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Abstract: Railway wheelsets are the key to ensuring the safe operation of trains. To achieve zero-
defect production, railway equipment manufacturers must strictly control every link in the wheelset
production process. The press-fit curve output by the wheelset assembly machine is an essential indi-
cator of the wheelset’s assembly quality. The operators will still need to manually and individually
recheck press-fit curves in our practical case. However, there are many uncertainties in the manual
inspection. For example, subjective judgment can easily cause inconsistent judgment results between
different inspectors, or the probability of human misinterpretation can increase as the working hours
increase. Therefore, this study proposes an intelligent railway wheelset inspection system based on
deep learning, which improves the reliability and efficiency of manual inspection of wheelset assem-
bly quality. To solve the severe imbalance in the number of collected images, this study establishes
a predicted model of press-fit quality based on a deep Siamese network. Our experimental results
show that the precision measurement is outstanding for the testing dataset contained 3863 qualified
images and 28 unqualified images of press-fit curves. The proposed system will serve as a successful
case of a paradigm shift from traditional manufacturing to digital manufacturing.

Keywords: artificial intelligence; deep learning; intelligent system; industry 4.0; machine learning;
railway wheelsets

1. Introduction

In recent years, many leading industrial countries have invested in national plans
to support the domestic manufacturing industry’s move towards smart manufacturing
to achieve Industry 4.0’s vision. Industry 4.0 includes many technologies and related
paradigms, such as the industrial internet of things, cloud-based design, digital technolo-
gies, and innovative applications of artificial intelligence (AI) [1]. It has been recognized
that AI technologies are impressive and bring many benefits to the enterprise.

The transportation sector, especially the railway sector, has adopted Industry 4.0 to a
large extent to improve service quality, reduce cost, and increase resource utilization [2].
For railway transportation, the routine inspection and maintenance of train components
and rails are crucial, because neglecting any link is likely to cause major harm. With the
development of computer vision techniques, it has become possible for railway systems
to use visual inspection technology to replace manual inspection. Liu et al. [3] provided
a full review of visual inspection applications based on image processing in the railway
industry for rail surface, track component wear, rail component identification, train body
components, etc.

Wheelsets are key to ensuring the safe operation of trains because the failure of an
axle, a wheel, or one of its bearings will inevitably lead to accidental derailment [4–6].
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The primary source of damage to railway facilities and vehicles is wheel defects. Pos-
sible causes of damage include shaft misalignment, contaminated areas, excessive load,
overheating, lack of lubrication, electrical damage, wheel damage, and manufacturing
defects, etc. [6]. To develop wayside measurement systems for wheel defect recognition,
Zhang et al. [7] utilized the optoelectronic measuring technique to develop a non-contact
measurement system capable of measuring the geometric parameters of wheelsets on-
line. Krummenacher et al. [8] proposed two methods to automatically detect wheel defects
based on the wheel vertical force, measured by a permanently installed sensor system on
the railway network. One method is based on novel wavelet features to classify time series
data by support vector machine (SVM); the other method trains the convolutional neural
networks (CNN) for different defect types to predict if a wheel has a defect during regular
operation. Mosleh et al. [9] established a 3D numerical dynamic model of a vehicle–track
coupling system and analyzed the sensitivity and reliability of different sensors and setups
for wheel flat detection. In their method, the wheel flat was identified by the envelope
spectrum approach with spectral kurtosis analysis by considering the evaluated shear and
accelerations in 19 positions as inputs. Gao et al. [10] used a railway wheel flat measure-
ment method based on a parallelogram mechanism to detect wheel flats dynamically and
quantitatively. In addition, they established a three-dimensional simulation model based
on the rigid–flexible coupled multibody dynamics theory to improve the speed threshold
of the measuring mechanism vibration under wheel impact. Zhou et al. [11] proposed a
new, long-term monitoring method for wheel flats based on multi-sensor arrays. In their
method, the dynamic strain responses of rails are captured by sensor arrays mounted on
the rail web to ensure that all the wheels are assessed during the train passage. The above
research is mainly focused on detecting possible defects in train wheels due to long-term
use or gradual deterioration.

The wheelset is a critical component of the traveling mechanism and must provide
precise geometric and mechanical characteristics to minimize dynamic action and avoid
derailment [12]. Therefore, whether the wheel and axle can be closely integrated is an
essential key to safety inspection in the manufacturing procedure of wheelsets. In railway
wheelset manufacturing and maintenance, numerical control (NC) wheelset assembly
machines are commonly used to press-fit wheels, and continuously monitor and record
pressure changes through the generated force–time or force-displacement curves [13]. The
force-displacement curve, also known as the press-fit curve, is an important indicator of
the quality of wheelset press-fitting. As insufficient or excessive press-fitting force will
lead to safety risks, operators need to monitor and evaluate the assembly quality based on
the characteristics of the press-fit curve change at any time [14]. In general, the press-fit
quality can meet the standard by using NC wheelset assembly machines, but this is far from
enough to achieve the goal of zero-defect production in railway equipment manufacturing.
For safety reasons, operators need to recheck press-fit curves manually and individually,
instead of judging by press-fit records, as in our practical case.

However, there are many uncertainties in manual inspection because the specific
measurement criteria of curve judgment are not suitable for quantitative representation,
such as the judgement rules of “flat part” or “evenly rise” [15]. Consequently, there are
often ambiguous results in press-fit curve judgment, which lead to different interpretations
of the results between inspectors. Figure 1 shows some of the press-fit curves used in this
study. It can be seen that there is little difference between the qualified and unqualified
images of press-fit curves. In addition, human misinterpretation errors are more likely
to happen, due to the long working hours required. Therefore, an intelligent automatic
system that can assist the inspector in judging the press-fit curves is urgently needed to
improve the reliability and efficiency of wheelset press-fit inspection.
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Figure 1. Some examples of force-displacement (press-fit) curves. Figures (a–c) are the qualified images of press-fit curves,
and Figures (d–f) are the unqualified examples. In the figures, the y-axis is the press-mounting force, and the x-axis is its
corresponding displacement.

Compared with traditional machine learning technologies, deep learning has recently
become a trendy research topic in AI [16–18]. This solves the central problems in represen-
tation learning by expressing more straightforward representations to enable computers to
build complex patterns out of simpler concepts [19]. However, AI technologies still have
limitations. Data are key to successful machine-learning algorithms. Insufficient data will
lead to failed classification results. However, in the practical cases of the manufacturing
industry, it is not easy to collect enough representative abnormal data because normally
operating factories are unlikely to experience abnormal conditions frequently. For this rea-
son, the number of abnormal samples that can be collected in this experiment is obviously
much lower than for normal samples. The number of unqualified images of the press-fit
curve only accounts for 2.3% of all images (109/4754). A description of the number of
collected images can be found in Section 4.

At present, many scholars have successfully applied the Siamese network methods
in various application fields to suppress the impact of class imbalance on classification
performance [20–22]. Therefore, this study applies a deep Siamese network to establish the
prediction model of press-fit quality, to solve the severe imbalance between positive and
negative samples. The main contribution of this paper is a demonstration of the successful
application of the deep Siamese network in manufacturing and proposal of an intelligent
railway wheelset inspection system, suitable for railway equipment manufacturers. The
remainder of this paper is organized as follows. The review of deep Siamese neural network
is described in Section 2. Section 3 presents the system architecture of the intelligent railway
wheelset inspection system and the deep learning technique used. Section 4 describes
experimental results and analysis, and the conclusions are presented in Section 5.

2. Deep Siamese Neural Networks

Deep learning has recently become a trendy research topic in the AI field; it solves
the core problems in representation learning by expressing simpler representations [19].
However, when there are almost no available data or a relatively small amount of data, these
algorithms often fail to predict accurate results. Under this restriction, many researchers
proposed various one-shot learning algorithms, which enable us to make the correct
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prediction using only one or a few training examples in each class [23–25]. At present,
theoretical studies and technologies based on the Siamese neural networks (SNN) have been
mature and were successfully applied in various fields [26], such as audio and speech signal
processing [27,28], remote-sensing scenes [29], biology [30], medicine and health [31–33],
robotics [34], smart surveillance [35], and text mining [36].

In the manufacturing industry fields, Jalonen et al. developed a visual product tracking
system by using the Siamese network method to match the product images at both ends
of the tracked process [37]. For tool wear recognition, Kurek et al. applied the Siamese
network technique to classify the drill wear states based on images of drilled holes. The
proposed automated solution can reduce the time required to manually evaluate the drill
state [38]. It is necessary to check whether printed outputs or carved wares are missing or
etched by comparing the drawings in the printing and carving industries. To reduce the
workforce cost and working hours, Wang et al. presented an effective method of character
verification to automatically compare the similarities between the drawing characters and
scanned physical characters based on the Siamese network [39].

Koch et al. first applied deep learning based on a convolutional neural network to
develop SNN for one-shot classification [24]. The general SNN architecture is shown in
Figure 2. An SNN consists of twin networks that accept a pair of images as input and share
the same weights. The weights guarantee that their respective networks could not map
two extremely similar images to very different locations in feature space, because each
network computes under the same function [24]. In this deep SNN architecture with L
hidden layers and Nl units, hl

1 represents the hidden vector in layer l for the first twin,
and hl

2 denotes the same for the second twin. The notations x1,i and x2,i represent specific
vector elements in two input images. In the distance layer, the difference is calculated
between the twin feature vectors hL

1 and hL
2 in the last layer of hidden layers by distance

formulas, such as Euclidean distance ( d1 = ||hL
1,1 − hL

2,1 ||2). After the distance layer, we
adopt a fully connected method with a sigmoid activation function to predict the similarity
of two input images. Rgardinge the choice of hidden layer network architecture, this study
adopts deep residual networks (ResNets) because they have the advantage of efficiently
and easily training substantially deeper networks [40].
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To evaluate loss function, let S represent the training set size. Let y
(
xi, xj

)
be a length-

S vector, which contains the binary labels for the training set, where y
(

xi, xj
)
= 1 if the

samples xi and xj are from the same class, and zero otherwise. The cross-entropy loss
function for binary classification is formulated as follows [24]:

L = −
(
y
(

xi, xj
)

log
(
p
(
xi, xj

))
+

(
1− y

(
xi, xj

))
log

(
1− p

(
xi, xj

)))
, (1)

where p
(
xi, xj

)
is a length-S vector, which contains the probabilities of predicting similarity

for any pair of input samples, xi and xj in the training set.

3. Intelligent Railway Wheelset Inspection System
3.1. System Overview and Description

Humans are the most valuable asset in the manufacturing industry. When developing
the system, we should need to account for the human-in-the-loop in interaction [41]. To
fully describe the main processes of the system, we roughly divide the system architecture
into two parts: cyberspace and physical space. The proposed system architecture is
presented in Figure 3.
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Figure 3. The system architecture of the proposed intelligent railway wheelset inspection system.

In cyberspace, the main task is to establish and evaluate the prediction model of press-
fit quality. The purpose of the image-preprocessing stage is to automatically segment the
press-fit curve region and remove unrelated areas from the original image of the recording
press-fit information output using the NC wheelset assembly machine. Figure 4 shows the
image preprocessing steps. Figure 4a is an original image, containing the wheelset and
press-fit information. Then, we crop the region of interest (ROI) for the press-fit curve at a
fixed position in the original image to obtain Figure 4b. The image size of the ROI of the
press-fit curve is 400× 602 pixels. To convert the image of the press-fit curve into a binary
image for subsequent modeling, we first convert the color press-fit image to grayscale
and apply a Gaussian low-pass filter to image smoothing to suppress the high-frequency
parts of the image. Then, we use grayscale 127 as the threshold value to binarize the
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smoothed image based on experimental experiences. Pixels with grayscale values below
127 in the image are regarded as candidate objects for the press-fit curve. We take half of
the highest 255 grayscales as the binary threshold because, if the threshold value is set
too high, over-segmentation will occur. This will allow more false candidate objects to be
misjudged as the press-fit curve. However, if the threshold value is set too low, it will cause
under-segmentation, which leads to some parts of the press-fit curve being discarded. The
initial result after binarization is shown in Figure 4c. In the postprocessing stage, if the area
of these objects is too small or the position of an object is obviously not the press-fit curve
on image space, such as the straight line above the curve, we will treat these as noise and
delete them. The final result is shown in Figure 4d. For a description of the deep Siamese
modeling, please refer to the following subsection. Once evaluation and verification of
the predictive model are completed, it will be deployed to the enterprise private cloud for
remote access by field operators.
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Figure 4. An output diagram of each stage in the image-preprocessing process. (a) The original image of the recording
press-fit information output by NC wheelset assembly machines; (b) The ROI of the press-fit curve was cropped from the
original image; (c) The initial binarization result of (b); (d) The final result after postprocessing.

In the physical space, the primary focus is on developing technologies and system
operational interfaces. The proposed system was implemented by the following techniques.
The web front end of this system was developed by AngularJS and other standard technolo-
gies, such as HTML, CSS, and JavaScript, to provide an operational interface for on-site
operators. Node.js was chosen to build a web server, and RESTful APIs were created to
connect the front-end applications with the backend services. Figure 5 shows the query
page of the inspection results for the proposed intelligent system. Through this system,
operators can upload the original image generated by the NC wheelset assembly machine.
Then, the inspection result determined by the prediction model will be sent to the front-end
webpage to assist on-site operators in decision-making.
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3.2. Deep Learning Architecture Used in This Study

The layout of the used SNN architecture, which is mainly based on the well-known
ResNet-50 [40], is shown in Figure 6. It receives a pair of images with an image size of
400× 602 pixels as input in the first layer. Each image is then processed through ResNet-50
network architecture. While referring to the network architecture of ResNet-50, we will
extract 2048 feature maps after applying 2048 filters at the last convolutional layer. To
obtain the length-2048 difference vector, we first obtain 2048 × 1 feature vectors from each
twin by applying the global-max pooling operation to the output feature maps from the
previous layer, and then calculate Euclidian distance between the twin difference feature
vectors. Finally, the neurons in the distance layer are fully connected with one unit and
passed to the sigmoid function to measure the degree of similarity between the two input
images of press-fit curves.
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In general, the loss function may suffer from receiving lots of easily classified samples
during the training stage. Whether positive or negative, a sample is called an easy sample
when the model distinguishes it as successfully dominated by its high prior probability.
This means that the model tends to be dominated by easy samples that contribute little
to gradient computing, leading to the model finally being failed by the imbalance [42].
To suppress the impact of the above problem, Lin et al. [43] presented focal loss (FL).
FS has proved effective in related research; therefore, this study adopted FS as a loss
evaluation function.

To address the class imbalance, a modulating factor
(
1− p

(
xi, xj

))γ was added
to the cross-entropy loss function, as defined in Formula (1), with a tunable focusing
parameter γ ≥ 0. Easily classified samples will be down-weighted due to the low values of
the modulating factor [42]. The FL can be defined as [43]:

FL = −α
(
1− p

(
xi, xj

))γ(y
(

xi, xj
)

log
(

p
(

xi, xj
))

+
(
1− y

(
xi, xj

))
log

(
1− p

(
xi, xj

)))
, (2)

where α ∈ [0, 1] is a weighting factor. To achieve the best experimental results, we set the
parameters α and γ to 0.25 and 2, respectively. In addition, we set the learning rate and
batch size to 0.00006 and 8, respectively, in the hyperparameter tuning setting during the
training stage.

4. Experimental Results and Analysis

In this experiment, this study collected 4754 images of the press-fit curves; among
them, the proportion of unqualified images accounts for 2.3% of the total. All the images in
this experiment are divided into two categories, qualified or unqualified, by senior on-site
inspectors based on their experience. Table 1 shows the number of qualified and unqualified
images for the press-fit curve used in training, validating, and testing, respectively.

Table 1. Description of experimental datasets.

Dataset Training
Dataset

Validating
Dataset

Testing
Dataset Total

Qualified images 373 409 3863 4645
Unqualified image 26 55 28 109

Total 399 464 3891 4754

To quantitatively evaluate the overall performance of the proposed intelligent system
to recognize press-fit curves in railway wheelset press-fit assembly, the following three
measurements are adopted: accuracy, precision, and recall. Let TQ, TU, FQ, and FU
represent “true qualified”, “true unqualified”, “false qualified”, and “false unqualified”,
respectively, in the confusion matrix, as shown in Table 2.

Table 2. Cross-relations between test and actual results.

Confusion Matrix
(Q: Qualified; U: Unqualified)

Actual Results

Q U

Test results
Q TQ (3255) FQ (0)
U FU (608) TU (28)

The test result of a qualified condition is either qualified (TQ) or unqualified (FQ),
while the test result of an unqualified condition is either qualified (FU) or unqualified
(TU). The accuracy is the proportion of both true qualified and true unqualified for press-
fit curves in all test results. It is the overall correct classification rate of all test results.
Precision, also known as precision rate, is the proportion of all qualified test results that
are truly qualified press-fit curves. The recall represents the probability of classifying the
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press-fit curve as a qualified condition if it is truly qualified. The definitions for the above
measurements are listed below [44]:

Accuracy = (TQ + TU)/(TQ + TU + FQ + FU), (3)

Precision = TQ/(TQ + FQ), (4)

Recall = TQ/(TQ + FU). (5)

For the classification results of the 3891 press-fit curves in the testing dataset, the
TQ, TU, FQ, and FU are 3255, 28, 0, and 608, respectively. The accuracy is 84.37%
((3255 + 28)/3891), and the results of precision and recall are 100% (3255/(3255 + 0)) and
84.26% (3255/(3255 + 608)), respectively. Among the three efficiency evaluation indicators,
we can see that the precision performance is quite outstanding. The proposed intelligent
system can successfully detect all unqualified images. This is a significant indicator of
railway equipment manufacturers that strictly control abnormal events during the wheelset
production process. The proposed method is rigorous in identifying whether the press-fit
curve is unqualified, to avoid the possibility of false qualified (FQ). However, this will
increase the probability of false unqualified (FU) results, leading to decreased accuracy
and recall. In addition, for safety reasons, if operators want to recheck press-fit images
manually, they only need to check the images classified as unqualified by the proposed
system, thereby reducing the effort of manual inspection.

5. Conclusions

The press-fit curve is an important indicator of the quality of the railway wheelset
press-fitting. However, effectively improving human misinterpretation errors during
manual inspection has always been a problem, which railway equipment manufactur-
ers urgently need to solve. To this end, this study developed an intelligent railway
wheelset inspection system to assist the operators in objectively and effectively judging the
press-fit curves.

In practice, the press-fit quality of most wheelsets in the wheelset production process
can meet the standard using NC wheelset assembly machines. Abnormal events account
for a minimal number of the total. Although the number of unqualified abnormal events
is rare, they are likely to cause major traffic accidents when they occur. Therefore, the
proposed system must be robust in detecting all unqualified samples. As abnormal samples
is rare, the number of unqualified images of the press-fit curve that can be collected in this
experiment is much lower than the number of qualified images. In order to suppress the
impact of class imbalance on classification performance, this study applied a deep Siamese
network with focal loss to establish a prediction model of press-fit quality. The experimental
results show that the precision measurement of the proposed system can reach 100% for
the testing dataset, which contains 3863 qualified and 28 unqualified images of the press-fit
curves. The proposed intelligent system can successfully detect all unqualified cases.

The currently proposed system was gradually launched and tested in the manufactur-
ing site, which is sufficient to prove that the system architecture, method, and technologies
used in the implementation process proposed by this study can be provided as an essential
reference for relevant researches and applications. Our results can also provide a successful
case of paradigm shift from traditional manufacturing to digital manufacturing. In future
work, we will continue to collect more images of press-fit curves and improve the two
performance indicators of accuracy and recall through more training and testing.
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