-set Based on AAR Standard. IOP Conf. Ser. Mater. Sci. Eng. 2018, 326, 012010. [Google Scholar] [CrossRef] [Green Version]
- Entezami, M.; Roberts, C.; Weston, P.; Stewart, E.; Amini, A.; Papaelias, M. Perspectives on railway axle bearing condition monitoring. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2019, 234, 17–31. [Google Scholar] [CrossRef]
- Zhang, Z.-F.; Gao, Z.; Liu, Y.-Y.; Jiang, F.-C.; Yang, Y.-L.; Ren, Y.-F.; Yang, H.-J.; Yang, K.; Zhang, X.-D. Computer Vision Based Method and System for Online Measurement of Geometric Parameters of Train Wheel Sets. Sensors 2011, 12, 334–346. [Google Scholar] [CrossRef] [Green Version]
- Krummenacher, G.; Ong, C.S.; Koller, S.; Kobayashi, S.; Buhmann, J.M. Wheel Defect Detection With Machine Learning. IEEE Trans. Intell. Transp. Syst. 2017, 19, 1176–1187. [Google Scholar] [CrossRef]
- Mosleh, A.; Montenegro, P.; Costa, P.; Calçada, R. Railway Vehicle Wheel Flat Detection with Multiple Records Using Spectral Kurtosis Analysis. Appl. Sci. 2021, 11, 4002. [Google Scholar] [CrossRef]
- Gao, R.; He, Q.; Feng, Q. Railway Wheel Flat Detection System Based on a Parallelogram Mechanism. Sensors 2019, 19, 3614. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Gao, L.; Xiao, H.; Hou, B. Railway Wheel Flat Recognition and Precise Positioning Method Based on Multisensor Arrays. Appl. Sci. 2020, 10, 1297. [Google Scholar] [CrossRef] [Green Version]
- Spiryagin, M.; Wolfs, P.; Cole, C.; Spiryagin, V.; Sun, Y.Q.; McSweeney, T. Design and Simulation of Heavy Haul Locomotives and Trains; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- You, B.; Lou, Z.; Luo, Y.; Xu, Y.; Wang, X. Prediction of Pressing Quality for Press-Fit Assembly Based on Press-Fit Curve and Maximum Press-Mounting Force. Int. J. Aerosp. Eng. 2015, 2015, 1–10. [Google Scholar] [CrossRef]
- Wang, X.; Lou, Z.; Wang, X.; Xu, C. A new analytical method for press-fit curve prediction of interference fitting parts. J. Mater. Process. Tech. 2017, 250, 16–24. [Google Scholar] [CrossRef]
- Xiao, J.; Han, J.-B.; Cheng, X.; Fang, R. Research on Automatic Judgement of Wheelset Press-Fit Curve. Appl. Mech. Mater. 2012, 236-237, 1321–1326. [Google Scholar] [CrossRef]
- Lee, C.-H.; Jwo, J.-S.; Hsieh, H.-Y.; Lin, C.-S. An Intelligent System for Grinding Wheel Condition Monitoring Based on Machining Sound and Deep Learning. IEEE Access 2020, 8, 58279–58289. [Google Scholar] [CrossRef]
- Lee, C.-H.; Lai, T.-S. An Intelligent System for Improving Electric Discharge Machining Efficiency Using Artificial Neural Network and Adaptive Control of Debris Removal Operations. IEEE Access 2021, 9, 75302–75312. [Google Scholar] [CrossRef]
- Jwo, J.-S.; Lin, C.-S.; Lee, C.-H. Smart technology—Driven aspects for human-in-the-loop smart manufacturing. Int. J. Adv. Manuf. Technol. 2021, 114, 1741–1752. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Bedi, P.; Gupta, N.; Jindal, V. Siam-IDS: Handling class imbalance problem in Intrusion Detection Systems using Siamese Neural Network. Procedia Comput. Sci. 2020, 171, 780–789. [Google Scholar] [CrossRef]
- Mac, B.; Moody, A.R.; Khademi, A. Siamese Content Loss Networks for Highly Imbalanced Medical Image Segmentation. In Medical Imaging with Deep Learning; PMLR: New York, NY, USA, 2020; pp. 503–514. [Google Scholar]
- Wu, S.; Wu, Y.; Cao, D.; Zheng, C. A fast button surface defect detection method based on Siamese network with imbalanced samples. Multimed. Tools Appl. 2019, 78, 34627–34648. [Google Scholar] [CrossRef]
- Li, F.-F.; Fergus, R.; Perona, P. One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 594–611. [Google Scholar] [CrossRef] [Green Version]
- Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition. In Proceedings of the Deep Learning Workshop, ICML’15, Paris, France, 10–11 July 2015; Volume 2. Available online: https://sites.google.com/site/deeplearning2015/ (accessed on 1 September 2021).
- Rao, S.-J.; Wang, Y.; Cottrell, G.W. A Deep Siamese Neural Network Learns the Human-Perceived Similarity Structure of Facial Expressions Without Explicit Categories. CogSci 2016. Available online: https://cogsci.mindmodeling.org/2016/papers/0050/paper0050.pdf (accessed on 1 September 2021).
- Chicco, D. Siamese Neural Networks: An Overview. In Artificial Neural Networks. Methods in Molecular Biology; Cartwright, H., Ed.; Humana: New York, NY, USA, 2021. [Google Scholar]
- Zhang, Y.; Pardo, B.; Duan, Z. Siamese Style Convolutional Neural Networks for Sound Search by Vocal Imitation. IEEE/ACM Trans. Audio Speech Lang. Process. 2018, 27, 429–441. [Google Scholar] [CrossRef]
- Manocha, P.; Badlani, R.; Kumar, A.; Shah, A.P.; Elizalde, B.; Raj, B. Content-Based Representations of Audio Using Siamese Neural Networks. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 3136–3140. [Google Scholar]
- Liu, X.; Zhou, Y.; Zhao, J.; Yao, R.; Liu, B.; Zheng, Y. Siamese Convolutional Neural Networks for Remote Sensing Scene Classification. IEEE Geosci. Remote. Sens. Lett. 2019, 16, 1200–1204. [Google Scholar] [CrossRef]
- Zheng, W.; Yang, L.; Genco, R.J.; Wactawski-Wende, J.; Buck, M.; Sun, Y. SENSE: Siamese neural network for sequence embedding and alignment-free comparison. Bioinformatics 2019, 35, 1820–1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, X.; Chen, H.; Luo, Y.; Ye, W. Automated Diabetic Retinopathy Detection Based on Binocular Siamese-Like Convolutional Neural Network. IEEE Access 2019, 7, 30744–30753. [Google Scholar] [CrossRef]
- Shorfuzzaman, M.; Hossain, M.S. MetaCOVID: A Siamese neural network framework with contrastive loss for n-shot diagnosis of COVID-19 patients. Pattern Recognit. 2021, 113, 107700. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-D.; Chang, K.; Bearce, B.; Chang, C.-Y.; Huang, A.-J.; Campbell, J.P.; Brown, J.M.; Singh, P.; Hoebel, K.V.; Erdoğmuş, D.; et al. Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging. NPJ Digit. Med. 2020, 3, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Utkin, L.V.; Zaborovsky, V.S.; Popov, S.G. Siamese neural network for intelligent information security control in multi-robot systems. Autom. Control. Comput. Sci. 2017, 51, 881–887. [Google Scholar] [CrossRef]
- Ullah, A.; Muhammad, K.; Haydarov, K.; Haq, I.U.; Lee, M.; Baik, S.W. One-Shot Learning for Surveillance Anomaly Recognition using Siamese 3D CNN. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
- Zhu, W.; Yao, T.; Ni, J.; Wei, B.; Lu, Z. Dependency-based Siamese long short-term memory network for learning sentence representations. PLoS ONE 2018, 13, e0193919. [Google Scholar] [CrossRef] [Green Version]
- Jalonen, T.; Laakom, F.; Gabbouj, M.; Puoskari, T. Visual Product Tracking System Using Siamese Neural Networks. IEEE Access 2021, 9, 76796–76805. [Google Scholar] [CrossRef]
- Kurek, J.; Antoniuk, I.; Świderski, B.; Jegorowa, A.; Bukowski, M. Application of Siamese Networks to the Recognition of the Drill Wear State Based on Images of Drilled Holes. Sensors 2020, 20, 6978. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lv, X.; Li, R.; Yu, C.; Dong, J. Characters Verification via Siamese Convolutional Neural Network. In Proceedings of the 2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), Jinan, China, 14–17 December 2018; pp. 417–420. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Jwo, J.-S.; Lin, C.-S.; Lee, C.-H. An Interactive Dashboard Using a Virtual Assistant for Visualizing Smart Manufacturing. Mob. Inf. Syst. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, M.; Kong, J.; Li, S. Paralleled attention modules and adaptive focal loss for Siamese visual tracking. IET Image Process. 2021, 15, 1345–1358. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Lin, P.-L.; Huang, P.-W.; Lee, C.-H.; Wu, M.-T. Automatic classification for solitary pulmonary nodule in CT image by fractal analysis based on fractional Brownian motion model. Pattern Recognit. 2013, 46, 3279–3287. [Google Scholar] [CrossRef]
Dataset | Training Dataset | Validating Dataset | Testing Dataset | Total |
---|---|---|---|---|
Qualified images | 373 | 409 | 3863 | 4645 |
Unqualified image | 26 | 55 | 28 | 109 |
Total | 399 | 464 | 3891 | 4754 |
Confusion Matrix (Q: Qualified; U: Unqualified) | Actual Results | ||
---|---|---|---|
Q | U | ||
Test results | Q | TQ (3255) | FQ (0) |
U | FU (608) | TU (28) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jwo, J.-S.; Lin, C.-S.; Lee, C.-H.; Zhang, L.; Huang, S.-M. Intelligent System for Railway Wheelset Press-Fit Inspection Using Deep Learning. Appl. Sci. 2021, 11, 8243. https://doi.org/10.3390/app11178243
Jwo J-S, Lin C-S, Lee C-H, Zhang L, Huang S-M. Intelligent System for Railway Wheelset Press-Fit Inspection Using Deep Learning. Applied Sciences. 2021; 11(17):8243. https://doi.org/10.3390/app11178243
Chicago/Turabian StyleJwo, Jung-Sing, Ching-Sheng Lin, Cheng-Hsiung Lee, Li Zhang, and Sin-Ming Huang. 2021. "Intelligent System for Railway Wheelset Press-Fit Inspection Using Deep Learning" Applied Sciences 11, no. 17: 8243. https://doi.org/10.3390/app11178243
APA StyleJwo, J. -S., Lin, C. -S., Lee, C. -H., Zhang, L., & Huang, S. -M. (2021). Intelligent System for Railway Wheelset Press-Fit Inspection Using Deep Learning. Applied Sciences, 11(17), 8243. https://doi.org/10.3390/app11178243