E-Nose and Olfactory Assessment: Teamwork or a Challenge to the Last Data? The Case of Virgin Olive Oil Stability and Shelf Life
Abstract
:1. Introduction
2. Review Methodology
3. Olfactory Determinations for Food Shelf Life Assessment: Principles and Main Issues
- (i).
- At least two conditions have to be addressed for a molecule to be perceived as a smell: the molecule should be volatile enough to evaporate; and the concentration of volatile compounds must exceed the threshold of perception specific for each molecule as a function of operating conditions adopted during tasting. Moreover, depending on its chemical structure, a molecule must show specific solubility to pass through the nasal mucosa (hydrophilic) as well as to bind to the olfactory receptors (hydrophobic) [23].
- (ii).
- Intensity is correlated positively with vapor pressure (i.e., the concentration of volatile compounds in the head space), but negatively with hydrophilicity (water solubility) [25]. Interestingly, odor discrimination seems to work independently of measuring intensity; people who cannot characterize odorant qualities as a consequence of brain lesions maintain their ability to determine odor intensity [23,26,27].
- (iii).
- Limited changes in the chemical structure or functional group of a volatile compound can significantly affect its smell. Thus, a model to predict odor expression from the chemical structure actually cannot be completely defined, even if odorants with the same functional group can often have similar odors [28].
- (iv).
- As the aroma of a mixture is different from the simple sum of its components, the whole aroma of a complex system cannot be predicted starting from the concentrations and proportions of single specific volatile compounds [29,30]. In this context, the interactions among aroma compounds in a mixture can be classified into four types: masking effect, synergistic effect, no effect and additive action [30,31]. Even if compounds showing different structures generally demonstrate masking actions, while molecules with similar aroma and structure appear to be prone to present additive action or synergistic effect, these behaviors cannot be generalized.
- (i).
- Final odor perception be can directly influenced by a lot of external variables other than the chemical composition of molecules, that can affect the relationship between smell and chemical structure; during sniffing, the odor concentration that effectively reaches the nostrils can be affected by nasal flow characteristics [28,32,33]; odor perception can also be affected by pre-receptor events, such as the bond to odorant-binding proteins or the enzymatic conversion of odorants in the nasal mucus (e.g., conversion to acids and alcohols of aldehydes and esters) [28,34,35]. Further, one main issue in the prediction of the final smell expression of a specific olfactory stimulus is that the human olfactory perception is part of a multisensory integration among all the sensorial and social information gathered by our environment, and not a linear analytical process of molecule detection [23].
- (ii).
- Odorants can pass through the nasal passages (so-called orthonasal stimulation) and via the mouth (retronasal stimulation) [24]; nasopharyngeal or nasal mucus differ in composition; thus, aroma perception can significantly differ in orthonasal and retronasal olfaction, because of the different solubility of volatile compounds in the two media [36]. The perception of taste appears affected by odors over the retronasal pathway and vice versa; thus, gustatory and olfactory experiences are generally blended [24,37].
- (iii).
- As the number of odorous molecules that humans are able to distinguish appear to be dramatically higher than the number of olfactory receptors identified till now (from 400,000 to 1 million estimated possible odorant molecules [38] vs. only 396 unique olfactory receptors [39]), the most promising theory to represent the method of odor identification is that a small number of olfactory receptors respond to a great number of odorants in a combinatorial way. According to this view, the receptors can be broadly tuned and respond to many different odorants, being most responsive to structurally similar odorants, or narrowly tuned, responding to a small group of odorants [28,40].
- (iv).
- The polymorphism of olfactory receptors represents the molecular basis of the extreme variability widely detected at genetical and physiological levels in the human olfaction perception for both specific sensitivity and general olfactory acuity, with sensitivity varying by several orders of magnitude between individuals [28,41].
- (v).
- The difficulty called the “tip-of-the-nose phenomenon” [24] suggests that olfaction is often an unconscious process [32], during which humans are able to recognize smells, but they often have problems labeling them linguistically. This is likely the reason why defining smell based on olfactory perception is not intuitive and needs the recall to a visual or tactile aspect [42,43].
- (vi).
- The close anatomic relationships between the systems deployed for olfaction and for emotion [44] account for the important links found between these two functions [45,46,47,48,49]. More than any other sensory modality, olfaction is like emotion in attributing positive (appetitive) or negative (aversive) valence to the environment. To objectively and quantitatively assess the physiological response to olfactory stimulation, a reasonable solution, merging acceptability, affordability and reliability, and providing useful information about the physiological reactions to odorous stimuli, is represented by the assessment of biomedical signals triggered by the activity of the autonomic nervous system (ANS), including electrocardiogram (ECG) and galvanic skin response (GSR), already studied in relation to the olfactory assessment [49,50,51]. Such signals can be acquired in a completely non-invasive manner using wearable sensors, as demonstrated in several works published to date [49,50,51]. Those signals, captured non-invasively via lightweight, affordable devices, can be particularly useful to objectively estimate the degree of emotional response to sensory stimuli in an individual.
4. E-Nose: Principles and Main Agri-Food Applications
5. Case Study: Panel Test and E-Nose for the Determination of VOOs’ Shelf Life
5.1. EVOO Quality and Main Stability Issues
5.2. Virgin Olive Oil Shelf Life Assessment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robertson, G. Food Packaging and Shelf Life; CRC Press: Boca Raton, FL, USA, 2009; pp. 1–16. [Google Scholar] [CrossRef]
- Taglieri, I.; Macaluso, M.; Bianchi, A.; Sanmartin, C.; Quartacci, M.F.; Zinnai, A.; Venturi, F. Overcoming Bread Quality Decay Concerns: Main Issues for Bread Shelf Life as a Function of Biological Leavening Agents and Different Extra Ingredients Used in Formulation. A Review. J. Sci. Food Agric. 2021, 101, 1732–1743. [Google Scholar] [CrossRef]
- Wibowo, S.; Buvé, C.; Hendrickx, M.; van Loey, A.; Grauwet, T. Integrated Science-Based Approach to Study Quality Changes of Shelf-Stable Food Products during Storage: A Proof of Concept on Orange and Mango Juices. Trends Food Sci. Technol. 2018, 73, 76–86. [Google Scholar] [CrossRef]
- Nicoli, M.C. An introduction to food shelf life: Definitions, basic concepts, and regulatory aspects. In Shelf Life Assessment of Food; CRC Press: Boca Raton, FL, USA, 2012; pp. 1–15. ISBN 9781439846032. [Google Scholar]
- Giménez, A.; Ares, F.; Ares, G. Sensory Shelf-Life Estimation: A Review of Current Methodological Approaches. Food Res. Int. 2012, 49, 311–325. [Google Scholar] [CrossRef]
- Calligaris, S.; Manzocco, L.; Anese, M.; Nicoli, M.C. Shelf-Life Assessment of Food Undergoing Oxidation–A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1903–1912. [Google Scholar] [CrossRef] [PubMed]
- Conte, L.; Bendini, A.; Valli, E.; Lucci, P.; Moret, S.; Maquet, A.; Lacoste, F.; Brereton, P.; García-González, D.L.; Moreda, W.; et al. Olive Oil Quality and Authenticity: A Review of Current EU Legislation, Standards, Relevant Methods of Analyses, Their Drawbacks and Recommendations for the Future. Trends Food Sci. Technol. 2019, 105, 483–493. [Google Scholar] [CrossRef]
- Quintanilla-Casas, B.; Marin, M.; Guardiola, F.; Luis García-González, D.; Barbieri, S.; Bendini, A.; Toschi, T.G.; Vichi, S.; Tres, A. Supporting the Sensory Panel to Grade Virgin Olive Oils: An In-House-Validated Screening Tool by Volatile Fingerprinting and Chemometrics. Foods 2020, 9, 1509. [Google Scholar] [CrossRef]
- Meenu, M.; Cai, Q.; Xu, B. A Critical Review on Analytical Techniques to Detect Adulteration of Extra Virgin Olive Oil. Trends Food Sci. Technol. 2019, 91, 391–408. [Google Scholar] [CrossRef]
- Bajoub, A.; Bendini, A.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Olive Oil Authentication: A Comparative Analysis of Regulatory Frameworks with Especial Emphasis on Quality and Authenticity Indices, and Recent Analytical Techniques Developed for Their Assessment. A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 832–857. [Google Scholar] [CrossRef]
- Buratti, S.; Benedetti, S. Cosio An Electronic Nose to Evaluate Olive Oil Oxidation during Storage. Ital. J. Food Sci. 2005, 17, 203–210. [Google Scholar]
- Buratti, S.; Malegori, C.; Benedetti, S.; Oliveri, P.; Giovanelli, G. E-Nose, e-Tongue and e-Eye for Edible Olive Oil Characterization and Shelf Life Assessment: A Powerful Data Fusion Approach. Talanta 2018, 182, 131–141. [Google Scholar] [CrossRef]
- Cano Marchal, P.; Martínez Gila, D.; Gámez García, J.; Gómez Ortega, J. Expert System Based on Computer Vision to Estimate the Content of Impurities in Olive Oil Samples. J. Food Eng. 2013, 119, 220–228. [Google Scholar] [CrossRef]
- Gila, D.M.M.; Sanmartin, C.; Soto, J.N.; Mencarelli, F.; Ortega, J.G.; Gámez García, J. Classification of Olive Fruits and Oils Based on Their Fatty Acid Ethyl Esters Content Using Electronic Nose Technology. J. Food Meas. Charact. 2021, 1–12. [Google Scholar] [CrossRef]
- Yu, P.; Low, M.Y.; Zhou, W. Design of Experiments and Regression Modelling in Food Flavour and Sensory Analysis: A Review. Trends Food Sci. Technol. 2018, 71, 202–215. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Majumdar, G.C.; Goswami, T.K.; Mishra, H.N. Fuzzy Logic (Similarity Analysis) Approach for Sensory Evaluation of Chhana Podo. LWT—Food Sci. Technol. 2013, 53, 204–210. [Google Scholar] [CrossRef]
- Manzocco, L.; Lagazio, C. Coffee Brew Shelf Life Modelling by Integration of Acceptability and Quality Data. Food Qual. Prefer. 2009, 20, 24–29. [Google Scholar] [CrossRef]
- Hough, G. Sensory Shelf Life Estimation of Food Products; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9781420092943. [Google Scholar]
- Ruser, P.; Koeppel, C.J.; Kitzler, H.H.; Hummel, T.; Croy, I. Individual Odor Hedonic Perception Is Coded in Temporal Joint Network Activity. NeuroImage 2021, 229, 117782. [Google Scholar] [CrossRef] [PubMed]
- Schaller, M. The Behavioural Immune System and the Psychology of Human Sociality. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 3418–3426. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, R.J. An Initial Evaluation of the Functions of Human Olfaction. Chem. Senses 2009, 35, 3–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantel, C.; Villebro, F.; Alves dos Reis Benatto, G.; Rajesh Parikh, H.; Wendlandt, S.; Hossain, K.; Poulsen, P.B.; Spataru, S.; Séra, D.; Forchhammer, S. Machine Learning Prediction of Defect Types for Electroluminescence Images of Photovoltaic Panels. In Proceedings of the Applications of Machine Learning, San Diego, CA, USA, 13–14 August 2019; Zelinski, M.E., Taha, T.M., Howe, J., Awwal, A.A., Iftekharuddin, K.M., Eds.; SPIE: San Diego, CA, USA, 2019; 1, p. 364. [Google Scholar]
- Bierling, A.L.; Croy, I.; Hummel, T.; Cuniberti, G.; Croy, A. Olfactory Perception in Relation to the Physicochemical Odor Space. Brain Sci. 2021, 11, 563. [Google Scholar] [CrossRef]
- Auffarth, B. Understanding Smell-The Olfactory Stimulus Problem. Neurosci. Biobehav. Rev. 2013, 37, 1667–1679. [Google Scholar] [CrossRef] [Green Version]
- Keller, A.; Vosshall, L.B. Olfactory Perception of Chemically Diverse Molecules. BMC Neurosci. 2016, 17, 55. [Google Scholar] [CrossRef] [Green Version]
- Eichenbaum, H.; Morton, T.H.; Potter, H.; Corkin, S. Selective Olfactory Deficits in Case H.M. Brain 1983, 106, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Jones-Gotman, M.; Zatorre, R.J. Olfactory Identification Deficits in Patients with Focal Cerebral Excision. Neuropsychologia 1988, 26, 387–400. [Google Scholar] [CrossRef]
- Genva, M.; Kemene, T.K.; Deleu, M.; Lins, L.; Fauconnier, M.L. Is It Possible to Predict the Odor of a Molecule on the Basis of Its Structure? Int. J. Mol. Sci. 2019, 20, 3018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, Y.; Yao, Z.; Xiao, Z.; Zhu, G.; Zhu, J.; Chen, J. Sensory Evaluation of the Synergism among Ester Odorants in Light Aroma-Type Liquor by Odor Threshold, Aroma Intensity and Flash GC Electronic Nose. Food Res. Int. 2018, 113, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.C.; Chen, F.; Wang, L.Y.; Niu, Y.W.; Xiao, Z.B. Evaluation of the Synergism among Volatile Compounds in Oolong Tea Infusion by Odour Threshold with Sensory Analysis and E-Nose. Food Chem. 2017, 221, 1484–1490. [Google Scholar] [CrossRef] [PubMed]
- Saison, D.; de Schutter, D.P.; Uyttenhove, B.; Delvaux, F.; Delvaux, F.R. Contribution of Staling Compounds to the Aged Flavour of Lager Beer by Studying Their Flavour Thresholds. Food Chem. 2009, 114, 1206–1215. [Google Scholar] [CrossRef]
- Sela, L.; Sobel, N. Human Olfaction: A Constant State of Change-Blindness. Exp. Brain Res. 2010, 205, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Jordan, R.; Kollo, M.; Schaefer, A.T. Sniffing Fast: Paradoxical Effects on Odor Concentration Discrimination at the Levels of Olfactory Bulb Output and Behavior. Eneuro 2018, 5, ENEURO.0148-18.2018. [Google Scholar] [CrossRef] [Green Version]
- Nagashima, A.; Touhara, K. Enzymatic Conversion of Odorants in Nasal Mucus Affects Olfactory Glomerular Activation Patterns and Odor Perception. J. Neurosci. 2010, 30, 16391–16398. [Google Scholar] [CrossRef] [PubMed]
- Thiebaud, N.; Veloso Da Silva, S.; Jakob, I.; Sicard, G.; Chevalier, J.; Ménétrier, F.; Berdeaux, O.; Artur, Y.; Heydel, J.-M.; le Bon, A.-M. Odorant Metabolism Catalyzed by Olfactory Mucosal Enzymes Influences Peripheral Olfactory Responses in Rats. PLoS ONE 2013, 8, e59547. [Google Scholar] [CrossRef] [Green Version]
- Wilkes, F.J.; Laing, D.G.; Hutchinson, I.; Jinks, A.L.; Monteleone, E. Temporal Processing of Olfactory Stimuli during Retronasal Perception. Behav. Brain Res. 2009, 200, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Green, B.G.; Nachtigal, D.; Hammond, S.; Lim, J. Enhancement of Retronasal Odors by Taste. Chem. Senses 2012, 37, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Grabe, V.; Sachse, S. Fundamental Principles of the Olfactory Code. BioSystems 2018, 164, 94–101. [Google Scholar] [CrossRef]
- Block, E. Molecular Basis of Mammalian Odor Discrimination: A Status Report. J. Agric. Food Chem. 2018, 66, 13346–13366. [Google Scholar] [CrossRef] [PubMed]
- Nara, K.; Saraiva, L.R.; Ye, X.; Buck, L.B. A Large-Scale Analysis of Odor Coding in the Olfactory Epithelium. J. Neurosci. 2011, 31, 9179–9191. [Google Scholar] [CrossRef] [Green Version]
- Menashe, I.; Abaffy, T.; Hasin, Y.; Goshen, S.; Yahalom, V.; Luetje, C.W.; Lancet, D. Genetic Elucidation of Human Hyperosmia to Isovaleric Acid. PLoS Biol. 2007, 5, e284. [Google Scholar] [CrossRef]
- Yeshurun, Y.; Sobel, N. An Odor Is Not Worth a Thousand Words: From Multidimensional Odors to Unidimensional Odor Objects. Annu. Rev. Psychol. 2010, 61, 219–241. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, R.J.; Wilson, D.A. Odour Perception: An Object-Recognition Approach. Perception 2007, 36, 1821–1833. [Google Scholar] [CrossRef]
- Soudry, Y.; Lemogne, C.; Malinvaud, D.; Consoli, S.M.; Bonfils, P. Olfactory System and Emotion: Common Substrates. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2011, 128, 18–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Luca, R.; Botelho, D. The Unconscious Perception of Smells as a Driver of Consumer Responses: A Framework Integrating the Emotion-Cognition Approach to Scent Marketing. AMS Rev. 2019, 11, 145–161. [Google Scholar] [CrossRef]
- Álvarez-Pato, V.M.; Sánchez, C.N.; Domínguez-Soberanes, J.; Méndoza-Pérez, D.E.; Velázquez, R. A Multisensor Data Fusion Approach for Predicting Consumer Acceptance of Food Products. Foods 2020, 9, 774. [Google Scholar] [CrossRef]
- Morquecho-Campos, P.; de Graaf, K.; Boesveldt, S. Smelling Our Appetite? The Influence of Food Odors on Congruent Appetite, Food Preferences and Intake. Food Qual. Prefer. 2020, 85, 103959. [Google Scholar] [CrossRef]
- Baccarani, A.; Brand, G.; Dacremont, C.; Valentin, D.; Brochard, R. The Influence of Stimulus Concentration and Odor Intensity on Relaxing and Stimulating Perceived Properties of Odors. Food Qual. Prefer. 2021, 87, 104030. [Google Scholar] [CrossRef]
- Tonacci, A.; Billeci, L.; Di Mambro, I.; Marangoni, R.; Sanmartin, C.; Venturi, F. Wearable Sensors for Assessing the Role of Olfactory Training on the Autonomic Response to Olfactory Stimulation. Sensors 2021, 21, 770. [Google Scholar] [CrossRef]
- Tonacci, A.; Billeci, L.; Burrai, E.; Sansone, F.; Conte, R. Comparative Evaluation of the Autonomic Response to Cognitive and Sensory Stimulations through Wearable Sensors. Sensors 2019, 19, 4661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonacci, A.; Di Monte, J.; Meucci, M.B.; Sansone, F.; Pala, A.P.; Billeci, L.; Conte, R. Wearable Sensors to Characterize the Autonomic Nervous System Correlates of Food-Like Odors Perception: A Pilot Study. Electronics 2019, 8, 1481. [Google Scholar] [CrossRef] [Green Version]
- Jiarpinijnun, A.; Osako, K.; Siripatrawan, U. Visualization of Volatomic Profiles for Early Detection of Fungal Infection on Storage Jasmine Brown Rice Using Electronic Nose Coupled with Chemometrics. Meas. J. Int. Meas. Confed. 2020, 157, 107561. [Google Scholar] [CrossRef]
- Aouadi, B.; Zaukuu, J.-L.Z.; Vitális, F.; Bodor, Z.; Fehér, O.; Gillay, Z.; Bazar, G.; Kovacs, Z. Historical Evolution and Food Control Achievements of Near Infrared Spectroscopy, Electronic Nose, and Electronic Tongue—Critical Overview. Sensors 2020, 20, 5479. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhang, M.; Adhikari, B. Advances of Electronic Nose and Its Application in Fresh Foods: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2700–2710. [Google Scholar] [CrossRef]
- Long, Q.; Li, Z.; Han, B.; Gholam Hosseini, H.; Zhou, H.; Wang, S.; Luo, D. Discrimination of Two Cultivars of Alpinia Officinarum Hance Using an Electronic Nose and Gas Chromatography-Mass Spectrometry Coupled with Chemometrics. Sensors 2019, 19, 572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asikin, Y.; Kusumiyati; Shikanai, T.; Wada, K. Volatile Aroma Components and MS-Based Electronic Nose Profiles of Dogfruit (Pithecellobium Jiringa) and Stink Bean (Parkia Speciosa). J. Adv. Res. 2018, 9, 79–85. [Google Scholar] [CrossRef]
- Trirongjitmoah, S.; Juengmunkong, Z.; Srikulnath, K.; Somboon, P. Classification of Garlic Cultivars Using an Electronic Nose. Comput. Electron. Agric. 2015, 113, 148–153. [Google Scholar] [CrossRef]
- Nour, F.G.; Chen, Z.; Maqbool, M. Monitoring Mango Fruit Ripening after Harvest Using Electronic Nose (ZNoseTM) Technique. In Proceedings of the International Conference on Food Engineering and Biotechnology, Penang, Malaysia, 12 March 2014; International Association of Computer Science and Information Technology; Information Technology Press: Cairo, Egypt, 2014; 32, pp. 12–16. [Google Scholar]
- Liu, H.; Zeng, K.F.; Wang, H.Q.; Wu, S.H.; Tan, L.H. Studies on the Chemical and Flavor Qualities of White Pepper (Piper Nigrum L.) Derived from Five New Genotypes. Eur. Food Res. Technol. 2013, 237, 245–251. [Google Scholar] [CrossRef]
- Lebrun, M.; Plotto, A.; Goodner, K.; Ducamp, M.N.; Baldwin, E. Discrimination of Mango Fruit Maturity by Volatiles Using the Electronic Nose and Gas Chromatography. Postharvest Biol. Technol. 2008, 48, 122–131. [Google Scholar] [CrossRef]
- Gómez, A.H.; Wang, J.; Hu, G.; Pereira, A.G. Monitoring Storage Shelf Life of Tomato Using Electronic Nose Technique. J. Food Eng. 2008, 85, 625–631. [Google Scholar] [CrossRef]
- Solis-Solis, H.M.; Calderon-Santoyo, M.; Gutierrez-Martinez, P.; Schorr-Galindo, S.; Ragazzo-Sanchez, J.A. Discrimination of Eight Varieties of Apricot (Prunus Armeniaca) by Electronic Nose, LLE and SPME Using GC-MS and Multivariate Analysis. Sens. Actuators B Chem. 2007, 125, 415–421. [Google Scholar] [CrossRef]
- Tan, J.; Xu, J. Applications of Electronic Nose (e-Nose) and Electronic Tongue (e-Tongue) in Food Quality-Related Properties Determination: A Review. Artif. Intell. Agric. 2020, 4, 104–115. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, M.; Guo, Z. Discrimination of Fresh-Cut Broccoli Freshness by Volatiles Using Electronic Nose and Gas Chromatography-Mass Spectrometry. Postharvest Biol. Technol. 2019, 148, 168–175. [Google Scholar] [CrossRef]
- Ravi, R.; Taheri, A.; Khandekar, D.; Millas, R. Rapid Profiling of Soybean Aromatic Compounds Using Electronic Nose. Biosensors 2019, 9, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.; Lü, E.; Lu, H.; Zhou, Z.; Wang, Y.; Yang, J.; Wang, Y. Quality Detection of Litchi Stored in Different Environments Using an Electronic Nose. Sensors 2016, 16, 852. [Google Scholar] [CrossRef] [Green Version]
- Rajkumar, P.; Rani, C.I.; Wang, N.; Raghavan, G.S.V. Classification of Banana Fruit Maturity Using ZNose. CIGR J. 2015, 17, 1–13. [Google Scholar]
- Torri, L.; Sinelli, N.; Limbo, S. Shelf Life Evaluation of Fresh-Cut Pineapple by Using an Electronic Nose. Postharvest Biol. Technol. 2010, 56, 239–245. [Google Scholar] [CrossRef]
- Defilippi, B.G.; Juan, W.S.; Valdés, H.; Moya-León, M.A.; Infante, R.; Campos-Vargas, R. The Aroma Development during Storage of Castlebrite Apricots as Evaluated by Gas Chromatography, Electronic Nose, and Sensory Analysis. Postharvest Biol. Technol. 2009, 51, 212–219. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y. Electronic-Nose Technique: Potential for Monitoring Maturity and Shelf Life of Tomatoes. N. Z. J. Agric. Res. 2007, 50, 1219–1228. [Google Scholar] [CrossRef]
- Di Natale, C.; Macagnano, A.; Martinelli, E.; Paolesse, R.; Proietti, E.; D’Amico, A. The Evaluation of Quality of Post-Harvest Oranges and Apples by Means of an Electronic Nose. Sens. Actuators B Chem. 2001, 78, 26–31. [Google Scholar] [CrossRef]
- Gardner, J.W.; Shurmer, H.V.; Tan, T.T. Application of an Electronic Nose to the Discrimination of Coffees. Sens. Actuators B Chem. 1992, 6, 71–75. [Google Scholar] [CrossRef]
- Wen, T.; Zheng, L.; Dong, S.; Gong, Z.; Sang, M.; Long, X.; Luo, M.; Peng, H. Rapid Detection and Classification of Citrus Fruits Infestation by Bactrocera Dorsalis (Hendel) Based on Electronic Nose. Postharvest Biol. Technol. 2019, 147, 156–165. [Google Scholar] [CrossRef]
- Ezhilan, M.; Nesakumar, N.; Jayanth Babu, K.; Srinandan, C.S.; Rayappan, J.B.B. An Electronic Nose for Royal Delicious Apple Quality Assessment—A Tri-Layer Approach. Food Res. Int. 2018, 109, 44–51. [Google Scholar] [CrossRef]
- Huang, L.; Meng, L.; Zhu, N.; Wu, D. A Primary Study on Forecasting the Days before Decay of Peach Fruit Using Near-Infrared Spectroscopy and Electronic Nose Techniques. Postharvest Biol. Technol. 2017, 133, 104–112. [Google Scholar] [CrossRef]
- Li, C.; Krewer, G.W.; Ji, P.; Scherm, H.; Kays, S.J. Gas Sensor Array for Blueberry Fruit Disease Detection and Classification. Postharvest Biol. Technol. 2010, 55, 144–149. [Google Scholar] [CrossRef]
- Concina, I.; Falasconi, M.; Gobbi, E.; Bianchi, F.; Musci, M.; Mattarozzi, M.; Pardo, M.; Mangia, A.; Careri, M.; Sberveglieri, G. Early Detection of Microbial Contamination in Processed Tomatoes by Electronic Nose. Food Control 2009, 20, 873–880. [Google Scholar] [CrossRef]
- Li, C.; Heinemann, P.; Sherry, R. Neural Network and Bayesian Network Fusion Models to Fuse Electronic Nose and Surface Acoustic Wave Sensor Data for Apple Defect Detection. Sens. Actuators B Chem. 2007, 125, 301–310. [Google Scholar] [CrossRef]
- Antolini, A.; Forniti, R.; Modesti, M.; Bellincontro, A.; Catelli, C.; Mencarelli, F. First Application of Ozone Postharvest Fumigation to Remove Smoke Taint from Grapes. Ozone Sci. Eng. 2021, 43, 254–262. [Google Scholar] [CrossRef]
- García-Martínez, T.; Bellincontro, A.; de Lerma, M.D.L.N.L.; Peinado, R.A.; Mauricio, J.C.; Mencarelli, F.; Moreno, J.J. Discrimination of Sweet Wines Partially Fermented by Two Osmo-Ethanol-Tolerant Yeasts by Gas Chromatographic Analysis and Electronic Nose. Food Chem. 2011, 127, 1391–1396. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.P.; Lozano, J.; Aleixandre, M.; Arroyo, T.; Cabellos, J.M.; Gil, M.; Horrillo, M.D.C. Threshold Detection of Aromatic Compounds in Wine with an Electronic Nose and a Human Sensory Panel. Talanta 2010, 80, 1899–1906. [Google Scholar] [CrossRef] [PubMed]
- Santonico, M.; Bellincontro, A.; de Santis, D.; di Natale, C.; Mencarelli, F. Electronic Nose to Study Postharvest Dehydration of Wine Grapes. Food Chem. 2010, 121, 789–796. [Google Scholar] [CrossRef]
- Vera, L.; Mestres, M.; Boqué, R.; Busto, O.; Guasch, J. Use of Synthetic Wine for Models Transfer in Wine Analysis by HS-MS e-Nose. Sens. Actuators B: Chem. 2010, 143, 689–695. [Google Scholar] [CrossRef]
- Cynkar, W.; Dambergs, R.; Smith, P.; Cozzolino, D. Classification of Tempranillo Wines According to Geographic Origin: Combination of Mass Spectrometry Based Electronic Nose and Chemometrics. Anal. Chim. Acta 2010, 660, 227–231. [Google Scholar] [CrossRef]
- Berna, A.Z.; Trowell, S.; Clifford, D.; Cynkar, W.; Cozzolino, D. Geographical Origin of Sauvignon Blanc Wines Predicted by Mass Spectrometry and Metal Oxide Based Electronic Nose. Anal. Chim. Acta 2009, 648, 146–152. [Google Scholar] [CrossRef]
- Ragazzo-Sanchez, J.A.; Chalier, P.; Chevalier-Lucia, D.; Calderon-Santoyo, M.; Ghommidh, C. Off-Flavours Detection in Alcoholic Beverages by Electronic Nose Coupled to GC. Sens. Actuators B Chem. 2009, 140, 29–34. [Google Scholar] [CrossRef]
- Lozano, J.; Santos, J.P.; Carmen Horrillo, M. Enrichment Sampling Methods for Wine Discrimination with Gas Sensors. J. Food Compos. Anal. 2008, 21, 716–723. [Google Scholar] [CrossRef]
- Mckellar, R.C.; Rupasinghe, V.H.; Lu, X.; Knight, K.P. The Electronic Nose as a Tool for the Classification of Fruit and Grape Wines from Different Ontario Wineries. J. Sci. Food Agric. J. Sci. Food Agric. 2005, 85, 2391–2396. [Google Scholar] [CrossRef]
- Pinheiro, C.; Rodrigues, C.M.; Scha, T.; Crespo, G. Monitoring the Aroma Production During Wine±Must Fermentation with an Electronic Nose. Biotechnol. Bioeng. 2002, 77, 632–640. [Google Scholar] [CrossRef]
- Peris, M.; Escuder-Gilabert, L. On-LineMonitoring of Food Fermentation Processes Using Electronic Noses and Electronic Tongues: A Review. Anal. Chim. Acta 2013, 804, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, N.; Kashiwagi, A. Prediction of Specific Odor Markers in Oil from Olive Fruit Infested with Olive Scale Using an Electronic Nose. In Proceedings of the 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Tokyo, Japan, 26–29 May 2019; ISBN 9781538683279. [Google Scholar]
- Xu, L.; Yu, X.; Liu, L.; Zhang, R. A Novel Method for Qualitative Analysis of Edible Oil Oxidation Using an Electronic Nose. Food Chem. 2016, 202, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Bedia, M.; Bañón, S. Relationship between Flavour Deterioration and the Volatile Compound Profile of Semi-Ripened Sausage. Meat Sci. 2013, 93, 614–620. [Google Scholar] [CrossRef]
- Valdés García, A.; Sánchez Romero, R.; Juan Polo, A.; Prats Moya, S.; Pérez Maestre, S.E.; Beltrán Sanahuja, A. Volatile Profile of Nuts, Key Odorants and Analytical Methods for Quantification. Foods 2021, 10, 1611. [Google Scholar] [CrossRef]
- Garcia-Oliveira, P.; Jimenez-Lopez, C.; Lourenço-Lopes, C.; Chamorro, F.; Pereira, A.G.; Carrera-Casais, A.; Fraga-Corral, M.; Carpena, M.; Simal-Gandara, J.; Prieto, M.A. Evolution of Flavors in Extra Virgin Olive Oil Shelf-Life. Antioxidants 2021, 10, 368. [Google Scholar] [CrossRef]
- di Stefano, V. Extra-virgin olive oils storage: Effect on constituents of biological significance. In Olives and Olive Oil in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Eds.; Elsevier: Chennai, India, 2021; pp. 291–297. [Google Scholar]
- Sanmartin, C.; Venturi, F.; Macaluso, M.; Nari, A.; Quartacci, M.F.; Sgherri, C.; Flamini, G.; Taglieri, I.; Ascrizzi, R.; Andrich, G.; et al. Preliminary Results About the Use of Argon and Carbon Dioxide in the Extra Virgin Olive Oil (EVOO) Storage to Extend Oil Shelf Life: Chemical and Sensorial Point of View. Eur. J. Lipid Sci. Technol. 2018, 120, 1800156. [Google Scholar] [CrossRef]
- Sanmartin, C.; Venturi, F.; Sgherri, C.; Nari, A.; Macaluso, M.; Flamini, G.; Quartacci, M.F.; Taglieri, I.; Andrich, G.; Zinnai, A. The Effects of Packaging and Storage Temperature on the Shelf-Life of Extra Virgin Olive Oil. Heliyon 2018, 4, e00888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinnai, A.; Venturi, F.; Quartacci, M.F.; Sanmartin, C.; Favati, F.; Andrich, G. Solid Carbon Dioxide to Promote the Extraction of Extra-Virgin Olive Oil. Grasas Y Aceites 2016, 67, e121. [Google Scholar] [CrossRef] [Green Version]
- Sanmartin, C.; Taglieri, I.; Macaluso, M.; Sgherri, C.; Ascrizzi, R.; Flamini, G.; Venturi, F.; Quartacci, M.F.; Luro, F.; Curk, F.; et al. Cold-Pressing Olive Oil in the Presence of Cryomacerated Leaves of Olea or Citrus: Nutraceutical and Sensorial Features. Molecules 2019, 24, 2625. [Google Scholar] [CrossRef] [Green Version]
- Ascrizzi, R.; Taglieri, I.; Sgherri, C.; Flamini, G.; Macaluso, M.; Sanmartin, C.; Venturi, F.; Quartacci, M.F.; Pistelli, L.; Zinnai, A. Nutraceutical Oils Produced by Olives and Citrus Peel of Tuscany Varieties as Sources of Functional Ingredients. Molecules 2019, 24, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariotti, M.; Peri, C. The composition and nutritional properties of extra-virgin olive oil. In The Extra-Virgin Olive Oil Handbook; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 21–34. ISBN 9781118460412. [Google Scholar]
- Flori, L.; Donnini, S.; Calderone, V.; Zinnai, A.; Taglieri, I.; Venturi, F.; Testai, L.; Lorenzo, F.; Sandra, D.; Vincenzo, C.; et al. The Nutraceutical Value of Olive Oil and Its Bioactive Constituents on the Cardiovascular System. Focusing on Main Strategies to Slow Down Its Quality Decay during Production and Storage. Nutrients 2019, 11, 1962. [Google Scholar] [CrossRef] [Green Version]
- Flori, L.; Macaluso, M.; Taglieri, I.; Sanmartin, C.; Sgherri, C.; de Leo, M.; Ciccone, V.; Donnini, S.; Venturi, F.; Pistelli, L.; et al. Development of Fortified Citrus Olive Oils: From Their Production to Their Nutraceutical Properties on the Cardiovascular System. Nutrients 2020, 12, 1557. [Google Scholar] [CrossRef]
- Genovese, A.; Caporaso, N.; Sacchi, R. Flavor Chemistry of Virgin Olive Oil: An Overview. Appl. Sci. 2021, 11, 1639. [Google Scholar] [CrossRef]
- Olias, J.M.; Perez, A.G.; Rios, J.J.; Sanz, L.C. Aroma of Virgin Olive Oil: Biogenesis of the “Green” Odor Notes. J. Agric. Food Chem. 1993, 41, 2368–2373. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.C. Shelf Life of Extra Virgin Olive Oil and Its Prediction Models. J. Food Qual. 2018, 2018, 1639260. [Google Scholar] [CrossRef] [Green Version]
- Abbadi, J.; Afaneh, I.; Ayyad, Z.; Al-Rimawi, F.; Sultan, W.; Kanaan, K. Evaluation of the Effect of Packaging Materials and Storage Temperatures on Quality Degradation of Extra Virgin Olive Oil from Olives Grown in Palestine. Am. J. Food Sci. Technol. 2014, 2, 162–174. [Google Scholar] [CrossRef] [Green Version]
- Angerosa, F.; Basti, C.; Vito, R. Virgin Olive Oil Volatile Compounds from Lipoxygenase Pathway and Characterization of Some Italian Cultivars. J. Agric. food Chem. 1999, 47, 826–839. [Google Scholar] [CrossRef]
- Caponio, F.; Bilancia, M.T.; Pasqualone, A.; Sikorska, E.; Gomes, T. Influence of the Exposure to Light on Extra Virgin Olive Oil Quality during Storage. Eur. Food Res. Technol. = Z. Lebensm. -Unters. -Forschung. A 2005, 221, 92–98. [Google Scholar] [CrossRef]
- Kanavouras, A.; Hernandez-Munoz, P.; Coutelieris, F.A. Food Reviews International Packaging of Olive Oil: Quality Issues and Shelf Life Predictions. Food Rev. Int. 2007, 22, 381–404. [Google Scholar] [CrossRef]
- Lanza, B.; Di Serio, M.G.; Giansante, L.; Di Loreto, G.; Di Giacinto, L. Effect of Shelf Conditions on the Phenolic Fraction and Oxidation Indices of Monovarietal Extra Virgin Olive Oil from Cv. ‘Taggiasca’. Acta Aliment. 2015, 44, 585–592. [Google Scholar] [CrossRef] [Green Version]
- Pristouri, G.; Badeka, A.; Kontominas, M.G. Effect of Packaging Material Headspace, Oxygen and Light Transmission, Temperature and Storage Time on Quality Characteristics of Extra Virgin Olive Oil. Food Control 2010, 21, 412–418. [Google Scholar] [CrossRef]
- Peri, C. Extra-virgin olive oil storage and handling. In The Extra-Virgin Olive Oil Handbook; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 165–178. ISBN 9781118460412. [Google Scholar]
- Kishimoto, N. Evaluation of Photooxidation of Olive Oil by Determining the Concentration of Hexanal as an Oxidative Marker Using an Electronic Nose. Chem. Eng. Trans. 2021, 85, 181–186. [Google Scholar] [CrossRef]
- Morelló, J.-R.; Motilva, M.-J.; Tovar, M.-J.; Romero, M.-P. Changes in Commercial Virgin Olive Oil (Cv Arbequina) during Storage, with Special Emphasis on the Phenolic Fraction. Food Chem. 2004, 85, 357–364. [Google Scholar] [CrossRef]
- Peris, M.; Escuder-Gilabert, L. Electronic Noses and Tongues to Assess Food Authenticity and Adulteration. Trends Food Sci. Technol. 2016, 58, 40–54. [Google Scholar] [CrossRef] [Green Version]
- Bertuccioli, M.; Monteleone, E. The sensory quality of extra-virgin olive oil. In The Extra-Virgin Olive Oil Handbook; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 35–58. ISBN 9781118460412. [Google Scholar]
- Auvray, M.; Spence, C. The Multisensory Perception of Flavor. Conscious. Cogn. 2008, 17, 1016–1031. [Google Scholar] [CrossRef] [PubMed]
- Kemp, S.E.; Hort, J.; Hollowood, T. Descriptive Analysis in Sensory Evaluation; Kemp, S.E., Hort, J., Hollowood, T., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2018; ISBN 9781118991657. [Google Scholar]
- Gerhardt, N.; Schwolow, S.; Rohn, S.; Pérez-Cacho, P.R.; Galán-Soldevilla, H.; Arce, L.; Weller, P. Quality Assessment of Olive Oils Based on Temperature-Ramped HS-GC-IMS and Sensory Evaluation: Comparison of Different Processing Approaches by LDA, KNN, and SVM. Food Chem. 2019, 278, 720–728. [Google Scholar] [CrossRef]
- Romero, I.; García-González, D.L.; Aparicio-Ruiz, R.; Morales, M.T. Validation of SPME–GCMS Method for the Analysis of Virgin Olive Oil Volatiles Responsible for Sensory Defects. Talanta 2015, 134, 394–401. [Google Scholar] [CrossRef]
- Melucci, D.; Bendini, A.; Tesini, F.; Barbieri, S.; Zappi, A.; Vichi, S.; Conte, L.; Toschi, T.G. Rapid Direct Analysis to Discriminate Geographic Origin of Extra Virgin Olive Oils by Flash Gas Chromatography Electronic Nose and Chemometrics. Food Chem. 2016, 204, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Escuderos, M.E.; Sánchez, S.; Jiménez, A. Virgin Olive Oil Sensory Evaluation by an Artificial Olfactory System, Based on Quartz Crystal Microbalance (QCM) Sensors. Sens. Actuators B Chem. 2010, 147, 159–164. [Google Scholar] [CrossRef]
- González Martín, Y.; Luis Pérez Pavón, J.; Moreno Cordero, B.; García Pinto, C. Classification of Vegetable Oils by Linear Discriminant Analysis of Electronic Nose Data. Anal. Chim. Acta 1999, 384, 83–94. [Google Scholar] [CrossRef]
- James, D.; Scott, S.M.; O’Hare, W.T.; Ali, Z.; Rowell, F.J. Classification of Fresh Edible Oils Using a Coated Piezoelectric Sensor Array-Based Electronic Nose with Soft Computing Approach for Pattern Recognition. Trans. Inst. Meas. Control 2004, 26, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Guadarrama, A.; Rodríguez-Méndez, M.L.; Sanz, C.; Ríos, J.L.; de Saja, J.A. Electronic Nose Based on Conducting Polymers for the Quality Control of the Olive Oil Aroma—Discrimination of Quality, Variety of Olive and Geographic Origin. Anal. Chim. Acta 2001, 432, 283–292. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, S.; Liu, Y.; Song, H. Comparison of Flavour Fingerprint, Electronic Nose and Multivariate Analysis for Discrimination of Extra Virgin Olive Oils. R. Soc. Open Sci. 2019, 6, 190002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aparicio, R.; Rocha, S.M.; Delgadillo, I.; Morales, M.T. Detection of Rancid Defect in Virgin Olive Oil by the Electronic Nose. J. Agric. Food Chem. 2000, 48, 853–860. [Google Scholar] [CrossRef]
- Stella, R.; Barisci, J.N.; Serra, G.; Wallace, G.G.; de Rossi, D. Characterisation of Olive Oil by an Electronic Nose Based on Conducting Polymer Sensors. Sens. Actuators B Chem. 2000, 63, 1–9. [Google Scholar] [CrossRef]
- Lerma-García, M.J.; Cerretani, L.; Cevoli, C.; Simó-Alfonso, E.F.; Bendini, A.; Toschi, T.G. Use of Electronic Nose to Determine Defect Percentage in Oils. Comparison with Sensory Panel Results. Sens. Actuators B Chem. 2010, 147, 283–289. [Google Scholar] [CrossRef]
- Battimo, I.; Savarese, M.; Parisini, C.; Malagrinò, G.; Paduano, A.; Marco, E.D.; Sacchi, R. Rancidity Evaluation and Shelf-Life Monitoring of Virgin Olive Oil by Electronic-Nose. Ital. J. Food Sci. 2006, 18, 278–287. [Google Scholar]
- Marchal, P.C.; Sanmartin, C.; Martínez, S.S.; Ortega, J.G.; Mencarelli, F.; García, J.G. Prediction of Fruity Aroma Intensity and Defect Presence in Virgin Olive Oil Using an Electronic Nose. Sensors 2021, 21, 2298. [Google Scholar] [CrossRef] [PubMed]
- Cosio, M.S.; Ballabio, D.; Benedetti, S.; Gigliotti, C. Evaluation of Different Storage Conditions of Extra Virgin Olive Oils with an Innovative Recognition Tool Built by Means of Electronic Nose and Electronic Tongue. Food Chem. 2007, 101, 485–491. [Google Scholar] [CrossRef]
- Apetrei, C.; Apetrei, I.M.; Villanueva, S.; de Saja, J.A.; Gutierrez-Rosales, F.; Rodriguez-Mendez, M.L. Combination of an E-Nose, an e-Tongue and an e-Eye for the Characterisation of Olive Oils with Different Degree of Bitterness. Anal. Chim. Acta 2010, 663, 91–97. [Google Scholar] [CrossRef]
- di Natale, C.; Paolesse, R.; D’Amico, A. Food and Beverage Quality Assurance. In Handbook of Machine Olfaction; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2004; pp. 505–524. [Google Scholar]
- Kiselev, I.; Sysoev, V.; Kaikov, I.; Koronczi, I.; Tegin, R.A.A.; Smanalieva, J.; Sommer, M.; Ilicali, C.; Hauptmannl, M. On the Temporal Stability of Analyte Recognition with an E-Nose Based on a Metal Oxide Sensor Array in Practical Applications. Sensors 2018, 18, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Category | Application | Sensor Arrays | Chemometrics Approach | Classical Methods for Comparison | Reference |
---|---|---|---|---|---|
Discrimination of variety and ripening stage | Discrimination of two varieties of galangal (Alpinia officinarum) | MOS | PCA | GC-MS | [55] |
Dogfruit (Pithecellobium jiringa) and stink bean (Parkia speciosa) ripening stages | Chemical sensors | PCA, HCA | GC-FID | [56] | |
Discrimination of three varieties of garlic (Allium sativum L.) | MOS | PCA | GC-MS | [57] | |
Discrimination between mango (cv Chokanan) ripening stages | MS based (piezoelectric quartz crystal) | PCA, HCA | GC-FID | [58] | |
Identification of five Piper nigrum L. genotypes | MOS | PCA | HS-SPME GC-MS Sensory analysis | [59] | |
Identification of three mango varieties (Manguifera indica L.) and ripening stage | MOS | DFS | GC | [60] | |
Discrimination of two tomato (Lycopersicum esculentum) ripening stages (i.e., green stages and ripe) | MOS | PCA, LDA and DFA | Fruit quality characteristics such as: soluble solids content, pH and maximum puncture force | [61] | |
Discrimination of eight varieties of apricot (Prunus armeniaca) | MOS | PCA and FDA | LLE-SPME GC-MS Sensory analysis | [62] | |
Freshness evaluation, flavor and aroma | Monitoring volatile constituents of cocoa (Theobroma cacao) during the refining process | MOS | PCA | HS GC-MS | [63] |
Evaluation of freshness of broccoli during storage (Brassica oleracea L.) | MOS | PCA, CDA | HS GC-MS, FTIR | [64] | |
Characterization of volatile compounds in soybean seeds (Glycine max L.) | MOS | PCA | HS-SPME GC-MS | [65] | |
Monitoring the hardness of litchi under different storage conditions | MOS | LDA, CCA, BPNN-PLSR | Physicochemical index parameters (i.e., soluble solids content, titratable acidity and pH value) | [66] | |
Evaluation of banana maturity | MS based (piezoelectric quartz crystal) | PCA, MLR | Respiratory quotient, total soluble solids, firmness and moisture content | [67] | |
Monitoring of pineapple (Ananas comosus) shelf life during storage at different temperatures | MOS | PCA, CA | [68] | ||
Aroma development during ripening and storage of apricots | MOS | PCA | Firmness, total soluble solids, pH, GC-MS and sensory analyses | [69] | |
Evaluation of maturity and shelf life of tomatoes (Lycopersicum esculentum) | MOS | PCA, LDA, PLS | Firmness | [70] | |
Apple and orange post-harvest quality, e.g., detection of defects of apples and oranges | MOS | PCA, PLS-DA | Amount of mealiness and skin damage | [71] | |
Classification of 90 different blended and roasted coffee samples | MOS | DFA, MANOVA | [72] | ||
Spoilage evaluation | Identification of early infestation of Bactrocera dorsalis in citrus (Citrus reticulate) | MOS | PCA, LDA | [73] | |
Detection of pathogen (Salmonella, Erwinia, Streptococcus and Staphylococcus) contamination of apples | MOS | PCA, HCA | HS-GC-MS | [74] | |
Decay detection of peach (Prunuspersica L. Batsch) during storage | MOS | PLSR, LS-SVM, MFRG | Visual evaluation of rot | [75] | |
Detection of diseased blueberry fruit inoculated with grey mold (Botrytis cinerea), anthracnose (Colletotrichum gloeosporioides) and Alternaria rot (Alternaria sp.) | CP | PCA | [76] | ||
Identification of spoiled tomatoes (inoculated with Aspergillus and Penicillium spp.) | MOS | PCA | DHS-GC-MS | [77] | |
Classification of damaged and infested apples (Malus domestica) | CP and MS based (piezoelectric quartz crystal) | CMAES, PCA, PNN | [78] | ||
Wine evaluation | Early detection of smoke taint in wine grapes, while not perceivable by sensory evaluation | MS based (quartz microbalance) | PCA | [79] | |
Discrimination between fermented and unfermented musts | MS based (quartz microbalance) | PCA | GC-MS | [80] | |
Comparison of threshold detection performance and concentration quantification with a trained human sensory panel | MOS | PCA | Sensory analysis | [81] | |
Monitoring postharvest controlled partial dehydration | MS based (quartz microbalance) | PCA | GC-MS | [82] | |
Calibration transfer applied to the analysis of wine aroma using synthetic wine prepared from the most common wine aromas | MS based | PLS | [83] | ||
Classification of Tempranillo wines according to geographic origin | MS based | PCA, PLA, SLDA | [84] | ||
Identification of geographical origin of Sauvignon Blanc wines, with GC-MS that was then used to train an LDA | MOS and MS based | LDA | GC-MS | [85] | |
Discrimination of beer and wines tainted with off-flavors | MOS | PCA, DFA | [86] | ||
Five different wines elaborated with the major varieties from the DO vinos de Madrid were used for testing the discrimination capability of the developed system | MOS | PCA | GC-MS | [87] | |
Characterization of different wine fruits (blackberry, cherry, raspberry, blackcurrant, elderberry, cranberry, apple and peach) based on their odor profiles | MOS | PCA and DFA | GC-FID | [88] | |
Monitoring of aroma production during wine must fermentation | CP | PCA | HPLC, GC-MS | [89] |
Free Acidity | Peroxide Index | K232 | K270 | ΔK | Fruity Median | Defects’ Median | |
---|---|---|---|---|---|---|---|
% Oleic Acid | mEq O/kg | ||||||
EVOO | ≤0.8 | ≤20 | ≤2.50 | ≤0.22 | ≤0.01 | >0 | =0 |
VOO | ≤2.0 | ≤20 | ≤2.60 | ≤0.25 | ≤0.01 | >0 | <3.5 |
LOO | >2.0 | - | - | - | - | - | >3.5 |
Quality Indicator | Method |
---|---|
Tocopherols | HPLC |
Polyphenols | COI/T.20/Doc No. 29 |
Oleuropein aglycon content | HPLC |
Hydroxytyrosol content | UNI 11702:2018 |
Tyrosol content | UNI 11702:2018 |
Carotenoids | Spectrophotometer |
Degradation products of chlorophyll a | ISO 29841:2009 |
Vocs analysis | HS-SPME-GC/MS; sensor arrays |
Hexanal | HS-SPME-GC/MS |
In vitro antioxidant activity | Spectrophotometry |
Color | Spectrophotometry Image analysis Color analysis |
Category | Application | Sensor Arrays | Chemometrics Approach | Quantitative Classification Performances | Classical Methods for Comparison | Reference |
---|---|---|---|---|---|---|
Discrimination | Discrimination of edible and non-edible VOO | QCM | PCA | 99% | Acidity, peroxide value, content of oxidation compounds and panel test | [123] |
Classification of vegetable oils | MOS | LDA | 95.8–100% | [124] | ||
Discrimination between VOO, non-virgin and seed oil | MOS and MS based (piezoelectric quartz crystal) | PCA, RBF | 95–99% | [125] | ||
Discrimination of quality, variety of olive and geographic origin | CP | PCA | 96.3% of variance explained by the first 3 PCs | Acidity, peroxide value, content of oxidation compounds and panel test | [126] | |
Flavor evaluation | Identification of different aromatic fingerprints | MOS | PLS-DA, PCA | 84.6–99.5% | GC-MS | [127] |
Analysis of olive oil bitterness | MOX | PCA | Around 0.9 correlation between electronic methods and sensory panels | HPLC and panel test | [134] | |
Shelf life evaluation | Evaluation of EVOO rancidity and oxidation | CP | PCA, MDA | Up to 98.6% of variance explained | Panel test | [128] |
Evaluation of aromatic changes during ageing and storage | EC | PCA | N/A | [129] | ||
Monitoring of OO oxidation during storage | MOS and MOSFET | PCA | >90% | Peroxide value | [11] | |
Evaluation of oxidation degree of VOO stored in different conditions | MOSFET | LDA, ANN | >99.1% | Peroxide value and panel test | [130] | |
Evaluation of rancidity in VOO and monitoring of bottled VOO shelf life | Chemical sensors | PCA | 78–78.7% of variance explained | GC-MS | [131] | |
Evaluation of different degree of rancidity and fruity flavor | MOS | PCA | 88% | Acidity, peroxide value, content and panel test | [132] | |
Evaluation of flavor evolution during storage | MOSFET | LDA | 100% | Acidity, peroxide value, content of oxidation compounds and panel test | [133] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modesti, M.; Taglieri, I.; Bianchi, A.; Tonacci, A.; Sansone, F.; Bellincontro, A.; Venturi, F.; Sanmartin, C. E-Nose and Olfactory Assessment: Teamwork or a Challenge to the Last Data? The Case of Virgin Olive Oil Stability and Shelf Life. Appl. Sci. 2021, 11, 8453. https://doi.org/10.3390/app11188453
Modesti M, Taglieri I, Bianchi A, Tonacci A, Sansone F, Bellincontro A, Venturi F, Sanmartin C. E-Nose and Olfactory Assessment: Teamwork or a Challenge to the Last Data? The Case of Virgin Olive Oil Stability and Shelf Life. Applied Sciences. 2021; 11(18):8453. https://doi.org/10.3390/app11188453
Chicago/Turabian StyleModesti, Margherita, Isabella Taglieri, Alessandro Bianchi, Alessandro Tonacci, Francesco Sansone, Andrea Bellincontro, Francesca Venturi, and Chiara Sanmartin. 2021. "E-Nose and Olfactory Assessment: Teamwork or a Challenge to the Last Data? The Case of Virgin Olive Oil Stability and Shelf Life" Applied Sciences 11, no. 18: 8453. https://doi.org/10.3390/app11188453
APA StyleModesti, M., Taglieri, I., Bianchi, A., Tonacci, A., Sansone, F., Bellincontro, A., Venturi, F., & Sanmartin, C. (2021). E-Nose and Olfactory Assessment: Teamwork or a Challenge to the Last Data? The Case of Virgin Olive Oil Stability and Shelf Life. Applied Sciences, 11(18), 8453. https://doi.org/10.3390/app11188453