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Abstract: With the fast growth in the penetration of wind power, doubly fed induction generators
(DFIGs) are recommended for their ability to enforce grid codes that provide inertial control services
by releasing rotational energy. However, after supporting the system frequency, a second frequency
drop (SFD) is prone to occurring to regain the rotor speed caused by the sudden reduction in output.
In this article, we propose a torque limit-based fast stepwise inertial control scheme of a DFIG using
a piecewise reference function for reducing the SFD while preserving the frequency nadir (FN)
with less rotor energy released. To achieve the first objective, the power reference increases to the
torque limit and then decays with the rotor speed toward the preset operating point. To achieve
the second objective, the power reference smoothly lessens over time based on the exponential
function. The performance of the proposed stepwise inertial control strategy was studied under
various scenarios, including constant wind speed and ramp down wind speed conditions. The test
results demonstrated that the frequency stability is preserved during the frequency support phase,
while the second frequency drop and mechanical stress on the wind turbine reduce during the rotor
speed restoration phase when the DFIG implements the proposed stepwise inertial control scheme.

Keywords: frequency support; power system control; SFD; rotor speed restoration; wind generation

1. Introduction

The increase in the penetration of renewable energy in electric power systems is
expected and planned. Wind power generation has the highest proportion of employment
and potential for renewable energy generation. However, wind power generation is a
power electronic-based resource that minimally contributes to the inertia response of
electric power systems. In addition, increasing the amount of wind power generation
can replace traditional synchronous generators (TSGs), leading to low system inertia and
primary frequency response [1–5]. In a low-inertia electric power system, an insufficient
inertia response increases the rate of change of frequency and the maximum frequency
deviation [6–8].

In a traditional electric power system, a frequency disturbance, including load connec-
tion or generator tripping, reduces the system frequency since TSGs immediately respond
to the power imbalance. Initially, the inertia of TSGs supplies the deficit power of the
electric power system, and after a few seconds, the generator’s governor response activates
to prevent the system frequency from further decreasing, thereby stabilizing the system
frequency [9]. In a high wind power penetration electric power system, low inertia re-
sponse and primary frequency response increase the maximum frequency deviation, which
drops below the reliability standard. A wide-area power failure may occur during the
activation of under-frequency relays [10]. To solve this frequency stability issue, the fast
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frequency response (FFR) of the wind turbine generators (WTGs), which improves the
lower frequency, was introduced as an auxiliary service [11–26].

The present strategies of the WTGs for providing FFR are roughly divided into two
types based on their input signals: frequency-based FFR and fixed-trajectory FFR [27–33].
The use of frequency based FFR modifies the additional control signals to imitate the
inertial response and emulate the droop response based on frequency deviation [27–29].
The authors of [7] suggest a timing-varying droop control coefficient to reduce the SFD.
An optimized power point tracking method is suggested, the coefficient of the optimized
power point tracking scheme is defined based on the frequency deviation and rate of
change of frequency [30]. Fixed trajectory FFR is determined by the predefined power
reference rather than the measured frequency; it can also sustain the system frequency
better than the frequency-based FFR [31]. Nevertheless, after sustaining the grid frequency,
the rotor speed is required to regain optimal speed; this process creates a secondary dip in
the system frequency [32]. To lessen the depth of the SFD, the authors of [33] suggested a
power reference that decays in a ramp manner. Regaining rotor speed addresses a small
constant power reference, reducing the depth of the SFD [34,35]. However, it is difficult to
counterbalance the performance of the second frequency drop and rotor speed recovery.
In addition, to reduce the SFD, the authors of [36] suggest a power reference based on
mechanical power. However, it is difficult to obtain accurate mechanical power information.
Therefore, a two-stage variable coefficient-based controller was constructed for DFIGs [37].
However, the effectiveness of the two-stage scheme strongly relies on the predetermined
training of the fuzzy controller. Furthermore, the rotor speed is regained by adjusting the
setting of the primary frequency response, and an energy storage system counterbalances
the absorbed power. However, these two strategies require more investment.

We suggest a fast stepwise inertial control scheme of a DFIG to preserve the FN with
less energy released and reduce both the depth of the SFD and the mechanical stress on
the wind turbine. A piecewise function for the frequency support phase and rotor speed
recovery phase is needed to address these issues. The benefits of the proposed stepwise
inertial control scheme are indicated by various wind speed conditions.

2. Doubly-Fed Induction Generator Model

Based on the theory of aerodynamics, the mechanical power of the wind turbine is a
function of air density (ρ), power coefficient (cp), rotor radius (R), and wind speed (vw):

Pm =
1
2

ρπR2v3
wcP(λ, β) (1)

cP(λ, β) = 0.645{0.00912λ +
−5− 0.4(2.5 + β) + 116λi

e21λi
} (2)

λi =
1

λ + 0.08(2.5 + β)
− 0.035

1 + (2.5 + β)3 (3)

λ =
ωrR
vw

(4)

where β is the pitch angle and λ is the tip-speed ratio.
The mechanical dynamics are displayed in a two-mass shaft model, as indicated by

the following equations [36]:

2Ht
dωt

dt
= Tm − Tls (5)

2Hg
dωr

dt
= Ths − Tem (6)

Tls = K(θt − θls) + B(ωt −ωls) (7)

where Tm is the mechanical torque from the turbine; Tem is the generator electrical torque,
Ht is inertia from the turbine; Hg is the generator inertia constant; Tls and Ths are the torques
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of the low-speed and high-speed shafts, respectively; ωt is the turbine rotor speed; ωr is
the generator rotor speed; K is the spring constant; θt and θls are the torsional twists of
the rotor and low-speed shaft, respectively; B and ωls are the damping constant and rotor
speed of the low-speed shaft, respectively.

Figure 1 illustrates the vector control of the rotor side converter, which adjusts the
voltage and active power injected into the grid through the inner current controller.
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In (1), the DFIG captures the maximum power from wind. Substituting (4) into (1),
the expression of the power reference for MPPT operation, PMPPT, is described as:

PMPPT =
1
2

cP, maxρπR2(
ωrR
λopt

)3 = kgω3
r (8)

where kg is set to 0.512. In addition, cP, max is the maximum value of cP and is set to 0.5.
λopt is the optimal tip-speed ratio and is set to 9.95.

3. Frequency Support Schemes of a DFIG

When implementing the frequency support, the relationship between ∆PDFIG and
rotor speed of the DFIG is represented as:

∆PDFIG = JDFIGωr
dωr

dt
(9)

where ∆PDFIG and JDFIG are the active power variation and moment of the DFIG, respectively.
According to the definition of inertia constant by the synchronous generator, the

inertia constant of the DFIG (HDFIG) is expressed as:

HDFIG =
JDFIGω2

n
2SDFIG

(10)

where ωn and SDFIG are the rated rotor speed and rated capacity of the DFIG, respectively.
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Rearranging (9), and converting to a per unit (p.u.) system:

2HDFIGωpu
dωpu

dt
= ∆PDFIG_pu (11)

where ∆PDFIG_pu and ωpu are ∆PDFIG and the rotor speed of the DFIG in p.u., respectively.
As reported in [38], the system frequency in p.u. is the same as ωpu; therefore, the

expression of (11) can be modified as a function of the system frequency, as follows:

2HDFIG fpu
d fpu

dt
= ∆PDFIG_pu (12)

After integrating (12), the instantaneous frequency in p.u. is derived as:

∆PDFIG_pu × ∆t = HDFIG ×
[

f 2
pu(t + ∆t)− f 2

pu(t)
]

(13)

where fpu(t) and fpu(t + ∆t) are the grid frequencies at t and t + ∆t, respectively. Then, (13) is
rearranged as:

fpu(t + ∆t) =

√(
∆PDFIG_pu × ∆t

)
HDFIG

+ f 2
pu(t) (14)

Hence, (14) illustrates that the DFIG sustains the system frequency during a frequency
disturbance. During the frequency support phase (FSP), the DFIG provides a higher
∆PDFIG_pu; therefore, the maximum frequency deviation reduces.

3.1. Conventional Stepwise Inertial Control Scheme

Figure 2 illustrates the structure of the conventional stepwise inertial control scheme,
which consists of two phases demonstrated by segment A-B-C-C’-D: a frequency support
phase (FSP, operating point A to operating point C) and rotor speed recovery phase (RSRP,
operating point C to operating point D). When a frequency disturbance occurs, the DFIG
rapidly increases its output power (Pset) to PTlim(ω0) (the torque limit at ω0) to reduce the
maximum frequency deviation. This process corresponds to segment A-B in Figure 2. To
prevent the rotor speed from stalling, Pset decreases with the rotor speed, which is defined
in (15).

Pset = PMPPT(ωmin) +
PTlim(ω0)− PMPPT(ωmin)

ω0 −ωmin
(ωr −ωmin) (15)
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(20)

Figure 2. Operational features of the conventional scheme.

Based on the swing equation, the rotor speed increases since the output power of
the DFIG is more than the mechanical power, and ωr converges to operating point C,
which represents the intersection of (15) and the Pm curve. Thus, the conventional stepwise
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inertial control scheme prevents the stalling of the wind turbine. However, during the rotor
speed convergence stage, considerable energy is released into the grid.

In the RSRP, to regain the rotor speed, Pref should decrease to lower than the mechani-
cal input power. To this end, the conventional stepwise inertial control scheme instantly
reduces the reference to Pset(ωC) – ∆Pr, which is maintained until Pset meets the PMPPT
curve. The power reference for segment C-C’-D-A is represented in (16) and (17).

Pset = Pset(ωC)− ∆Pr (16)

Pset(ωr) = PMPPT(ωr) (17)

As indicated in (14), the rapid and large change in ∆PDFIG_pu significantly affects the
system frequency; this signifies that using large ∆Pr produces a severe depth of the SFD
with rapid rotor speed recovery and vice versa. Hence, the control strategy of the RSRP
cannot counterbalance the performance of the recovered rotor speed and depth of the SFD.

3.2. Proposed Stepwise Inertial Control Scheme of a DFIG

To solve the conventional stepwise inertial control scheme issues mentioned above,
we suggest a torque limit-based fast stepwise inertial control scheme of a DFIG using a
piecewise function. This function includes the power reference in the FSP and RSRP, which
are the same as in the conventional scheme. Nevertheless, the power reference for the
RSRP and the activation moment of the RSRP are different from the conventional scheme.

The control concept and characteristics of the proposed stepwise inertial control strat-
egy are illustrated in Figures 3 and 4, respectively. After detecting a frequency disturbance,
the DFIG increases Pref to PB, corresponding to operating point B. Afterward, the DFIG
decreases Pref using rotor speed to prevent the rotor from stalling, and the operating point
moving from point B to point C. The power reference of the proposed stepwise inertial
control scheme from operating point A to operating point C is the same as in (15). As a
result, the proposed frequency support preserves the frequency nadir during the FSP.
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In the RSRP (from operating point C to operating point D), the DFIG smoothly de-
creases the power reference based on the exponential function rather than instantly decreas-
ing the correspondence with segment C-D in Figure 4. Therefore, the proposed stepwise
inertial control scheme reduces the depth of the SFD and further reduces the wind turbine’s
mechanical stresses. The power reference for RSRP is represented as:

Pset = PMPPT + ∆PRSR × e−α(t−t1) (18)

∆PRSR = Pset(ωC)− PMPPT(ωC) (19)

where t1 is the instant of operating point C, ∆PRSR is the difference between Pset(ωC) and
PMPPT(ωC), and α is the regulation factor of the RSRP.
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The reasons why the RSRP initiates at operating point C is explained as follows: the
system frequency is in the rebounding phase around operating point C. According to [1],
the depth of the SFD reduces if the RSRP initiates during the frequency rebound phase.
Thus, the expression of the suggested piecewise function during the FSP and RSRP is:

Pset =

{ PTlim(ω0)−PMPPT(ωmin)
ω0−ωmin

(ωr −ωmin) + PMPPT(ωmin) 0 < t ≤ t1

PMPPT + ∆PRSR × e−α(t−t1) t > t1

(20)

4. System Layout and Case Studies

To study the effectiveness of the proposed stepwise inertial control scheme, three
cases with constant wind speed and ramp down wind speed conditions were conducted
using the test system shown in Figure 5. The test system comprises five steam turbine
synchronous generators, static loads and one DFIG-based wind farm. The capacities of
steam turbine synchronous generators SG1, SG2, SG3, SG4, and SG5 are 615, 100, 180, 120,
and 60 MVA, respectively. The settings of the inertia time constants for SG1, SG2, SG3,
SG4, and SG5 are 6, 4, 4, 3, and 2 s, respectively. The parameters of the DFIG are shown in
Table 1. The SG3, a disturbance that generates 150 MW, is tripped out.
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Table 1. Parameters of the DFIG.

Item Values Units

Nominal Stator Voltage 2.3 kV

Nominal Apparent Power 5.5 MVA

Nominal Active Power 5.0 MW

Magnetizing Reactance 2.9 p.u.

Stator Leakage Reactance 0.18 p.u.

Rotor Resistance 0.016 p.u.

Rotor Leakage Reactance 0.16 p.u.

Stator Resistance 0.023 p.u.

Inertia Constant 5.0 S

Stable Operating Range of ωr 0.70–1.25 p.u.

Rated, Cut-in, and Cut-out Speeds 11, 4, and 25 m/s

Based value of rotor speed 235.62 rad/s

Based value of torque 21.78 kNm

The performance of the MPPT operation, conventional stepwise inertial control
scheme, and proposed stepwise inertial control scheme was compared to study the perfor-
mance of the dynamic frequency response, including the maximum frequency deviation,
depth of the SFD, and torque difference between the high-speed shaft and low-speed shaft.

4.1. Case 1: Constant Wind Speed of 9.5 m/s, Wind Power Penetration of 15%

Figure 6 shows the grid frequency, output power of the DFIG, rotor speed, and torque
difference between the low-speed shaft and high-speed shaft for Case 1. During the FSP,
using the proposed stepwise inertial control and the conventional stepwise inertial control
schemes reduces the maximum frequency deviation from 0.958 to 0.748 Hz. The reason for
this phenomenon is that the proposed stepwise inertial control takes the same reference
power function as the conventional scheme and the same injection of the active power
prior at the beginning of a disturbance, as illustrated in Figure 6a,b.

As shown in Figure 6a,b, the depths of the SFD for the proposed and conventional
stepwise inertial control schemes are 0.418 and 0.485 Hz, respectively; this is because during
the RSRP, the use of the proposed stepwise inertial control strategy smoothly reduces the
output power of the DFIG. In addition, the smooth decrease of the output is beneficial in
reducing the wind turbine’s mechanical stress, as shown in Figure 6d. Furthermore, as
shown in Figure 6c, the lowest rotor speeds of the proposed and conventional stepwise
inertial control schemes are 0.936 and 0.922 pu, respectively. Therefore, using the proposed
stepwise inertial control strategy releases less rotor energy compared with the conventional
stepwise inertial control scheme during the FSP. Hence, using the proposed frequency
scheme can preserve the frequency nadir while releasing less rotor energy.

4.2. Case 2: Constant Wind Speed of 9.5 m/s, Wind Power Penetration of 30%

Figure 7 shows the grid frequency, output power of the DFIG, and rotor speed for
Case 2. Table 2 shows the summary of Case 1 and Case 2.

The maximum deviation from the grid frequency of the MPPT operation is 1.043 Hz,
which is more than a low wind penetration due to the reduced inertia and governor re-
sponse of the SGs. As in Case 1, compared with MPPT, using the proposed stepwise inertial
control and conventional stepwise inertial control schemes reduce the maximum frequency
deviation by 0.411 Hz. Furthermore, as shown in Figure 7c, ωr in the proposed stepwise
inertial control drops faster and decreases to 0.936 p.u. at 56.6 s, and then gradually returns
to ω0; ωr in the conventional stepwise inertial control schemes converges to 0.922 p.u. at
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66.9 s. Therefore, the proposed frequency support preserves the frequency stability with
less rotor energy released from the DFIG and starts the rotor speed recovery earlier.
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As shown in Figure 7a,b, the SFD size in the conventional stepwise inertial control
scheme is 0.572 Hz which is more severe than a lower wind penetration and in the proposed
stepwise inertial control scheme due to the large power reduction in MW. Moreover, the
smooth decrease in the output helps to reduce the mechanical stress of the wind turbine, as
shown in Figure 7d.

4.3. Case 3: Ramp down Wind Speed Conditions (Decreasing Wind Speeds from 9.5 to 7.0 m/s
in 10 s)

The stalling of the wind turbine during the RSRP may be caused by ramp down wind
speed conditions since the output power of the DFIG is higher than the changed mechanical
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input power. As a result, the rotor speed continues to decrease until the power reference
descends to the MPPT curve. Thus, one scenario was used to investigate the influence of
the ramp down wind speed conditions on the proposed and conventional stepwise inertial
control schemes.
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Table 2. Summary of Case 1 and Case 2.

Scheme Case 1 Case 2

Frequency nadir
(Hz)

MPPT 59.042 58.957
Conventional 59.252 59.355

Proposed 59.252 59.355

Second frequency
drop (Hz)

MPPT - -
Conventional 59.515 59.428

Proposed 59.582 59.502
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In this scenario, the ramp down wind speed decreases at 70.0 s from 9.5 to 7.0 m/s in
10.0 s. Before 70.0 s, the wind speed condition is the same as Case 1; thus, the maximum
frequency deviation and released rotor energy are the same, as illustrated in Figure 8.
After 70.0 s, during the RSRP, the use of the conventional scheme results in the stalling
of the wind turbine because of the decreasing wind speed conditions. Consequently, the
conventional scheme reduces the maximum frequency deviation to 59.259 Hz at 87.6 s.
The proposed scheme decreases the active power output using the exponential function.
Furthermore, the decreasing wind conditions cause an SFD of 59.468 Hz, which is almost
the same as MPPT operation. Thus, the proposed scheme can prevent the wind turbine
from stalling even under ramp down wind speed conditions.
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5. Conclusions

In this article, we suggest a torque limit-based fast stepwise inertial control scheme
of DFIGs to reduce the second frequency drop while preserving the FN with less rotor
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energy released using a piecewise reference function. The benefits of the optimized fre-
quency support strategy were investigated using a test system embedded with DFIGs. The
contribution of this strategy can be summarized as follows:

1. During the FSP, this proposed FFR scheme preserves the FN with less rotor energy
released. Thus, the proposed FFR scheme solves the issue that unnecessary rotor
speed is released after rebounding the system frequency.

2. During the RSRP, based on the second segment power reference function which is
an exponential function in time domain, the output of the DFIG decreases smoothly
and switches to MPPT without an active power mutation so as to realize the smooth
rotor speed recovery and reduce the SFD. Thus, the proposed FFR scheme solves the
issue of counterbalancing the performance for smoothing rotor speed recovery while
reducing the mechanical stress on the wind turbines and reducing the SFD.

The simulation studies clearly indicate that the proposed FFR scheme preserves the
frequency stability with less rotor energy released and reduces the second frequency drop
and mechanical stress of wind turbines under scenarios of constant wind speeds, varying
wind speeds, and various wind power penetrations.

For the future research, we plan to investigate the inertial control scheme of the DFIG
using RTDS or RT-lab for hardware-in-the-loop simulations.
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