Recovery of Heavy Metal Ions Using Magnetic Glycine-Modified Chitosan—Application to Aqueous Solutions and Tailing Leachate
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Sorbent
2.2.1. Preparation of Magnetic Chitosan Microparticles (MCh)
2.2.2. Activation of MCh Microparticles (MChs)
2.2.3. Insertion of Spacer Reactive Group (MChs*)
2.2.4. Grafting of Glycine (G@MChs)
2.3. Characterization of Sorbent
2.4. Sorption Tests
2.4.1. Experimental Procedures for Sorption and Desorption
2.4.2. Modeling of Experimental Data (Uptake Kinetics and Sorption Isotherms)
2.5. Ore Characterization and Leaching Operations
3. Results
3.1. Characterization of Sorbent
3.1.1. Surface Morphology
3.1.2. Chemical Characterization—FTIR spectroscopy
3.1.3. pHPZC—pH-Drift Titration
3.2. Sorption Tests
3.2.1. Effect of pH
3.2.2. Effect of Sorbent Dose
3.2.3. Uptake Kinetics
3.2.4. Sorption Isotherms
3.2.5. Effect of Temperature on Sorption Capacity
3.2.6. Selectivity—Sorption from Multi-Component Solutions
3.2.7. Metal Desorption and Sorbent Recycling
3.3. Treatment of Tailing Leachates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stefaniak, J.; Karwacka, S.; Janiszewska, M.; Dutta, A.; Rene, E.R.; Regel-Rosocka, M. Co(II) and Ni(II) transport from model and real sulfate solutions by extraction with bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272). Chemosphere 2020, 254, 126869. [Google Scholar] [CrossRef]
- Diabate, P.D.; Boudesocque, S.; Mohamadou, A.; Dupont, L. Separation of cobalt, nickel and copper with task-specific amido functionalized glycine-betaine-based ionic liquids. Sep. Purif. Technol. 2020, 244, 116782. [Google Scholar] [CrossRef]
- Daminova, S.S.; Kadirova, Z.C.; Sharipov, K.T.; Stoyko, O.V.; Chepulsky, S.A.; Adewuyi, A.; Hojamberdiev, M. Diisopropyldithiophosphoric acid-impregnated macroporous non-ionogenic styrene-divinylbenzene polymeric sorbent (Porolas) for effective copper extraction. J. Ind. Eng. Chem. 2017, 55, 204–214. [Google Scholar] [CrossRef]
- Gupta, B.; Ismail, Z.B. Stabilization of solvent-impregnated resins (SIRs) by coating with water-soluble polymer and chemical cross-linking and its application in mercury removal. Compos. Interfaces 2006, 13, 487–506. [Google Scholar] [CrossRef]
- Kitabayashi, T.; Sana, T.; Kiyoyama, S.; Takei, T.; Yoshida, M.; Shiomori, K. Extraction properties of Nickel (II) with polymeric particles with interconnected spherical pores impregnating with LIX84-I. Solvent Extra. Res. Dev.-Jpn. 2013, 20, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Shao, G.L.; Xiao, J.F.; Tian, Z.H.; Huang, J.J.; Yuan, S.G. Preparation and characterization of polyphenylene sulfide-based chelating resin-functionalized 2-amino-1,3,4-thiadiazole for selective removal Hg(II) from aqueous solutions. Polym. Adv. Technol. 2018, 29, 1030–1038. [Google Scholar] [CrossRef]
- Perez, I.D.; Correa, M.M.J.; Tenório, J.A.S.; Espinosa, D.C.R. Effect of the pH on the recovery of Al3+, Co2+, Cr3+, Cu2+, Fe3+, Mg2+, Mn2+, Ni2+ and Zn2+ by Purolite S950. In Energy Technology 2018—Carbon Dioxide Management and Other Technologies, Phoenix, AZ, USA; Sun, Z., Wang, C., Guillen, D.P., Neelameggham, N.R., Zhang, L., Howarter, J., Wang, T., Olivetti, E., Zhang, M., Verhulst, D., et al., Eds.; Springer International Publishing: Cham, Switzerland; pp. 385–393.
- Sajjadi, S.A.; Mohammadzadeh, A.; Tran, H.N.; Anastopoulos, I.; Dotto, G.L.; Lopicic, Z.R.; Sivamani, S.; Rahmani-Sani, A.; Ivanets, A.; Hosseini-Bandegharaei, A. Efficient mercury removal from wastewater by pistachio wood wastes-derived activated carbon prepared by chemical activation using a novel activating agent. J. Environ. Manag. 2018, 223, 1001–1009. [Google Scholar] [CrossRef]
- Gu, S.Y.; Hsieh, C.T.; Gandomi, Y.A.; Yang, Z.F.; Li, L.Y.; Fu, C.C.; Juang, R.S. Functionalization of activated carbons with magnetic Iron oxide nanoparticles for removal of copper ions from aqueous solution. J. Mol. Liq. 2019, 277, 499–505. [Google Scholar] [CrossRef]
- Johari, K.; Saman, N.; Mat, H. A comparative evaluation of mercury(II) adsorption equilibrium and kinetics onto silica gel and sulfur-functionalised silica gels adsorbents. Can. J. Chem. Eng. 2014, 92, 1048–1058. [Google Scholar] [CrossRef]
- Wei, J.-W.; Wang, J.-H.; Zhao, S.-S.; Geng, L.-L. Synthesis and copper(II) affinity performance of amidoxime functionalized mesoporous silica. J. Inorg. Mater. 2016, 31, 449–453. [Google Scholar]
- Das, S.; Samanta, A.; Gangopadhyay, G.; Jana, S. Clay-based nanocomposites as recyclable adsorbent toward Hg(II) capture: Experimental and theoretical understanding. ACS Omega 2018, 3, 6283–6292. [Google Scholar] [CrossRef] [PubMed]
- Behbahani, M.; Zarezade, V.; Veisi, A.; Omidi, F.; Bagheri, S. Modification of magnetized MCM-41 by pyridine groups for ultrasonic-assisted dispersive micro-solid-phase extraction of nickel ions. Int. J. Environ. Sci. Technol. 2019, 16, 6431–6440. [Google Scholar] [CrossRef]
- Romera, E.; Gonzalez, F.; Ballester, A.; Blazquez, M.L.; Munoz, J.A. Biosorption with algae: A statistical review. Crit. Rev. Biotechnol. 2006, 26, 223–235. [Google Scholar] [CrossRef]
- Lopicic, Z.R.; Milojkovic, J.V.; Sostaric, T.D.; Petrovic, M.S.; Mihajlovic, M.L.; Lacnjevac, C.M.; Stojanovic, M.D. Influence of pH value on Cu(II) biosorption by lignocellulose peach shell waste material. Hem. Ind. 2013, 67, 1007–1015. [Google Scholar] [CrossRef]
- Lazar, M.M.; Dinu, I.A.; Silion, M.; Dragan, E.S.; Dinu, M.V. Could the porous chitosan-based composite materials have a chance to a “NEW LIFE” after Cu(II) ion binding? Int. J. Biol. Macromol. 2019, 131, 134–146. [Google Scholar] [CrossRef]
- Lu, S.; Yang, F.; Tian, C.; Shi, P.; Liu, X.; Bao, Z.; Nie, J. Iop, Sorption properties of ion-imprinted seaweed-chitosan composite adsorbents for nickel ions. In Proceedings of the 2019 5th International Conference on Energy Materials and Environment Engineering, Kuala Lumpur, Malaysia, 12–14 April 2019; Volume 295. [Google Scholar] [CrossRef]
- Anuar, S.N.I.S.; Othman, F.; Chay, T.C.; Nasir, N.A.H.A. Biosorption of mercury ion (Hg2+) using live and dead cells of Rhizopus oryzae and Aspergillus niger: Characterization, kinetic and isotherm studies. J. Pure Appl. Microbiol. 2020, 14, 1749–1760. [Google Scholar] [CrossRef]
- Chokradjaroen, C.; Niu, J.; Panomsuwan, G.; Saito, N. Insight on solution plasma in aqueous solution and their application in modification of chitin and chitosan. Int. J. Mol. Sci. 2021, 22, 4308. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.M.B.; dos Santos, A.M.; Boni, F.I.; dos Santos, K.C.; Robusti, L.M.G.; de Souza, M.P.C.; Ferreira, N.N.; Carvalho, S.G.; Cardoso, V.M.O.; Chorilli, M.; et al. Design of chitosan-based particle systems: A review of the physicochemical foundations for tailored properties. Carbohydr. Polym. 2020, 250, 116968. [Google Scholar] [CrossRef]
- Liu, X.-q.; Zhao, X.-x.; Liu, Y.; Zhang, T.-a. Review on preparation and adsorption properties of chitosan and chitosan composites. Polym. Bull. 2021, 1–33. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: A review. Carbohydr. Polym. 2021, 251, 116986. [Google Scholar] [CrossRef]
- Saheed, I.O.; Oh, W.D.; Suah, F.B.M. Chitosan modifications for adsorption of pollutants-A review. J. Hazard. Mater. 2021, 408, 124889. [Google Scholar] [CrossRef] [PubMed]
- Sheth, Y.; Dharaskar, S.; Khalid, M.; Sonawane, S. An environment friendly approach for heavy metal removal from industrial wastewater using chitosan based biosorbent: A review. Sustain. Energy Technol. Assess. 2021, 43, 100951. [Google Scholar]
- Guibal, E. Interactions of metal ions with chitosan-based sorbents: A review. Sep. Purif. Technol. 2004, 38, 43–74. [Google Scholar] [CrossRef]
- Ko, E.; Kim, H. Preparation of chitosan aerogel crosslinked in chemical and ionical ways by non-acid condition for wound dressing. Int. J. Biol. Macromol. 2020, 164, 2177–2185. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, S.; Sadeghpour, A.; Sivaraman, D.; Zhao, S.; Malfait, W.J. Solvents, CO2 and biopolymers: Structure formation in chitosan aerogel. Carbohydr. Polym. 2020, 247, 116680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y.; Liang, D.; Xiao, Z.; Xie, Y.; Li, J. Sulfhydryl-modified chitosan aerogel for the adsorption of heavy metal ions and organic dyes. Ind. Eng. Chem. Res. 2020, 59, 14531–14536. [Google Scholar] [CrossRef]
- Sahbaz, D.A.; Yakar, A.; Gunduz, U. Magnetic Fe3O4-chitosan micro- and nanoparticles for wastewater treatment. Part. Sci. Technol. 2019, 37, 728–736. [Google Scholar]
- Zhang, L.; Xiong, Z.; Zhang, L.; Yu, B.; Zhang, W. Magnetic nanoparticles coated with dithizone-modified chitosan for use in solid-phase extraction of copper(II). Anal. Methods 2015, 7, 2050–2054. [Google Scholar] [CrossRef]
- Kharissova, O.V.; Dias, H.V.R.; Kharisov, B.I. Magnetic adsorbents based on micro- and nano-structured materials. RSC Adv. 2015, 5, 6695–6719. [Google Scholar] [CrossRef]
- Oshita, K.; Takayanagi, T.; Oshima, M.; Motomizu, S. Adsorption behavior of cationic and anionic species on chitosan resins possessing amino acid moieties. Anal. Sci. 2007, 23, 1431–1434. [Google Scholar] [CrossRef] [Green Version]
- Hamza, M.F.; Aly, M.M.; Abdel-Rahman, A.A.H.; Ramadan, S.; Raslan, H.; Wang, S.; Vincent, T.; Guibal, E. Functionalization of magnetic chitosan particles for the sorption of U(VI), Cu(II) and Zn(II)—Hydrazide derivative of glycine-grafted chitosan. Materials 2017, 10, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galhoum, A.A.; Hassan, K.M.; Desouky, O.A.; Masoud, A.M.; Akashi, T.; Sakai, Y.; Guibal, E. Aspartic acid grafting on cellulose and chitosan for enhanced Nd(III) sorption. React. Funct. Polym. 2017, 113, 13–22. [Google Scholar] [CrossRef]
- Maia, M.T.; Sena, D.N.; Calais, G.B.; Luna, F.M.T.; Beppu, M.M.; Vieira, R.S. Effects of histidine modification of chitosan microparticles on metal ion adsorption. React. Funct. Polym. 2020, 154, 104694. [Google Scholar] [CrossRef]
- Rafiee, F.; Karder, F.R. Bio-crosslinking of chitosan with oxidized starch, its functionalization with amino acid and magnetization: As a green magnetic support for silver immobilization and its catalytic activity investigation. Int. J. Biol. Macromol. 2020, 146, 1124–1132. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Namdeo, M.; Bajpai, S.K. Chitosan-magnetite nanocomposites (CMNs) as magnetic carrier particles for removal of Fe(III) from aqueous solutions. Colloids Surf. A 2008, 320, 161–168. [Google Scholar] [CrossRef]
- Donia, A.M.; Atia, A.A.; Abouzayed, F.I. Preparation and characterization of nano-magnetic cellulose with fast kinetic properties towards the adsorption of some metal ions. Chem. Eng. J. 2012, 191, 22–30. [Google Scholar] [CrossRef]
- Lopez-Ramon, M.V.; Stoeckli, F.; Moreno-Castilla, C.; Carrasco-Marin, F. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 1999, 37, 1215–1221. [Google Scholar] [CrossRef]
- Galhoum, A.A.; Mahfouz, M.G.; Atia, A.A.; Abdel-Rehem, S.T.; Gomaa, N.A.; Vincent, T.; Guibal, E. Amino acid functionalized chitosan magnetic nanobased particles for uranyl sorption. Ind. Eng. Chem. Res. 2015, 54, 12374–12385. [Google Scholar] [CrossRef]
- Shapiro, L. Rapid Analysis of Silicate, Carbonate, and Phosphate Rocks; Report Number 1401; US Government Printing Office: Washington, DC, USA, 1975; Volume 76, p. 88.
- Marczenko, Z.; Balcerzak, M. Chapter 39—Rare-Earth Elements. In Analytical Spectroscopy Library; Location, Z., Balcerzak, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 10, pp. 341–349. [Google Scholar]
- Davies, W.; Gray, W. A rapid and specific titrimetric method for the precise determination of uranium using iron(II) sulphate as reductant. Talanta 1964, 11, 1203–1211. [Google Scholar] [CrossRef]
- Bindu, V.U.; Mohanan, P.V. Thermal deactivation of alpha-amylase immobilized magnetic chitosan and its modified forms: A kinetic and thermodynamic study. Carbohydr. Res. 2020, 498, 108185. [Google Scholar] [CrossRef]
- Laus, R.; Costa, T.G.; Szpoganicz, B.; Favere, V.T. Adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent. J. Hazard. Mater. 2010, 183, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 1–23. [Google Scholar]
- Pearson, R.G. Acids and bases. Science 1966, 151, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Sorlier, P.; Denuzière, A.; Viton, C.; Domard, A. Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules 2001, 2, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Williams, R. pKa Data (Compiled by R. Williams). Available online: http://www.chem.wisc.edu/areas/reich/pkatable/pKa_compilation-1-Williams.pdf (accessed on 4 June 2017).
- Gustafsson, J.P. Visual MINTEQ, version 3.1; KTH, Royal Institute of Technology: Stockholm, Sweden, 2013. [Google Scholar]
- Simonin, J.-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Hubbe, M.A.; Azizian, S.; Douven, S. Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review. BioResources 2019, 14, 7582–7626. [Google Scholar] [CrossRef]
- Rani, P.; Johar, R.; Jassal, P.S. Adsorption of nickel (II) ions from wastewater using glutaraldehyde cross-linked magnetic chitosan beads: Isotherm, kinetics and thermodynamics. Water Sci. Technol. 2020, 82, 2193–2202. [Google Scholar] [CrossRef]
- Shehzad, H.; Farooqi, Z.H.; Ahmed, E.; Sharif, A.; Din, M.I.; Arshad, M.; Nisar, J.; Zhou, L.; Yun, W.; Nawaz, I.; et al. Fabrication of a novel hybrid biocomposite based on amino-thiocarbamate derivative of alginate/carboxymethyl chitosan/TiO2 for Ni(II) recovery. Int. J. Biol. Macromol. 2020, 152, 380–392. [Google Scholar] [CrossRef]
- Hamza, M.F.; Wei, Y.; Mira, H.I.; Abdel-Rahman, A.A.H.; Guibal, E. Synthesis and adsorption characteristics of grafted hydrazinyl amine magnetite-chitosan for Ni(II) and Pb(II) recovery. Chem. Eng. J. 2019, 362, 310–324. [Google Scholar] [CrossRef] [Green Version]
- Al-Abbad, E.; Alakhras, F.; Anastopoulos, I.; Das, D.; Al-Arfaj, A.; Ouerfelli, N.; Hosseini-Bandegharaei, A. Chitosan-based materials for the removal of nickel ions from aqueous solutions. Russ. J. Phys. Chem. A 2020, 94, 748–755. [Google Scholar] [CrossRef]
- Iordache, M.L.; Dodi, G.; Hritcu, D.; Draganescu, D.; Chiscan, O.; Popa, M.I. Magnetic chitosan grafted (alkyl acrylate) composite particles: Synthesis, characterization and evaluation as adsorbents. Arabian J. Chem. 2018, 11, 1032–1043. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Gou, S.; He, Y.; Liu, L.; Fang, S.; Duan, W.; Liu, T. An efficient chitosan-based adsorption material containing phosphoric acid and amidoxime groups for the enrichment of Cu(II) and Ni(II) from water. J. Mol. Liq. 2021, 331, 115815. [Google Scholar] [CrossRef]
- Van Thuan, L.; My Uyen, D.; Hoang Sinh, L.; Dai Lam, T.; Van Dat, D.; Hoai Thuong, N. Adsorption of Ni(II) ions by magnetic activated carbon/chitosan beads prepared from spent coffee grounds, shrimp shells and green tea extract. Environ. Technol. 2020, 41, 2817–2832. [Google Scholar]
- Bozorgi, M.; Abbasizadeh, S.; Samani, F.; Mousavi, S.E. Performance of synthesized cast and electrospun PVA/chitosan/ZnO-NH2 nano-adsorbents in single and simultaneous adsorption of cadmium and nickel ions from wastewater. Environ. Sci. Pollut. Res. 2018, 25, 17457–17472. [Google Scholar] [CrossRef] [PubMed]
- Igberase, E.; Ofomaja, A.; Osifo, P.O. Enhanced heavy metal ions adsorption by 4-aminobenzoic acid grafted on chitosan/epichlorohydrin composite: Kinetics, isotherms, thermodynamics and desorption studies. Int. J. Biol. Macromol. 2019, 123, 664–676. [Google Scholar] [CrossRef]
- Abdelrahman, E.A.; Hegazey, R.M. Exploitation of Egyptian insecticide cans in the fabrication of Si/Fe nanostructures and their chitosan polymer composites for the removal of Ni(II), Cu(II), and Zn(II) ions from aqueous solutions. Compos. Part B 2019, 166, 382–400. [Google Scholar] [CrossRef]
- Panahandeh, A.; Parvareh, A.; Moraveji, M. Synthesis and characterization of g-MnO2/chitosan/Fe3O4 cross-linked with EDTA and the study of its efficiency for the elimination of zinc(II) and lead(II) from wastewater. Environ. Sci. Pollut. Res. 2020, 28, 9235–9254. [Google Scholar] [CrossRef]
- Dev, V.V.; Baburaj, G.; Antony, S.; Arun, V.; Krishnan, K.A. Zwitterion-chitosan bed for the simultaneous immobilization of Zn(II), Cd(II), Pb(II) and Cu(II) from multi-metal aqueous systems. J. Clean. Prod. 2020, 255, 120309. [Google Scholar] [CrossRef]
- Atangana, E. Adsorption of Zn(II) and Pb(II) ions from aqueous solution using chitosan cross-linked formaldehyde adsorbent to protect the environment. J. Polym. Environ. 2019, 27, 2281–2291. [Google Scholar] [CrossRef]
- Shao, Z.; Lu, J.; Ding, J.; Fan, F.; Sun, X.; Li, P.; Fang, Y.; Hu, Q. Novel green chitosan-pectin gel beads for the removal of Cu(II), Cd(II), Hg(II) and Pb(II) from aqueous solution. Int. J. Biol. Macromol. 2021, 176, 217–225. [Google Scholar] [CrossRef]
- Fu, Y.; Sun, Y.; Zheng, Y.; Jiang, J.; Yang, C.; Wang, J.; Hu, J. New network polymer functionalized magnetic-mesoporous nanoparticle for rapid adsorption of Hg(II) and sequential efficient reutilization as a catalyst. Sep. Purif. Technol. 2021, 259, 118112. [Google Scholar] [CrossRef]
- Usman, M.; Ahmed, A.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Simultaneous adsorption of heavy metals and organic dyes by β-cyclodextrin-chitosan based cross-linked adsorbent. Carbohydr. Polym. 2021, 255, 117486. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, E.A.; Subaihi, A. Application of geopolymers modified with chitosan as novel composites for efficient removal of Hg(II), Cd(II), and Pb(II) ions from aqueous media. J. Inorg. Organomet. Polym Mater. 2020, 30, 2440–2463. [Google Scholar] [CrossRef]
- Hamza, M.F.; Wei, Y.; Benettayeb, A.; Wang, X.; Guibal, E. Efficient removal of uranium, cadmium and mercury from aqueous solutions using grafted hydrazide-micro-magnetite chitosan derivative. J. Mater. Sci. 2020, 55, 4193–4212. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, L.; Zeng, H.; Rhimi, B.; Wang, C. Novel polyethyleneimine functionalized chitosan-lignin composite sponge with nanowall-network structures for fast and efficient removal of Hg(II) ions from aqueous solution. Environ. Sci. Nano 2020, 7, 793–802. [Google Scholar] [CrossRef]
- Zeng, H.; Wang, L.; Zhang, D.; Wang, F.; Sharma, V.K.; Wang, C. Amido-functionalized carboxymethyl chitosan/montmorillonite composite for highly efficient and cost-effective mercury removal from aqueous solution. J. Colloid Interface Sci. 2019, 554, 479–487. [Google Scholar] [CrossRef]
- Saha, G.C.; Hoque, M.I.U.; Miah, M.A.M.; Holze, R.; Chowdhury, D.A.; Khandaker, S.; Chowdhury, S. Biosorptive removal of lead from aqueous solutions onto Taro (Colocasia esculenta (L.) Schott) as a low cost bioadsorbent: Characterization, equilibria, kinetics and biosorption-mechanism studies. J. Environ. Chem. Eng. 2017, 5, 2151–2162. [Google Scholar] [CrossRef]
- Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 2019, 273, 425–434. [Google Scholar] [CrossRef]
Model | Parameter | Ni(II) | Zn(II) | Hg(II) |
---|---|---|---|---|
Experimental | qeq,exp. (mmol g−1) | 0.148 | 0.210 | 0.263 |
PFORE | qeq,1 (mmol g−1) | 0.150 | 0.210 | 0.258 |
k1 × 102 (min−1) | 4.99 | 9.13 | 7.70 | |
R2 | 0.995 | 0.968 | 0.985 | |
AIC | −109 | −78 | −85 | |
PSORE | qeq,2 (mmol g−1) | 0.184 | 0.243 | 0.297 |
k2 (L mmol−1 min−1) | 0.270 | 0.422 | 0.310 | |
R2 | 0.986 | 0.955 | 0.991 | |
AIC | −94 | −73 | −93 | |
RIDE | De × 1012 (m2 min−1) | 3.38 | 4.80 | 1.99 |
R2 | 0.979 | 0.946 | 0.984 | |
AIC | −85 | −71 | −84 | |
D0 × 108 (m2 min−1) | 3.97 | 4.22 | 5.08 |
Model | Parameter | Ni(II) | Zn(II) | Hg(II) |
---|---|---|---|---|
Experimental | qeq,exp. (mmol g−1) | 0.070 | 0.097 | 0.216 |
PFORE | qeq,1 (mmol g−1) | 0.070 | 0.097 | 0.214 |
k1 × 102 (min−1) | 6.79 | 6.23 | 9.25 | |
R2 | 0.980 | 0.977 | 0.980 | |
AIC | −114 | −110 | −86 | |
PSORE | qeq,2 (mmol g−1) | 0.081 | 0.115 | 0.246 |
k2 (L mmol−1 min−1) | 0.985 | 0.608 | 0.445 | |
R2 | 0.980 | 0.975 | 0.976 | |
AIC | −111 | −100 | −82 | |
RIDE | De × 1012 (m2 min−1) | 6.38 | 6.17 | 4.44 |
R2 | 0.978 | 0.971 | 0.970 | |
AIC | −122 | −108 | −79 |
Model | Parameter | Ni(II) | Zn(II) | Hg(II) |
---|---|---|---|---|
Experimental | qm,exp. (mmol g−1) | 0.465 | 0.449 | 0.332 |
Langmuir | qm,L (mmol g−1) | 0.497 | 0.457 | 0.347 |
bL (L mmol−1) | 4.94 | 6.02 | 18.5 | |
R2 | 0.938 | 0.959 | 0.888 | |
AIC | −58 | −56 | −90 | |
Freundlich | kF | 0.370 | 0.348 | 0.308 |
nF | 4.04 | 3.75 | 4.84 | |
R2 | 0.857 | 0.917 | 0.762 | |
AIC | −50 | −49 | −79 | |
Sips | qm,S (mmol g−1) | 0.459 | 0.466 | 0.323 |
bS (L mmol−1) | 13.7 | 5.10 | ∞ * | |
nF | 0.682 | 1.06 | 0.203 | |
R2 | 0.947 | 0.959 | 0.993 | |
AIC | −55 | −51 | −129 |
Metal | Sorbent | pH0 | T | teq | qm,L | bL | Ref. |
---|---|---|---|---|---|---|---|
Ni(II) | MCSB | - | 298 | 60 | 3.9 10−4 (a) | 1160 | [54] |
GLU-MCSB | - | 298 | 60 | 7.8 10−4 (a) | 5465 | [54] | |
Amino-thiocarbamate derivative of alginate, carboxymethyl chitosan and TiO2 | 6.0 | 298 | 180 | 2.93 | 354 | [55] | |
Ion-imprinted seaweed-chitosan composite | 7.0 | 298 | 1440 | 0.990 (b) | - | [17] | |
Hydrazinyl amine magnetite-chitosan | 5.0–5.1 | 298 | 1440 | 4.33 | 2.35 | [56] | |
Chitosan-vanillin | 4.0 | 303 | 1440 | 0.324 | 30.6 | [57] | |
Magnetic chitosan hexyl acrylate (Mag-CSg-HA) | 5.5 | 293 | 600 | 2.08 | 9.39 | [58] | |
Amidoximated chitosan/acrylamide/acrylonitrile/3-dimethylaminoallyl phosphonic acid | 5.0 | 303 | 720 | 3.64 | 0.177 | [59] | |
Magnetic activated carbon/chitosan beads | 6 | 298 | 360 | 1.85 | 13.5 | [60] | |
PVA/chitosan/ZnO-NH2 nano-fiber | 6 | 298 | 240 | 0.375 | 1.67 | [61] | |
4-aminobenzoic acid grafted chitosan | 7 | 298 | 60 | 2.34 | 0.317 | [62] | |
Si/Fe nanostructures -chitosan polymer composites (CF4) | - | 298 | 50 | 1.32 | 21.2 | [63] | |
G@MChs | 5.5 | 293 | 120 | 0.497 | 4.94 | herein | |
Zn(II) | EDTA-modified γ-MnO2/Chs magnetic nanocomposite | 6 | 298 | 110 | 2.08 | 5.69 | [64] |
Carboxylate funct. chitosan copolymer (CFCCPeCOOH) | 6 | 313 | 60 | 0.369 | 175.2 | [65] | |
Formaldehyde cross-linked chitosan | 4 | 298 | 50 | 0.0048 | 3633 | [66] | |
4-aminobenzoic acid grafted chitosan | 6 | 298 | 60 | 2.00 | 0.281 | [62] | |
Si/Fe nanostructures-chitosan polymer composites (CF4) | - | 298 | 50 | 1.04 | 14.3 | [63] | |
G@MChs | 5.80 | 293 | 120 | 0.457 | 6.01 | herein | |
Hg(II) | Chitosan-pectin gel beads | 7 | 298 | 160 | 1.04 | 21.5 | [67] |
MCTP (c) | 3.5 | 298 | 90 | 2.57 | 90.1 | [68] | |
β-Cyclodextrin-Chitosan | 6 | 295 | 90 | 0.939 | ∞ (d) | [69] | |
Amorphous aluminosilicate modified chitosan (G2.50/Ch) | 8 | 298 | 60 | 0.865 | 26.7 | [70] | |
Hydrazide-micromagnetite chitosan derivative | 5 | 295 | 2880 | 1.97 | 118.3 | [71] | |
Polyethyleneimine functionalized chitosan-lignin | 5.5 | 303 | 360 | 3.42 | 9.63 | [72] | |
Amido-funct. carboxymethyl chitosan/montmorillonite (e) | 5.5 | 303 | 250 | 9.00 | 263 | [73] | |
G@MChs | 6.01 | 293 | 120 | 0.482 | 18.5 | herein |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benettayeb, A.; Morsli, A.; Elwakeel, K.Z.; Hamza, M.F.; Guibal, E. Recovery of Heavy Metal Ions Using Magnetic Glycine-Modified Chitosan—Application to Aqueous Solutions and Tailing Leachate. Appl. Sci. 2021, 11, 8377. https://doi.org/10.3390/app11188377
Benettayeb A, Morsli A, Elwakeel KZ, Hamza MF, Guibal E. Recovery of Heavy Metal Ions Using Magnetic Glycine-Modified Chitosan—Application to Aqueous Solutions and Tailing Leachate. Applied Sciences. 2021; 11(18):8377. https://doi.org/10.3390/app11188377
Chicago/Turabian StyleBenettayeb, Asmaa, Amine Morsli, Khalid Z. Elwakeel, Mohammed F. Hamza, and Eric Guibal. 2021. "Recovery of Heavy Metal Ions Using Magnetic Glycine-Modified Chitosan—Application to Aqueous Solutions and Tailing Leachate" Applied Sciences 11, no. 18: 8377. https://doi.org/10.3390/app11188377
APA StyleBenettayeb, A., Morsli, A., Elwakeel, K. Z., Hamza, M. F., & Guibal, E. (2021). Recovery of Heavy Metal Ions Using Magnetic Glycine-Modified Chitosan—Application to Aqueous Solutions and Tailing Leachate. Applied Sciences, 11(18), 8377. https://doi.org/10.3390/app11188377