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Featured Application: The proposed application could be exploited for the design of a desalina-
tion device at various scales, depending on the desired flow rate of clean water.

Abstract: An array of ion separation cells is presented in this work, to propose a novel desalina-
tion device. Molecular Dynamics simulations have been incorporated to establish the theoretical
background and calculate all parameters that could lead the manufacturing step. The main system
component is an ion separation cell, in which water/NaCl solution flows due to an external pressure
difference and ions are directed towards the non-permeable walls under the effect of an electric
field, with direction perpendicular to the flow. Clean water is gathered from the output, while the
remaining, high-concentration water/ion solution is re-cycled in the cells. The strength of the electric
field, cell dimensions, and wall/fluid interactions are investigated over a wide range, and shear
viscosity and the volumetric flow rate are calculated for each case.

Keywords: ion separation; molecular dynamics; volumetric flow rate; shear viscosity

1. Introduction

Water flow at the nanoscale has gained increased research interest in nanofluidics,
due to its key role in environmental, biological, and chemical processes that can lead
the development of novel devices in the neighboring fields of physics, chemistry, and
materials science [1]. As the classical Navier theory of slip at the macroscale breaks
down, predicting fluid behavior at the nanoscale and understanding the link between
molecular structure and macroscopic behavior requires deep investigation over a number
of parameters that can affect its flow and transport properties [2]. Only after having
established deep understanding at these scales, we will be able to design devices with
desired properties for practical applications [3].

The experimental investigation of devices at the nanoscale is uniquely important, as it
would not only unravel phenomena taking place there, but also, would offer fabrication
guidelines for commercial use. Nevertheless, the whole experimental processes are com-
plex and challenging. Going down to less than 10 nm in pore sizes has only recently been
accessible experimentally [4], and the best way to overcome these barriers emerges from
numerical approaches [5]. Molecular dynamics (MD) simulations have given a boost in es-
tablishing water properties at the nanoscale through numerical calculations, bridging fluid
mechanics, statistical mechanics, and condensed matter physics and setting the basis for
the design and fabrication of nanofluidic devices [6]. Among these, novel desalination and
water purification techniques have been proposed, covering membrane-based applications,
reverse osmosis, Capacitive De-Ionization (CDI) and flow-electrode CDI [7–9].

Similar to the CDI philosophy, the recently proposed electric ion drift (EID) method
does not use membranes or special electrodes [10,11]. The EID method is of the same energy
consumption as the capacitive deionization method. This method is approached by the
Poisson–Nerst–Planck (PNP) theory, which can be less computationally demanding than
MD but, on the other hand, it succeeds only at the bulk and cannot incorporate wall effects
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in regions near the channel walls. At the macroscale, the PNP scheme is a popular choice
to explain the relation between the electrostatic problem and the mass transport [12,13].

System design, either in real applications or simulation models, has the main role
in achieving an efficient desalination process. First, the choice of materials is primarily
important. Towards minimization of energy consumption during the desalination process,
novel materials have been employed, although sometimes they have been found to have
only a slight impact on increasing energy efficiency [14]. On the other hand, carbon-
based materials, such as graphene, are among the most popular choices and have been
incorporated for the construction of permeable membranes due to their porous structure
and wetting characteristics [15]. Recently, synthetic nano-conduits have been introduced,
such as artificial water channels (AWCs), to develop highly selective membranes for
water desalination [16]. In a neighboring research field with biological interest, bacterial
membrane potential dynamics have been investigated for exploitation in microfluidic-
based platforms [17].

Another significant parameter that should be borne in mind is the choice of the driving
method that removes unwanted substances from the solution. The application of an external
electric field, E, parallel or perpendicular to the walls, is common choice. Care has to be taken
as the presence of the electric field may alter the hydrogen bond network structure, relaxation
times, and rotational dynamics of water [18]. Depending on E direction and strength, water
molecules could be subject to phase change [19] but, in general, higher E value leads to higher
ion rejection rate [20]. In salt solutions, the electric field along with ion concentration have
also a considerable impact on the mutual diffusion coefficients [21–23]. In contrast, the water
flux is insensitive to the applied voltage and depends on pore size, pressure, thickness, ion
concentration, water salinity, and pore geometry [24,25]. Hydrophobic/hydrophilic behavior of
the walls is also a matter of investigation, since it could diminish the high flow resistance owing
to surface and confinement effects [26]. It has been shown that cotton beads acting as pseudo-
superhydrophilic surfaces could enhance clean water flow in a novel, condensation-based
desalination system [27,28].

In this work, an array of desalination cells has been incorporated to suggest a novel
desalination device. Each cell lies in the order of some nanometers, which is also the
typical size-scale for membrane separation techniques for nanofiltration [29], and when
the cells are connected in parallel, they comprise a device that could even reach at the
macroscale. It is of importance to highlight water/ion behavior in each cell to guide
possible fabrication. Towards this direction, in the next sections we present the structure of
the proposed model, calculate the volumetric flow rate, and the shear viscosity (in direction
parallel and perpendicular to the flow) versus the cell size, wettability, and the strength of
the applied electric field.

2. Materials and Methods
2.1. System Model

Figure 1 presents the architecture of the proposed desalination device, built by an array
of N cells. Each cell resembles a nanochannel, where water molecules and Na+ and Cl− ions
flow between two planar, periodic, carbon surfaces, theoretically analogous to Poiseuille
flow (see the inset of Figure 1). In a previous work, we have investigated the effect of the
electric field strength, E, and the distance between the two wall surfaces, h, on desalination
performance in a stand-alone nanochannel [30]. In this work, we consider a parallel
network of such nanochannels and extend the investigation over the whole network.
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Figure 1. The proposed desalination device, consisted by an array of N cells. The inset figure presents a detailed view of
each cell. Green and red circles are Na+ and Cl− ions, respectively. The external electric field Ez is applied perpendicular
to the piston-driven flow. Clean water is gathered from each cell to the common outlet, while the remaining water/ion
solution (brine) is recirculated to further separate water from ions.

In each cell, water/ion solution is inserted on the left, while water and ions are
separated at the outlet, as the solution flows from left to right, driven by a piston. This
is achieved by the application of an external electric field, E, acting perpendicular to the
walls, which is expected to lead Na+ near the upper wall, Cl− ions near the lower wall, and
clean water in the region around the cell centerline. During the simulations, the solution
density is constant, ρ = 1078 kg/m3, and temperature remains constant at T = 300 K with
the application of Nose–Hoover thermostats.

Cells of various heights (i.e., the distance between the walls) are simulated and, along with
the number of cells, N, inside the device, the flow rate of clean water is estimated in Section 3.

Simulation parameters for all atoms in the system are described by the Lennard–Jones
(LJ) potential. For two i and j species, the potential is given by [31]
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where parameters ε and σ are the energy and size parameters, respectively, and rc = 9 Å
is the cut-off radius. Moreover, coulombic interaction between hydrogen, oxygen, and

ions is given by Vc =
Cqiqj
ε0rij

, where C the energy conversion constant, qi and qj the charges
of interacting atoms, and ε0 is the dielectric constant. For two different species i and j

we consider σij =
(
σi + σj

)
/2, εij =

√(
εiε j
)
. When i and j correspond to wall (w) and

fluid (f) atoms, the ratio εw f /ε f f represents whether the wall is treated as hydrophobic
(εw f /ε f f = 0.1 and 0.2) or hydrophilic (εw f /ε f f = 0.5 and 1.0). Water molecules comply
to the SPC/E (extended simple point charge) pair potential, which has been found to
reproduce adequately the structural and dynamic properties of water [32], especially
under confinement [33].

Molecular Dynamics is a common method for interpretation and investigation of
nanoscale phenomena. This does not exclude investigation with Navier–Stokes equations
or quasi-continuum approaches, provided that one considers the appropriate scale factors
and coefficients [34]. For example, shear viscosity across a nanochannel is not constant
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and this has to be addressed when applying the classical N-S theory [35]. The breakdown
of the continuum hypothesis of the no-slip condition is believed as the main reason that
continuum relations have to alter. Moreover, the occurrence of EDLs and specific adsorption
effects are to be expected, while possible wall roughness would have a pronounced effect
on transport properties [36].

2.2. Mathematical Formulation

Shear viscosity, µ, is given by the Stokes–Einstein’s relation [37,38] as

µ =
kBT

3απDch
(2)

where constant α = 1.7 Å is the effective hydrodynamic diameter of the water molecule,
and kB the Boltzmann constant.

The channel diffusion coefficient, Dch, is obtained from the time-averaging of the mean
square displacement of N fluid particles [39] as

MSD =
1
N

〈
N

∑
j=1

[
rj(t)− rj(0)

]2〉 (3)

and
Dch = lim

t→∞

1
6t

MSD (4)

where rj is the position vector of the jth atom. The brackets indicate time average. We
distinguish a parallel, DP, and a perpendicular to the wall direction, DT, component, as

DP = lim
t→∞

1
4t

1
N

〈
N

∑
j=1

[
rxy

j (t)− rxy
j (0)

]2
〉

(5)

DT = lim
t→∞

1
2t

1
N

〈
N

∑
j=1

[
rz

j (t)− rz
j (0)

]2
〉

(6)

where, rxy
j is the position vector in x- and y-dimensions, and rz

j the position vector in
z-dimension of the jth atom.

To calculate shear viscosity in direction parallel to the cell walls, µP, or perpendicular,
µT, we, respectively, substitute in Equation (2) the diffusion coefficients DP and DT.

Diffusion coefficient calculations from the above equations, characterizing the mecha-
nism of mass transfer at the lower scales, improve our understanding on the microscopic
effects taking place at these scales. This would be of interest for problems that have to do
with electric fields, since the system behavior is investigated at the lower possible level and
all hidden effects are revealed [40]. Equation (2) provides calculations on shear viscosity,
bypassing a significant amount of time-dependent statistical mechanics simulations needed
to extract shear viscosity by other methods, such as the Green–Kubo formalism, and has
been widely considered in nanoscale systems [37,38]. It shows that the size effect of Dch is
directly influenced by the size effect of the shear viscosity µ. As Dch is decreasing with the
channel width, µ is increasing. Shear viscosity is connected to friction, i.e., a macroscopic
property, and it becomes clear that it also affects the ion and clean water flow rate for the
proposed device.

In order to argue on the achievable performance of the proposed desalination method,
the volumetric flow rate in every channel is calculated, as

Q = υ·A = υ·
(
ho·Ly

)
(7)

where A is the cross-sectional channel area, ho the outlet height, υ the average fluid velocity
and Ly is the channel y-dimension. To disjoin calculations from Ly, since the simulation
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system is periodic in the y-direction, we consider the more general volumetric flow rate
per unit length to be

q =
Q
Ly

= υ·ho (8)

3. Results and Discussion
3.1. Shear Viscosity Calculations

Shear viscosity is extracted from the diffusion coefficients according to Equation (2). By
separating the calculations in a parallel and a perpendicular direction, µP and µT, respectively,
we obtain a close-up view of the internal mechanism that affects ion movement inside each
cell. For the narrowest cell under investigation (h = 3 nm), in Figure 2a, we observe that there
exists increased shear viscosity perpendicular to the wall, µT, significantly higher that the
parallel component, µP. As the strength of E increases from E = 0.0 to 1.0 V/Å, µT decreases
monotonically. In contrast, µP remains unaffected by the electric field value. The channel shear
viscosity is, though, unaffected, remaining around the water bulk value for the range of E
investigated here. In a weaker E range, the viscosity component parallel to the electric field has
been found to increase monotonically with the electric field strength, while the perpendicular
component first decreases and then increases with E [41]. We also note that experimental
results do not always adhere to simulation, and this is attributed to the lower E strength
applied, compared to simulated nanoscale systems [42].
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Figure 2. Shear viscosity, µ, in parallel and perpendicular to the wall direction, and as total channel
value vs. the strength of the electric field, E, for (a) h = 3 nm and (b) h = 6 nm.

For the h = 6 nm cell, where the effect of wall confinement is weaker on the transport
properties of fluids [43], we observe that shear viscosity anisotropy is smaller compared to
h = 3 nm, and its behavior is almost isotropic at E = 1.0 V/Å.

Shear viscosity is also examined on its dependence on wall/fluid interaction εw f /ε f f
in Figure 3, for cells of height h = 3–15 nm. For h = 3 nm (Figure 3a), all shear viscosity com-
ponents acquire their maximum value for the strongly hydrophilic wall (εw f /ε f f = 1.0).
However, this effect is weak and does not have a strong impact on µ values, and this is also
the case for h = 6, 9 and 15 nm in Figure 3b–d, respectively.

From a macroscopic point of view, studied under the Poisson–Boltzmann (PB) theory,
it has been shown that the response of an electrolyte to an applied voltage leads to sharp ion
concentration near a surface [21,22]. This has major implications for the system dynamics,
as changes in diffusion and viscosity have been observed. In fact, the viscosity, which
increases in high-concentration solutions, dominates the concentration dependence of D
for some systems. Nevertheless, PB theory has many shortcomings because it neglects
ion–ion interactions and steric effects and it is proposed that the electrolyte dynamics are
better described by a modified form of the PNP equations [12,23].
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3.2. Volumetric Flow Rate

The volumetric flow rate per unit length, q, for each cell is shown in Figure 4, calculated
over the range 0.1 ≤ εw f /ε f f ≤ 1.0. For the h = 3 nm cell, q presents a monotonic,
decreasing behavior as the walls vary from being strongly hydrophobic (εw f /ε f f = 0.1) to
strongly hydrophilic (εw f /ε f f = 1.0). Moreover, for εw f /ε f f = 0.1 and for all cell heights
investigated here, q obtains its maximum value. This is attributed to the existence of slip
near the solid boundaries, which facilitates flow and, in the case of narrower channels, is
more pronounced [26]. As the cell height increases, e.g., for h = 21 nm, the flow rate is
stabilized to a constant value within statistical accuracy, without being further affected by
the wall/fluid interaction.
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3.3. Configuration Issues

We now turn our attention to configuration issues and how the previous theoretical
analysis can be transformed to real applications, such as the ion separation device presented
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in Figure 1. Apart from piston and water/ion feeding issues, which are not examined
in this work, characteristics of the cell array have to be pointed out, such as the cell
dimensions, the number of cells, and, consequently, the device dimensions, to be assessed
over the induced flow rate of pure water from the output channel. All these parameters are
presented in Table 1.

Table 1. Calculated volumetric flow rate per unit length, for various cases of cell heights and number
of cells incorporated in a device.

N h Lz(cm) Lx(cm) q (lt/day)

395,257 2.53 × 10−6 1 7.33 × 10−4 1.54 × 10−7

293,255 3.41 × 10−6 1 9.89 × 10−4 2.79 × 10−7

227,273 4.40 × 10−6 1 1.28 × 10−3 4.66 × 10−7

180,733 5.53 × 10−6 1 1.61 × 10−3 7.37 × 10−7

80,000 1.25 × 10−5 1 3.63 × 10−3 3.76 × 10−6

8000 1.25 × 10−4 1 3.64 × 10−2 3.76 × 10−4

800 1.25 × 10−3 1 3.64 × 10−1 3.76 × 10−2

80 1.25 × 10−2 1 3.64 3.76

At first, the minimum channel length Lx for a cell of height h that could yield satisfying
ion separation results has been estimated in a previous work and is given by Lx = 320h−
27.46 [30]. For the device dimension on z-direction equal to Lz = 1 cm, the number of cells,
N, in the array can be calculated, as well as the resulting volumetric flow rate q (per unit
length). Depending on the configuration capability, one may choose to construct an array of
395,257 cells in a (Lx, Lz) = (1 cm, 7.33×10−4 cm) where q = 1.54×10−7 lt/day or an array of
only 80 cells with macroscale dimensions (Lx, Lz) = (1 cm, 3.64 cm) where q = 3.76 lt/day.

The proposed ion separation device could be incorporated to construct small/medium-
sized systems and cannot be considered as a replacement for well-established, industrial
water desalination plants. However, this approach seems to have advantages over classical
methods, and further manufacturing issues are to be explored in the future.

4. Conclusions

A novel desalination procedure has been presented in this work, consisting of an array
of cells that can function in parallel, based on simulation data derived from molecular
dynamics simulations. The investigation has been based on nanoscale simulations to
extract each cell property and project the findings on a wider scale.

Each cell comprises a nanochannel filled with water/ion solution. A perpendicular to
the walls electric field is applied to drive ions towards the walls, while an external force
with direction parallel to the walls is applied to induce flow. Clean water is gathered at
the outlet. Nanoscale surface effects are expected to affect water/ion properties inside the
cell. In terms of shear viscosity, calculations have shown that there exists increased shear
viscosity perpendicular to the wall, which decreases monotonically as the strength of the
external electric field E increases from E = 0.0 to 1.0 V/Å. On the other hand, the shear
viscosity component parallel to the flow direction remains unaffected. Wall hydrophobic-
ity/hydrophilicity does not seem to affect shear viscosity significantly, at least at the range
investigated here.

Moreover, calculations on the volumetric flow rate per unit length for each cell has
revealed a monotonic, decreasing effect behavior as the walls turn from hydrophobic to
hydrophilic. This effect is more pronounced in the smaller cell dimensions studied, for
h = 3 nm. However, for every cell dimension shown here, the flow rate obtains its maximum
value for the strongly hydrophobic channel.
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By establishing a parallel array of cells investigated in this work, it is possible to
achieve practical water desalination rates, without the need to experiment on expensive
membrane materials and/or electrodes. Some indicative cases have been tabulated and we
believe that this will assist on establishing a practical desalination device in the future.
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