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Abstract: Successful recycling of electronic waste requires accurate separation of materials such as
plastics, PCBs and electronic components on PCBs (capacitors, transistors, etc.). This article therefore
proposes a vision approach based on a combination of 3D and HSI data, relying on the mutual
support of the datasets to compensate existing weaknesses when using single 3D- and HSI-Sensors.
The combined dataset serves as a basis for the extraction of geometric and spectral features. The
classification is performed and evaluated based on these extracted features which are exploited
through rules. The efficiency of the proposed approach is demonstrated using real electronic waste
and leads to convincing results with an overall accuracy (OA) of 98.24%. To illustrate that the addition
of 3D data has added value, a comparison is also performed with an SVM classification based only
on hyperspectral data.

Keywords: hyperspectral imaging; 3D data; point cloud; classification; rule-based classification;
waste sorting; WEEE; recycling

1. Introduction

Humanity is producing more and more electronic waste. In 2019 worldwide, 53.6 million tons
of electronic waste were produced. Technological innovations, short production cycles and,
in particular, ever-shorter product life cycles are the reasons for this rapid increase. Only
17.4% of the electronic waste produced worldwide is recycled, while the rest ends up in
waste incineration plants [1]. Due to existing toxic substances, this is not only harmful
to the environment, but could also cause serious risks for the human health. This makes
recycling processes that help to achieve sustainability more important.

Prerequisite for recycling is the sorting of electronic waste based on the type of material.
Whether monitors, calculators, mobile phones or vacuums, these devices are shredded
when they end up in landfills where they remain in the form of cables, plastics, metals and
Printed Circuit Boards (PCBs). PCBs in particular represent a highly valuable resource
consisting of polymers and precious metals [2]. Identifying the individual components
on circuit boards (capacitors, integrated circuits, inductors, etc.) is a particular challenge.
This challenging issue has already been addressed in a number of studies using different
strategies. In [3], an approach was developed for the segmentation of Surface Mounted
Devices (SMDs) on PCBs. The authors use a segmentation based on assembly paint and
color distribution to detect two types of SMDs (small devices like resistors and integrated
circuits). A further article dealing with the segmentation of SMDs can be found in [4] and
they propose an algorithm which exploits shadows cast by SMDs to distinguish them from
invalid counterparts. The segmentation of Through Hole Components (THCs) is part of [5]
and is achieved by using a combination of RGB images and depth frames from a Microsoft
Kinect sensor. A further study based also on depth frames obtained from the Microsoft
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Kinect sensor and pixel classification can be found in [6]. The studies mentioned here
either focus on the segmentation of one type of component (e.g., SMDs or THCs) or are
designed for inspection tasks. The underlying datasets are based on clean and intact circuit
boards. However, in the recycling sector there are no clean and intact circuit boards. Due
to the processing at the landfill site, the objects are in the form of shredded parts and are
correspondingly dirty and demolished. This fact makes the classification of components
more difficult. Furthermore, these approaches do not cover the separation of different
materials. For example, capacitors mounted on circuit boards differ not only in shape but
also in their material composition. In order to be able to separate successfully in such cases,
an approach based purely on depth information or images cannot be really effective. The
use of physical information, on the other hand, offers much greater potential in terms of
material classification. Hyperspectral Imaging (HSI) technologies enable the acquisition of
physical information and can be easily integrated into sorting processes due to technological
advancements in instrumentation engineering in recent years [7]. As examples, [8,9] use
spectral information for the classification of metals on PCBs. The use of HSI in combination
with RGB images can be found in [10] and propose an object detection approach to detect
recyclable objects and elements on PCBs. The authors used spectral properties of the objects
(integrated circuits, gold connectors and electrolytic capacitors) recorded in the HSI to
localize the objects whereas the spatial properties given by the RGB image are used to
classify the localized objects. However, the results showed that not all components on the
PCBs are detected. As a reason, the authors stated that this can be attributed to the very
small training data set available and the parameters chosen for the prediction process. This
explanation is plausible and describes the generally problem of machine learning methods.
A comparison of some machine learning methods is conducted in [11] and shows that there
is no method that consistently provides the best performance and that the quality of the
prediction result mainly depends on factors such as the availability of training samples,
processing requirements, tuning parameters and speed of the algorithm. In particular, the
selection of training samples presents a problem due to the high variations with regard to
PCBs that are demolished and contaminated. Rule-based approaches are an alternative
to machine learning approaches as they need no prior training. They are based on expert
knowledge and a prior analysis of the data. The acquisition of knowledge enables a better
understanding and allows to structure and simplify a problem. Research papers from the
field of remote sensing, that use the advantage of knowledge can be found in [12–17]. A
comparison of deep learning and a knowledge-based method can be found in [18]. It shows
that a rule-based method can even be better than machine learning-based methods.

The classification of PCBs and the components on it is a difficult task, due to the
complexity of PCBs, both in terms of structure and big variety of electronic components
with small size and wide chemical composition [9]. In this article, we propose a general
approach based on a combination of topological, depth and spatial information obtained
from 3D sensors and physical information received from HSI. For the demonstration of
this general approach, the previously described problem from the field of waste sorting
is addressed. The 3D sensors and also HSI sensors have weaknesses and reach their
limits in certain situations. A structured light scanner, for example, faces difficulties in
detecting transparent objects, whereas HSI sensors are not affected by this. In contrast,
HSI sensors have their limits with black pigmented objects. A well-known problem is the
strong absorption of black colorants such as carbon black. Due to the strong absorption
of light from the UV to the SWIR, there is no reflected light that can be detected by the
sensor and thus no spectral information that can be used for classification [19,20]. The
combination is therefore intended to achieve mutual support among the data to improve
the interpretation and processing. A combination of geometry and spectral data brings
advantages that was shown for example in [21]. The authors used geometry in terms of
inclination angles in combination with spectral data for the detection of disease symptoms
on plants. Another example is given in [22] which aimed to use multispectral LiDAR data
for land cover classification of an urban area.
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The general concept of the proposed method consists of merging the datasets fol-
lowed by extracting features in the 3D and hyperspectral domains. Especially the fusion
of datasets is a challenging task and poses different requirements (e.g., calibration of
line sensors and methods for registration) depending on the sensor technologies used.
Hyperspectral sensors with high spectral and spatial resolution are usually line sensors
and differ in their imaging properties from frame-based sensors. Accordingly, adapted
models are necessary to perform the calibration, which is a required step for the registration
of the datasets. Methodologies for the registration of line scanning HSI sensors and 3D
Laser Scanners in outdoor applications can be found, for example, in [23–25]. The strategy
adopted in this article focuses on a laboratory application and follows a simple registration
concept that can similarly be applied to an industrial production/sorting process.

The basic steps proposed regarding the processing of the combined dataset can be
easily generalizable or extended to other application fields. All objects typically have a
shape and a material composition. This assures a generalization as 3D and HSI are in
principle sensitive for features in these domains. The features obtained are next used as
inputs for a rule-based approach. One of the main advantages of rule-based approaches
is the simplicity. Once the knowledge on which rules are based has been worked out,
conditions can be easily set up. Further advantages are the performance, the ability to
handle redundant and irrelevant attributes and the flexible extensibility of rule sets [26].
Acquiring knowledge can seem effortful, but in view of the resulting advantages, it should
be seen as a clear benefit which allows to structure and simplify problems by using expert
knowledge. The rules used in this article are based on knowledge established for electronic
waste sorting. A use of the procedure for other applications requires an adaptation of the
rules to the respective application based on knowledge from the relevant field.

2. Materials and Methods

As shown in Figure 1, the general workflow of this work can be divided into four main
parts. The data acquisition, the data fusion, the use of 3D data to simplify and structure
the data basis and the final classification based on obtained HSI and 3D features. The
individual parts are described in detail in the following subsections.
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2.1. Data Set Acquisition

The measurement setup shown in Figure 2 consists of two Specim Ltd. (Oulu, Finland)
hyperspectral pushbroom cameras (Specim FX10 and Specim FX17), a 3D scanner, a linear
stage and an illumination unit. This system was chosen for the acquisition of real electronic
waste samples consisting of plastics and PCBs from the landfill. Accordingly, these objects
are damaged and dirty. Special attention was paid to the choice of PCBs with different
mounted electronic components. The required wavelength is limited to the NIR range,
therefore only the Specim FX17, working in the range from 900 nm to 1700 nm (224 bands),
is used for the measurements in this work. Acquired datasets are radiometrically normal-
ized by using dark reference image for dark-current (closed shutter) and a white reference
image to reduce the influence of the intensity variability. For the white calibration a 99%
reflectance tile was used.
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Figure 2. Measuring setup consisting of hyperspectral cameras, linear stage, illumination unit and
3D structured light scanner.

For the acquisition of the geometry, a structured light scanner from GOM GmbH
(Braunschweig, Germany) is used. The Atos Core 500 is a high-resolution optical system
with a maximum resolution of 0.195 mm and a depth accuracy of 0.05 mm. This 3D
scanner consists of two stereoscopic cameras with 5-megapixel resolution and a blue LED
light projector which projects structured light onto the object. The projected light, which
essentially encodes the surface of the object, is captured by the cameras and triangulation
is used to obtain the necessary 3D information.

2.2. Combining Spectral and Spatial Data Sets

The first step of the proposed framework is the fusion of the datasets (shown in
Figure 3) consisting of HSI and 3D point cloud. This is achieved by using tie points. Due to
the technical setup of the sensors (fixed sensors looking vertically downwards), the objects
are successively captured during one measuring process in both hyperspectral as well as
three-dimensional. The transformation parameters are estimated by using tie points that are
existing in both datasets and allow the fusion in x-y plane. Due to the different resolutions
of the datasets, the assignment between 3D point and spectral signature is made pixel by
pixel checking the neighborhood. The result is a 3D point cloud presented in Figure 4
with a spectral signature for each individual 3D point. Even though the sensor technology
presented in Figure 2 would not be readily applicable in an industrial context due to the 3D
sensor technology used, the potential for the overall concept of the measurement system
and fusion strategy for use in industrial practice is given.
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Figure 4. Combined 3D point cloud and HSI. Each 3D point is assigned by a spectrum. In this figure,
the average value over the entire spectrum is shown per pixel.

2.3. Processing of 3D Point Cloud

In these merged data sets the spatial component directly helps to simplify the problem
as we can reduce the data set to regions of interest, such as the objects, and remove useless
regions, such as the background. The second step of the proposed framework consists in
removing the background. In our study case, the background can be easily removed using
the depth information thanks to a plane estimation method. This has several advantages.
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Firstly, the amount of data are reduced, which has a positive effect on the further processing
steps. Secondly, other disturbing effects such as dirt (e.g., on the conveyor belt) and shadow
areas are removed. Areas of shadow in particular can have a negative impact on the
quality of the results. An example for disturbing shadow effects and the influence on the
classification result is shown in Figure 5. Shadow areas occur mainly on the border of 3D
objects and also on the border of 3D components on the top of PCBs. The most disturbing
shadows are on the border of the objects. Shadow areas are generally a problem when
processing datasets as they reduce the reliability and success rate of algorithms for object
recognition, classification and other types of processing. The removal of shadow areas is
therefore an essential step towards improving image quality [27,28] and thus also improve
the base for further analysis steps.
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Figure 5. Influence of shadow on the classification process. Here shadow occurs only on the
neighboring area surrounding the object. (a) Classification of pixels values belonging to the class
PS using spectral data. (b) Classification of pixels values belonging to the class PS after removal of
the background.

Another advantage of adding 3D data is the possibility to partition the dataset by
using cluster methods, which are addressing the shape content of objects. The aim of a
cluster analysis is to find structures in a set of arbitrary data with different properties and
to discover relationships in order to be able to group objects. This involves forming groups
in such a way that the properties of the data within the group or cluster are approximately
identical. A variety of cluster algorithms exists in the state of the art for this purpose. The
task of cluster algorithms is to form clusters within datasets. Clustering methods differ in
their approaches and strategies. This allows the separation of the individual objects in the
dataset. Due to the homogeneous data available in our dataset, a cluster approach based
on Euclidean distance was chosen for the separation of the individual objects. Cluster
methods can be not only used for the individual object’s separation (such as plastics and
PCBs, as shown in Figure 6b), but also can be used for the separation of components on the
boards (as shown in Figure 6c).

2.4. Rules-Based Classification

The third step of the proposed framework consists in defining rules to process 3D data
and spectral data in order to classify individual 3D point clouds.

Based on the existing dataset, it can be stated that the hyperspectral point cloud
contains valuable geometric information that is implicitly represented by the spatial ar-
rangement of the individual 3D point clouds. In addition to the geometric information, the
dataset also contains valuable spectral information to describe the physical property of
the objects.

3D point clouds are a representation of spatial 3D information, which can be described
by geometric characteristics. The derivation of these geometric characteristics is done by
considering the local neighborhood of each 3D point. Based on this neighborhood, invariant
moments can be calculated for each point, representing the geometric properties of local
3D structures [29]. A representation of some 3D features is shown in Figure 7. The 3D
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features tested in this article are nowadays commonly used in lidar data processing. They
are based on normal vectors and eigenvalue-based 3D features like linearity, verticality,
planarity, scattering, omnivariance, anisotropy, eigenentropy and change in curvature [30].
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For the characterization of the spectral components, shape-describing features intro-
duced in [31] are used. Materials can be uniquely identified by their spectral signature.
Changes in material compositions lead to changes in the spectral signature and conse-
quently to local changes in the geometric shape of these spectra. We have shown in [31] that
curvature
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The approach to determine the significant parameters for the description of the spectral
shape is presented in Figure 8. It is based on the computation of extreme values of the
2nd derivative. For a better quantification of absorption peaks, the spectral signatures are
normalized by using Continuum Removal [32,33].
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for shape description. Parameters are the location (min/max), the curvature values at these locations
(red lines) and the direction of curvature value (up for convex and down for concave behavior) [31].

In Figure 9, the normalized spectra and the calculated curvatures for polystyrene
(PS) and polypropylene (PP) are shown, which express a clear difference in the spectral
footprint of both materials. The length of the green and red lines indicates the strength of
the curvature. In order to take only significant curvatures into account, a threshold value
must be used. The red lines represent the significant bands with a curvature value higher
than the defined threshold and are derived on the basis of the curvature points presented
in magenta and red colored dots. The direction of the lines (positive or negative) indicates
the type of curvature behavior (concave and convex curve) and is also an important source
of information to describe the shape of spectral signatures. Building on these extracted
parameters regarding the spectra for each material and the 3D features describing the
geometric domain, a collection of conditions can be used for classification. The combined
use of both domains in particular allows to mutually support the content of each individual
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domain. For example, 3D features are mainly used in rule formation when the spectral
information does not provide enough information (e.g., black objects on PCB). These
include, for example, microchips. If the rules in the spectral domain do not produce any
results, geometric rules are then checked. In the case of microchips, which are geometrically
rectangular and have a planar surface, the rule is defined as follows.

IF (omnivariance > threshold A) AND (change in curvature < threshold B)
THEN class→ rectangular box
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(b) Polypropylene (PP) [31].

A rule formation should follow a logical approach and be based on the characteristics
of the objects. As example, in the case of the microchip, the feature ‘change in curvature’
is used to detect the planar surface of the object. This means that the threshold value
for this characteristic must be set low, because a planar surface has no curvature. The
thresholds used in our approach (threshold A = 10 and threshold B = 0.045) were empirically
determined by investigations based on the underlying dataset. In the case of a different
data basis due to different sensor technology, it would only be necessary to adjust the
thresholds, as the features used reflect the characteristics of the objects.

To better illustrate the rule formation in the spectral domain, we refer to the example
of the spectral curves of PP and PS from Figure 9 and express the resulting rule as shown
in Listing 1.

Listing 1. Shape-based Rule for PS and PP.

IF CV1108 < −0.1 AND
CV1174 < −0.1 AND
CV1608 < −0.1 AND
CV1143 > +0.1 AND
CV1204 > +0.1 AND
CV1677 > +0.1

THEN class→ PS

IF CV1128 < −0.1 AND
CV1342 < −0.1 AND
CV1190 > +0.1 AND
CV1215 > +0.1 AND
CV1387 > +0.1 AND
CV1694 > +0.1

THEN class→ PP

The rule for each material includes a number of conditions. Each of these conditions
is based on the Curvature Value (CV) at a specific band and the sign of the curvature value.
If the sign is negative, the curvature behavior is concave and CV must be smaller than
the defined threshold value. For a convex curvature behavior, the sign is positive, i.e., the
curvature value must be greater than the defined threshold value.
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As mentioned before, for rule formation, mainly the significant bands with high
curvature value are considered (red lines). Each significant band leads to a condition. By
analyzing the spectra beforehand, the number of conditions can be reduced to a minimum
and not all significant curvature values (red lines) have to be taken into account. Therefore,
only six conditions are defined for sample PS in Listing 1, while in Figure 9 a total of seven
red lines are present. An overview of the used spectra for the rule-formation is given in
Figure 10.
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used if the shapes of the spectral curves are all sufficiently different.

3. Results

This section shows the steps of the rule-based classification. For a better understanding,
an overview of the process is shown in Figure 11. It can be understood as an iterative
refinement starting with simple and dominant conditions and continuing in the direction of
more complex and composite conditions. The first step of the classification process is based
on the knowledge about the spectral behavior of plastics, which is significantly different to
those of PCBs. We use this knowledge to separate these two groups and check the average
spectrum for each cluster. Since plastic objects are usually made of one material and not
of a combination of materials as for PCBs (board and different components), the average
spectrum provides a good approach to classify the objects in question (Figure 12). This
procedure not only ensures a clean classification of these objects, but also offers advantages
in terms of performance, as not every single pixel has to be checked.

By assuming that all unclassified objects are objects consisting of composite materials,
the classification of clusters can be refined in the next step. The knowledge about the
objects allows us to adapt our approach to the characteristics of the objects; in this case,
circuit boards. That means, the PCBs are separated into individual parts consisting of
the board (a plane surface) and the individual electronic components on the board (ecob).
The separation between board and components is based on plane estimation [34], while
the components on the board are again processed based on Euclidean distance clustering.
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Next, once again, a rule check of the average spectra for each cluster (board and board
components) is carried out. As a result (see example shown in Figure 13) the areas that
were divided into boards and components can now be subdivided according to their
material properties. In the example dataset, we thus obtain a classification of three different
board types, three different types of capacitors and a connector consisting of the material
polystyrene (PS).
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All other existing components do not provide clean spectra that can be used for
classification, either because of the black coloring (high absorption) or because of the
material composition (metals). However, they are surrounded by detected and classified
elements. This relation can be expressed by geometric and topological features allowing
to further refine the classification. Figure 14 shows an example of results where a total
of four additional groups of components were classified. The four groups include round
capacitors, rectangular planar objects (such as microchips), resistors and other components
(such as potentiometers and connectors). Especially in this case of classification based on
geometric features, it can be seen that the classification of board components is challenging,
particularly when dealing with dirty and damaged elements. Even though most of the
components have been correctly classified, it can be seen, for example, that one of the
connectors has been assigned to the class of radial capacitors (ecob 5). This is due to
geometrical similarities shown in Figure 15.
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Figure 13. Result of classification for PCBs using spectral features (after step 2). Classification of three board types and four
different types of components on board (PS, ecob 1, ecob 2 and ecob 3).

The smaller the objects are, the more important it is to use 3D sensors that allow a
high-resolution detection so that even the smallest objects can still be captured in detail.
In this context, it is also important to mention that the sensors chosen for data acquisition
should always be selected in accordance with the application. Capturing small objects with
a low-resolution 3D scanner will not give satisfactory results. This is also reflected in the
statistics computed for each class shown in Table 1. With decreasing object size, an exact
classification becomes more difficult. For the calculation of the statistics, the underlying
dataset was manually annotated and used for the computation of the confusion matrix.
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The overall statistics for the entire dataset are shown in Table 2. It can be stated that with
an Overall Accuracy (OA) of 98.24%, a satisfactory result is achieved.
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Table 1. Classification accuracies for each class based on 3D and HSI data.

Class OA of Single Error of Single F1-Score Kappa

PA 0.9969 0.0030 0.9975 0.9584
PP 0.9961 0.0380 0.9966 0.8781
PS 0.9861 0.0138 0.9794 0.9723

Board type 1 0.9075 0.0924 0.9327 0.7950
Board type 2 0.9560 0.0439 0.9755 0.9628
Board type 3 0.9689 0.0311 0.9789 0.9325

ecob 1 0.8936 0.1063 0.9240 0.9947
ecob 2 0.7206 0.2793 0.7594 0.9947
ecob 3 0.7764 0.2235 0.7948 0.9970
ecob 4 0.9849 0.0150 0.9094 0.9745
ecob 5 0.8100 0.1899 0.7931 0.9848
ecob 6 0.7114 0.2885 0.7127 0.9890
ecob 7 0.6595 0.3404 0.5831 0.9981

For comparison purposes, a SVM based classification (C-SVC, RBF-Kernel, C: 2048,
gamma: 2.8284), which is one of the most widely used pixel-wise classifiers, was addi-
tionally performed. The SVM method was implemented in MATLAB using the LIBSVM
library [35]. The optimization of the hyperparameters was determined by a 10-fold cross-
validation. For the training data set, 10% of samples of each class were randomly selected.
The main purpose of the comparison is to show, that an approach, combining 3D and
HSI, has advantages in terms of classification. The results of the SVM classification are
also shown in Table 2. Considering the statistics, it is clearly evident that a classification
processing 3D and HSI data outperforms a SVM classification based only on HSI.

Table 2. Classification accuracies for real electronic wastes using (a) Rule-based approach with
combined 3D and HSI dataset; (b) SVM classification (C-SVC, RBF-Kernel, C: 2048, gamma: 2.8284)
with HSI dataset.

Metrics
(a)

Rule-Based
(3D + HSI)

(b)
SVM
(HSI)

Overall Accuracy 0.9824 0.8865
Precision 0.8812 0.7812

Sensitivity 0.8834 0.6576
False Positive Rate 0.0023 0.0124

F1-Score 0.8810 0.6956
Kappa 0.8672 0.2011

4. Discussion

The results presented in Section 3 show significant added value of a combined use
of 3D and HSI for classification of waste PCBs. In order to get the maximum benefit from
such a combination, it is important for the strategic approach to analyze the underlying
data sufficiently. A well-developed knowledge base with regard to the characteristics of
objects helps to improve the results. Especially the addition of the 3D information is helpful
in structuring and simplifying the datasets (background removal, removal of shadows,
separation between objects). Hyperspectral data, on the other hand, help to determine
the type of material and thus refines the classification. Even more important, each of the
very different datasets supports the other and compensates the weaknesses of the other.
Many of the components that are mounted on circuit boards have a black material color.
The use of purely spectral information is not appropriate in these cases due to the high
absorption of light. This is also confirmed by the SVM comparison (Table 2), where only
HSI data were used for classification. A purely 3D-based classification can be successful in
separating objects (e.g., board and components on board), but it would fail, for example, in
differentiating between different board materials or compositions.
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Especially with 3D data, the resolution and accuracy of the dataset used plays a major
role. The higher the resolution, the more accurate the description of very fine, small objects
on the board. We see in our experiments that we reach our limits with objects shown in
Figure 16 and that a clean separation of small elements such as metals (red and blue box),
resistors (green box) and capacitors (yellow box) is not successful. Nevertheless, even if a
distinction between these elements does not seem possible in detail, these elements can be
identified as components of PCBs through the given topological relationships, which could
provide an advantage for further analyses (e.g., determination of different metals).

The classification map shown in Figure 14 is the result of a total of 13 defined rules and
works well for the materials and components in the used dataset. An extension to further
objects and materials needs the exploitation of their characteristics and the definition of
additional rules. This has to be completed carefully in order to avoid conflicting definitions
and needs the existence of spatial and spectral characteristics allowing to differentiate
further object types. However, the iterative strategy going from more dominant to fewer
dominant rules has shown, that even smallest elements can be separated with acceptable
accuracy. This is already a reliable base for further extensions. Nevertheless, it is necessary
to pay attention to correct modelling, and thus it is important to study the spatial and
spectral properties of the objects beforehand and to investigate to what extent the acquired
data can make these properties visible. Generally, when setting up rules, it is important to
avoid overfitting. Thresholds that are overly sensitive can result in incorrect classifications
when applied to new datasets and should therefore be chosen carefully. In addition, the
underlying 3D data quality must be considered when forming rules based on 3D geometry.
As example, in this article the parameters and thresholds for rule formation were chosen
with regard to the used sensor system and the resulting point cloud. In the case of a
different 3D sensor with another resolution, accuracy and noise behavior, it would be
necessary to adjust the parameters.

Another aspect to consider is the performance of the system and the assessment of use
in industrial practice. We are aware that the use in industrial practice poses certain chal-
lenges such as high-speed processing, an appropriate integration of the sensor technology
into the sorting process and also the handling of dust and dirt in an industrial context is
a factor that should not be underestimated. This means that the sensor technology used
and the acquisition and processing strategy must meet these requirements. The approach
proposed in this article has the potential to fulfil these demands, but certain modifications
with regard to the 3D sensor technology are necessary. The strategy of the approach (sen-
sors for acquisition, registration approach and data processing) is general and is mainly
affected by the specifications and the capacity of the senor technology used. The structured
light scanner used in this article is not advisable in the context of a sorting process due
to the needed fast processing speed. However, it has the benefit to produce high quality
3D data, which in turn is advantageous in the context of small objects. The use of such
a sensor system would therefore be recommended in the context of randomized quality
checks where speed is not important.

However, there are alternatives that are suitable for use in production lines [36,37].
The study of [38] investigates the applicability of 3D sensor technologies in the context
of production lines. As a result, four techniques for capturing 3D data in the context of
industrial applications were identified, namely laser triangulation, time-of-flight (ToF),
shape-from-focus (SFF) and stereovision [38]. Mainly laser scanners based on triangulation
are widely used in production lines. Such systems are able to achieve depth resolutions
down to the range of a few micrometers and are a robust and standardized technology that
could also be used in the context of the proposed approach.

The use of hyperspectral sensors in industrial applications is also conceivable and
is particularly widespread in the food industry [39–41]. The Specim FX17 sensor used
was able to detect 670 FPS at full resolution. It is not always necessary to use the full
resolution. By analyzing the data beforehand, spectral ranges or even only a small number
of bands can be used, which ultimately leads to a further increase in the detection rate.
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Important in the context of hyperspectral sensor technology is the illumination unit. This
must be installed in the measurement setup in such a way that the 3D technology used is
not influenced.
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At this point we would also like to briefly discuss the influence of object soiling on the
measurements of the hyperspectral sensors, since in practice it is precisely such objects that
are involved. Dirt on objects influences the reflectance on the surface of the objects. This
inevitably leads to changes and shifts in the spectral signatures as can be seen in Figure 17
for one of the samples in the used dataset. That our proposed approach is robust to such
influences can be seen from the achieved results. This is due to two main facts: First, we
use spectral features that describe the shape of spectral signatures, even if the expression
of absorption or reflectance peaks is low due to the weak reflectance, the shape of the
spectral signature remains the same. Thus, the defined rules based on the shape apply in
both cases. The second point is due to the 3D component. Through the 3D information we
can group components in clusters and for the rule check we refer to the average spectral
signature of this cluster. Thus, the influence of dirty areas is only significant if the object is
completely soiled.
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The processing time of the data is also a factor that needs to be taken into account. The
3D processing and point-by-point checking for conditions using MATLAB on a machine
with an Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz and 16 GB RAM was 110.29 s for
the background removed dataset (752.253 3D points and 224 bands) shown in Figure 4.
For comparison, processing the same dataset (only HSI) on the same machine using SVM
(LIBSVM for MATLAB) requires 2025.07 s.

For a practical application, 110.29 s is considered high. However, in this context it
must also be considered that a full spectral and high-resolution 3D point cloud serves
as the data basis. Optimizations in terms of processing time is conceivable and could be
achieved by reducing the data basis (e.g., reduction of spectral resolution), by using more
powerful hardware and by more efficient programming (e.g., parallel computing).
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5. Conclusions

In this paper, a combined dataset consisting of a 3D point cloud and an HSI was
used to classify different types of materials and objects of electronic waste. In addition
to the classification of different plastic materials, it has been shown that a combination of
geometric and physical information can also help to distinguish components on circuit
boards, such as capacitors, transistors and other small parts on board. Using a rule-based
classification approach leads to satisfying results with an OA of 98.24%. The comparison
with an SVM approach based only on spectral information results in an OA of 88.65% and
confirms that a combined dataset helps to improve the quality of classification.
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