Battery High Temperature Sensitive Optimization-Based Calibration of Energy and Thermal Management for a Parallel-through-the-Road Plug-in Hybrid Electric Vehicle
Abstract
:1. Introduction
2. HEV Modeling and Baseline Energy Management
2.1. HEV on-Board Energy Management Strategy
- Electric mode, in which the traction is provided by the MGP4 alone;
- Hybrid mode, which is characterized by the three power components being controlled in order to have the ICE working close to its optimal operating line (OOL). The OOL is particularly defined by the values of ICE torque that maximize the engine efficiency for each given value of rotational speed;
- E-save mode, where the ICE can be simultaneously employed for propelling the HEV and charging the battery by means of MGP0 and MGP4 working as generators. In particular, the instantaneous ICE power is controlled to be the maximum value between the one corresponding to its OOL and the one required to propel the HEV alone.
- As the HEV starts a given driving mission, pure electric operation is selected if the battery is sufficiently charged. Then, an automatic shift to Hybrid mode is performed if the SOC goes below 0.30 in order to preserve battery charge sustenance. Moreover, if the driver’s power demand exceeds the value that can be provided by the MGP4 alone in Electric mode, then the powertrain temporarily operates in Hybrid mode.
- In case the value of battery SOC falls below 0.25, the rule-based HEV controller switches to the E-save mode to charge the battery until SOC reaches 0.30. Hybrid mode is subsequently set as the operating mode.
- Regenerative braking is disabled when the battery SOC exceeds the upper limit, which is set to 0.8 here. This is performed as Li-Ion cells significantly degrades when being charged at high SOC values [27].
2.2. HEV Modeling Approach
3. High-Voltage Battery and Air Cooling System Modeling
- An equivalent circuit model for battery electrical modeling;
- A single temperature lumped-parameter model that evaluates battery temperature evolution during HEV operation, which is coupled with the air cooling system model;
- A throughput-based battery capacity fade model that evaluates battery cyclic ageing.
- Each of the listed modeling methodologies is illustrated in the follow-up of this section.
3.1. Equivalent Circuit Model
3.2. Single Temperature Lumped-Parameter Model and Battery Cooling System
3.2.1. Air Cooling System
3.2.2. Battery Thermal Model
3.2.3. Battery Thermal Management Strategy
3.3. Throughput-Based Battery Capacity Fade Model
4. Battery High Temperature Sensitive Optimization Based HEV Energy and Thermal Management Calibration
4.1. HEV Fuel Economy and Battery Lifetime over Retained Driving Mix
4.2. Workflow for Optimization-Based HEV Thermal and Energy Management Calibration
- The HEV fuel consumption;
- The electrical energy consumed by the plug-in HEV coming from the grid;
- The monetary cost associated with the battery pack degradation.
5. Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ECMS | Equivalent consumption minimization strategy |
EMS | Energy management strategy |
EOL | End-of-life |
FTP75 | Federal test procedure 75 |
HEV | Hybrid electric vehicle |
HVAC | Heating, Ventilation, and Air Conditioning |
HWFET | Highway federal test procedure |
ICE | Internal combustion engine |
MGP0 | Motor/generator P0 |
MGP4 | Motor/generator P4 |
OOL | Optimal operating line |
PID | Proportional–integral–derivative |
PSO | Particle swarm optimization |
SEI | Solid electrolyte interface |
SOC | State of charge |
SOH | State of health |
WLTP | Worldwide harmonized light-vehicle test procedure |
Appendix A. Time Series of Retained Driving Missions
References
- Bilgin, B.; Magne, P.; Malysz, P.; Yang, Y.; Pantelic, V.; Preindl, M.; Korobkine, A.; Jiang, W.; Lawford, M.; Emadi, A. Making the Case for Electrified Transportation. IEEE Trans. Transp. Electrif. 2015, 1, 4–17. [Google Scholar] [CrossRef]
- Tran, M.-K.; Akinsanya, M.; Panchal, S.; Fraser, R.; Fowler, M. Design of a Hybrid Electric Vehicle Powertrain for Performance Optimization Considering Various Powertrain Components and Configurations. Vehicles 2020, 3, 20–32. [Google Scholar] [CrossRef]
- Emadi, A. Advanced Electric Drive Vehicles; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Anselma, P.G.; Belingardi, G. Next Generation HEV Powertrain Design Tools: Roadmap and Challenges; SAE Technical Paper 2019-01-2602; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Kollmeyer, P.J.; Jahns, T.M. Aging and performance comparison of absorbed glass matte, enhanced flooded, PbC, NiZn, and LiFePO4 12V start stop vehicle batteries. J. Power Sources 2019, 441, 227139. [Google Scholar] [CrossRef]
- Anselma, P.G.; Kollmeyer, P.J.; Feraco, S.; Bonfitto, A.; Belingardi, G.; Emadi, A.; Amati, N.; Tonoli, A. Assessing Impact of Heavily Aged Batteries on Hybrid Electric Vehicle Fuel Economy and Drivability. In Proceedings of the 2021 IEEE Transportation Electrification Conference and Expo, Chicago, IL, USA, 21–25 June 2021. [Google Scholar]
- Bloom, I.; Cole, B.; Sohn, J.; Jones, S.; Polzin, E.; Battaglia, V.; Henriksen, G.; Motloch, C.; Richardson, R.; Unkelhaeuser, T.; et al. An accelerated calendar and cycle life study of Li-ion cells. J. Power Sources 2001, 101, 238–247. [Google Scholar] [CrossRef]
- Bonfitto, A. A Method for the Combined Estimation of Battery State of Charge and State of Health Based on Artificial Neural Networks. Energies 2020, 13, 2548. [Google Scholar] [CrossRef]
- Vidal, C.; Kollmeyer, P.; Naguib, M.; Malysz, P.; Gross, O.; Emadi, A. Robust xEV Battery State-of-Charge Estimator Design Using a Feed-forward Deep Neural Network. SAE Int. J. Adv. Curr. Prac. Mobil. 2020, 2, 2872–2880. [Google Scholar]
- Bonfitto, A.; Feraco, S.; Tonoli, A.; Amati, N.; Monti, F. Estimation Accuracy and Computational Cost Analysis of Artificial Neural Networks for State of Charge Estimation in Lithium Batteries. Batteries 2019, 5, 47. [Google Scholar] [CrossRef] [Green Version]
- Bonfitto, A.; Ezemobi, E.; Amati, N.; Feraco, S.; Tonoli, A.; Hegde, S. State of Health Estimation of Lithium Batteries for Automotive Applications with Artificial Neural Networks. In Proceedings of the 2019 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), Turin, Italy, 2–4 July 2019; pp. 1–5. [Google Scholar]
- Vidal, C.; Gross, O.; Gu, R.; Kollmeyer, P.; Emadi, A. xEV Li-Ion Battery Low-Temperature Effects—Review. IEEE Trans. Veh. Technol. 2019, 68, 4560–4572. [Google Scholar] [CrossRef]
- Rauhala, T.; Jalkanen, K.; Romann, T.; Lust, E.; Omar, N.; Kallio, T. Low-temperature aging mechanisms of commercial graphite/LiFePO4 cells cycled with a simulated electric vehicle load profile—A post-mortem study. J. Energy Storage 2018, 20, 344–356. [Google Scholar] [CrossRef]
- Wang, J.; Liu, P.; Hicks-Garner, J.; Sherman, E.; Soukiazian, S.; Verbrugge, M.; Tataria, H.; Musser, J.; Finamore, P. Cycle-life model for graphite- LiFePO4 cells. J. Power Sources 2011, 196, 3942–3948. [Google Scholar] [CrossRef]
- Ebbesen, S.; Elbert, P.; Guzzella, L. Battery State-of-Health Perceptive Energy Management for Hybrid Electric Vehicles. IEEE Trans. Veh. Technol. 2012, 61, 2893–2900. [Google Scholar] [CrossRef]
- Onori, S.; Spagnol, P.; Marano, V.; Guezennec, Y.; Rizzoni, G. A new life estimation method for lithium-ion batteries in plug-in hybrid electric vehicles applications. Int. J. Power Electron. 2012, 4, 302. [Google Scholar] [CrossRef]
- Tang, L.; Rizzoni, G.; Onori, S. Energy Management Strategy for HEVs Including Battery Life Optimization. IEEE Trans. Transp. Electrif. 2015, 1, 211–222. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, X.; Xie, S.; Song, Z.; Hu, L.; Hou, C. Adaptively coordinated optimization of battery aging and energy management in plug-in hybrid electric buses. Appl. Energy 2019, 256, 113891. [Google Scholar] [CrossRef]
- Xie, S.; Hu, X.; Zhang, Q.; Lin, X.; Mu, B.; Ji, H. Aging-aware co-optimization of battery size, depth of discharge, and energy management for plug-in hybrid electric vehicles. J. Power Sources 2020, 450, 227638. [Google Scholar] [CrossRef]
- Cheng, M.; Chen, B. Nonlinear Model Predictive Control of a Power-Split Hybrid Electric Vehicle with Consideration of Battery Aging. J. Dyn. Syst. Meas. Control. 2019, 141, 081008. [Google Scholar] [CrossRef] [Green Version]
- Anselma, P.G.; Kollmeyer, P.; Belingardi, G.; Emadi, A. Multi-Objective Hybrid Electric Vehicle Control for Maximizing Fuel Economy and Battery Lifetime. In Proceedings of the 2020 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 22–26 June 2020; pp. 1–6. [Google Scholar]
- Patil, C.; Naghshtabrizi, P.; Verma, R.; Tang, Z.; Smith, K.; Shi, Y. Optimal battery utilization over lifetime for parallel hybrid electric vehicle to maximize fuel economy. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 1524–1529. [Google Scholar]
- Anselma, P.G.; Kollmeyer, P.; Lempert, J.; Zhao, Z.; Belingardi, G.; Emadi, A. Battery state-of-health sensitive energy management of hybrid electric vehicles: Lifetime prediction and ageing experimental validation. Appl. Energy 2021, 285, 116440. [Google Scholar] [CrossRef]
- Du, R.; Hu, X.; Xie, S.; Hu, L.; Zhang, Z.; Lin, X. Battery aging- and temperature-aware predictive energy management for hybrid electric vehicles. J. Power Sources 2020, 473, 228568. [Google Scholar] [CrossRef]
- Fiat Chrysler Automobiles. Renegade 4xe and Compass 4xe: The Jeep®® Brand’s Take on the Plug-in Hybrid. Available online: http://www.media.fcaemea.com/em-en/jeep/press/renegade-4xe-and-compass-4xe-the-jeep-brand-s-take-on-the-plug-in-hybrid (accessed on 28 May 2021).
- A123 Systems. Nanophosphate®® High Power Lithium Ion Cell ANR26650M1-B. Available online: https://www.batteryspace.com/prod-specs/6610.pdf (accessed on 28 May 2021).
- Uddin, K.; Perera, S.; Widanage, W.D.; Somerville, L.; Marco, J. Characterising Lithium-Ion Battery Degradation through the Identification and Tracking of Electrochemical Battery Model Parameters. Batteries 2016, 2, 13. [Google Scholar] [CrossRef]
- Rizzoni, G.; Guzzella, L.; Baumann, B. Unified modeling of hybrid electric vehicle drivetrains. IEEE/ASME Trans. Mechatron. 1999, 4, 246–257. [Google Scholar] [CrossRef]
- Alix, G.; Dabadie, J.-C.; Font, G. An ICE Map Generation Tool Applied to the Evaluation of the Impact of Downsizing on Hybrid Vehicle Consumption. SAE Tech. Pap. 2015, 24, 2385. [Google Scholar] [CrossRef]
- Le Berr, F.; Abdelli, A.; Postariu, D.-M.; Benlamine, R. Design and Optimization of Future Hybrid and Electric Propulsion Systems: An Advanced Tool Integrated in a Complete Workflow to Study Electric Devices. Oil Gas Sci. Technol.-Rev. d’IFP Energ. Nouv. 2012, 67, 547–562. [Google Scholar] [CrossRef] [Green Version]
- Anselma, P.G.; Kollmeyer, P.; Belingardi, G.; Emadi, A. Multitarget Evaluation of Hybrid Electric Vehicle Powertrain Architectures Considering Fuel Economy and Battery Lifetime. SAE Tech. Pap. 2020, 37, 15. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Compliance and Fuel Economy Data-Annual Certification Data for Vehicles, Engines, and Equipment. Available online: https://www.epa.gov/compliance-and-fuel-economy-data/annual-certification-data-vehicles-engines-and-equipment (accessed on 1 June 2021).
- Engbroks, L.; Knappe, P.; Goerke, D.; Schmiedler, S.; Goedecke, T.; Geringer, B. Energetic Costs of ICE Starts in (P)HEV—Experimental Evaluation and Its Influence on Optimization Based Energy Management Strategies. SAE Tech. Pap. 2019, 24, 0203. [Google Scholar]
- Tran, M.-K.; Mevawala, A.; Panchal, S.; Raahemifar, K.; Fowler, M.; Fraser, R. Effect of integrating the hysteresis component to the equivalent circuit model of Lithium-ion battery for dynamic and non-dynamic applications. J. Energy Storage 2020, 32, 101785. [Google Scholar] [CrossRef]
- Maheshwari, A.; Dumitrescu, M.A.; Destro, M.; Santarelli, M. A modeling approach to understand charge discharge differences in thermal behavior in lithium iron phosphate–graphite battery. Electrochim. Acta 2017, 243, 129–141. [Google Scholar] [CrossRef]
- Mevawalla, A.; Panchal, S.; Tran, M.-K.; Fowler, M.; Fraser, R. One dimensional fast computational partial differential model for heat transfer in lithium-ion batteries. J. Energy Storage 2021, 37, 102471. [Google Scholar] [CrossRef]
- Han, T.; Khalighi, B.; Yen, E.C.; Kaushik, S. Li-Ion Battery Pack Thermal Management: Liquid Versus Air Cooling. J. Therm. Sci. Eng. Appl. 2018, 11, 021009. [Google Scholar] [CrossRef]
- Jaguemont, J.; Boulon, L.; Dube, Y.; Martel, F. Thermal Management of a Hybrid Electric Vehicle in Cold Weather. IEEE Trans. Energy Convers. 2016, 31, 1110–1120. [Google Scholar] [CrossRef]
- Kim, Y.; Mohan, S.; Siegel, J.B.; Stefanopoulou, A.G.; Ding, Y. The estimation of radial temperature distribution in cylindrical battery cells under unknown cooling conditions. In Proceedings of the 52nd IEEE Conference on Decision and Control, Florence, Italy, 1 June 2013. [Google Scholar]
- Janarthanam, S.; Burrows, N.; Boddakayala, B.R. Factors Influencing Liquid over Air Cooling of High Voltage Battery Packs in an Electrified Vehicle. SAE Tech. Pap. 2017, 1, 1171. [Google Scholar] [CrossRef]
- Lin, X.; Perez, H.E.; Mohan, S.; Siegel, J.; Stefanopoulou, A.G.; Ding, Y.; Castanier, M.P. A lumped-parameter electro-thermal model for cylindrical batteries. J. Power Sources 2014, 257, 1–11. [Google Scholar] [CrossRef]
- Jeon, D.H.; Baek, S.M. Thermal modeling of cylindrical lithium ion battery during discharge cycle. Energy Convers. Manag. 2011, 52, 2973–2981. [Google Scholar] [CrossRef]
- Lempert, J.; Kollmeyer, P.; Malysz, P.; Gross, O.; Cotton, J.; Emadi, A. Battery Entropic Heating Coefficient Testing and Use in Cell-Level Loss Modeling for Extreme Fast Charging. SAE Int. J. Adv. Curr. Pract. Mobil. 2020, 1, 0862. [Google Scholar] [CrossRef]
- Meyer, J.; Agathocleous, N.; Youmans, H.; Williams, H.; Vespa, T.; Rugh, J.; Lustbader, J.; Titov, E. Advanced Climate System for EV Extended Range. In US Department of Energy Technical Report; U.S. Department of Energy: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Arasu, M.; Ahmed, Q.; Rizzoni, G. Optimizing Battery Cooling System for a Range Extended Electric Truck. SAE Tech. Pap. 2019, 1, 158. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- ANCI. Mobilità Sostenibile—Ricerca ANCI, Nelle Città Serpentoni di Auto ‘Vuote’, ma Cala Inquinamento. Available online: http://www.anci.it/mobilita-sostenibile-ricerca-anci-nelle-citta-serpentoni-di-auto-vuote-ma-cala-inquinamento/ (accessed on 7 June 2021).
- Ford, D. As Cars Are Kept Longer, 200,000 Is New 100,000. New York Times, 16 March 2012. [Google Scholar]
- Bloomberg. Gasoline Prices around the World: The Real Cost of Filling Up. Available online: https://www.bloomberg.com/graphics/gas-prices/#20202:Italy:EUR:l (accessed on 3 September 2021).
- Eurostat. Electricity Prices for Household Consumers—Bi-Annual Data. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_pc_204/default/table?lang=en (accessed on 3 September 2021).
- Hamza, K.; Laberteaux, K.; Chu, K.-C. On Modeling the Total Cost of Ownership of Electric and Plug-in Hybrid Vehicles. SAE Tech. Pap. 2020, 1, 1435. [Google Scholar] [CrossRef]
- Anselma, P.G.; Belingardi, G. Multi-objective optimal computer-aided engineering of hydraulic brake systems for electrified road vehicles. Veh. Syst. Dyn. 2020, 1–22. [Google Scholar] [CrossRef]
- Brandimarte, P. Optimization Model Solving. In An Introduction to Financial Markets: A Quantitative Approach; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2018; pp. 717–718. [Google Scholar]
- Nouiri, M.; Bekrar, A.; Jemai, A.; Niar, S.; Ammari, A.C. An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem. J. Intell. Manuf. 2015, 29, 603–615. [Google Scholar] [CrossRef]
- Mashadi, B.; Khadem Nahvi, M. Fuel consumption reduction by introducing best-mode controller for hybrid electric vehicles. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2020, 234, 810–822. [Google Scholar] [CrossRef]
- Yarpiz. Particle Swarm Optimization in MATLAB. Available online: https://yarpiz.com/50/ypea102-particle-swarm-optimization (accessed on 7 June 2021).
Component | Parameter | Value |
---|---|---|
ICE | Max. power (hp @ RPM) | 130 @ 5500 |
Max. torque (Nm @ RPM) | 270 @ 1850 | |
MGP4 | Max. power (hp @ RPM) | 60 @ >1240 |
Max. torque (Nm @ RPM) | 250 @ <1240 | |
MGP0 | Max. power (hp @ RPM) | 20 @ >2480 |
Max. torque (Nm @ RPM) | 48 @ <2480 | |
Transmission ratios | Rear final drive (-) | 5.6 |
Front final drive (-) | 3.68 | |
Automatic gearbox (-) | [4.46; 2.51; 1.56; 1.14; 0.85; 0.67] | |
MGP0 belt (-) | 2.7 | |
High-voltage battery | Battery nominal capacity/voltage (kWh/V) | 10.94/400 |
Cell nominal capacity/voltage (Wh/V) | 7.6/3.33 | |
Pack configuration | 120 S; 12 P | |
Cell type | A123 ANR26650 | |
Vehicle body | Road load coefficient A (N) | 94.04 |
Road load coefficient B (Ns/m) | 3.81 | |
Road load coefficient C (Ns2/m2) | 0.48 | |
Wheel radius (m) | 0.322 |
Parameter | Symbol | Value |
---|---|---|
Battery pack mass | 109.4 kg | |
Battery pack length | 1050 mm | |
Battery pack height | 240 mm | |
Battery pack width | 400 mm | |
Battery side exchange surface | 1.10 m2 | |
Overall cooling exchange surface | 2.55 m2 | |
Battery specific heat | 1109.2 J/(kg∙K) | |
Air specific heat | 1005 J/(kg∙K) | |
Convective coefficient—side air | 10 W(m2∙K) | |
Convective coefficient—cooling air | 50 W(m2∙K) |
Parameter | Symbol | Value |
---|---|---|
C-rate index for pre-exponential factor | [0.5; 2; 4; 6; 8; 10; 12; 14; 16; 18; 20] | |
Pre-exponential factor as function of C-rate | [31,630; 21,681; 17,307; 12,934; 13,512; 15,512; 12,099; 11,380; 13,656; 16,342; 14,599] | |
Activation factor | 3814.68–44.56∙ | |
Power-law factor | 0.55 |
Parameter | Symbol | Bounds | |
---|---|---|---|
Calibration variables | Upper battery pack temperature threshold for cooling system activation | | [–40°] |
Lower battery pack temperature threshold for cooling system de-activation | | [10°–] | |
Lower battery SOC threshold for pure electric to hybrid electric operation transition | | [0.3–1] | |
Calibration objective function | Operative cost associated to the entire plug-in HEV lifetime | (31) |
Driving Mission | WLTP | FTP75 | RTS95 | HWFET | RWC01—Uphill | RWC02—Long Highway | RWC03—Down-Mountain | RWC04—Downhill |
---|---|---|---|---|---|---|---|---|
Length [km] | 23.3 | 17.8 | 12.9 | 16.5 | 17.8 | 296 | 27.4 | 16.7 |
Time [s] | 1800 | 1878 | 887 | 765 | 1031 | 9792 | 2345 | 1123 |
Max speed [km/h] | 131.3 | 91.2 | 134.4 | 96.3 | 112.7 | 135.4 | 84.9 | 103 |
Average speed [km/h] | 46.5 | 34.1 | 52.5 | 77.6 | 62.1 | 108.8 | 42 | 53.5 |
Average acceleration [m/s2] | 0.4 | 0.5 | 0.8 | 0.2 | 0.5 | 0.2 | 0.5 | 0.6 |
Average deceleration [m/s2] | −0.4 | −0.6 | −0.8 | −0.2 | −0.6 | −0.2 | −0.6 | −0.6 |
Max altitude—min altitude [m] | 0 | 0 | 0 | 0 | 278 | 523 | 682 | 225 |
Final altitude— initial altitude [m] | 0 | 0 | 0 | 0 | 235 | 341 | −633 | −148 |
Journey frequency [%] | 8.33 | 16.67 | 16.67 | 16.67 | 8.33 | 8.33 | 8.33 | 16.67 |
Parameter | Value |
---|---|
Swarm size [-] | 20 |
Number of iterations [-] | 15 |
Inertia coefficient [-] | 0.73 |
Cognitive coefficient [-] | 1.5 |
Social coefficient [-] | 1.5 |
HVAC System State | [°C] | [°C] | [°C] | [%] | [L/100 km] | [kWh/100 km] | [km∙103] | [k€] |
---|---|---|---|---|---|---|---|---|
Off | 15 | 25.7 | 16.1 | 33.4 | 0.69 | 16.57 | 799 | 13.8 |
Off | 18 | 30.7 | 18.2 | 33.5 | 0.69 | 16.42 | 658 | 13.8 |
Off | 21 | 31.9 | 20.2 | 33.4 | 0.69 | 16.41 | 521 | 13.8 |
Off | 24 | 33.0 | 25.2 | 33.4 | 0.69 | 16.40 | 414 | 13.8 |
Off | 27 | 35.7 | 26.4 | 33.5 | 0.69 | 16.39 | 331 | 13.8 |
Off | 30 | 33.5 | 29.6 | 55.8 | 0.74 | 16.21 | 300 | 14.0 |
Off | 33 | 37.4 | 32.9 | 70.7 | 1.44 | 14.21 | 300 | 15.6 |
Off | 36 | 39.4 | 36.9 | 76.5 | 2.65 | 10.74 | 300 | 18.4 |
On | 15 | 29.2 | 19.0 | 33.2 | 0.69 | 16.55 | 781 | 13.8 |
On | 18 | 35.0 | 27.0 | 33.4 | 0.69 | 16.42 | 651 | 13.8 |
On | 21 | 30.8 | 23.8 | 33.4 | 0.69 | 16.41 | 524 | 13.8 |
On | 24 | 33.0 | 23.9 | 33.5 | 0.69 | 16.40 | 422 | 13.8 |
On | 27 | 35.9 | 30.7 | 33.3 | 0.69 | 16.39 | 342 | 13.8 |
On | 30 | 35.2 | 25.8 | 48.9 | 0.70 | 16.34 | 300 | 13.9 |
On | 33 | 40.0 | 23.6 | 67.3 | 1.10 | 15.20 | 300 | 14.8 |
On | 36 | 38.7 | 31.3 | 74.3 | 2.20 | 12.06 | 304 | 17.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anselma, P.G.; Del Prete, M.; Belingardi, G. Battery High Temperature Sensitive Optimization-Based Calibration of Energy and Thermal Management for a Parallel-through-the-Road Plug-in Hybrid Electric Vehicle. Appl. Sci. 2021, 11, 8593. https://doi.org/10.3390/app11188593
Anselma PG, Del Prete M, Belingardi G. Battery High Temperature Sensitive Optimization-Based Calibration of Energy and Thermal Management for a Parallel-through-the-Road Plug-in Hybrid Electric Vehicle. Applied Sciences. 2021; 11(18):8593. https://doi.org/10.3390/app11188593
Chicago/Turabian StyleAnselma, Pier Giuseppe, Marco Del Prete, and Giovanni Belingardi. 2021. "Battery High Temperature Sensitive Optimization-Based Calibration of Energy and Thermal Management for a Parallel-through-the-Road Plug-in Hybrid Electric Vehicle" Applied Sciences 11, no. 18: 8593. https://doi.org/10.3390/app11188593
APA StyleAnselma, P. G., Del Prete, M., & Belingardi, G. (2021). Battery High Temperature Sensitive Optimization-Based Calibration of Energy and Thermal Management for a Parallel-through-the-Road Plug-in Hybrid Electric Vehicle. Applied Sciences, 11(18), 8593. https://doi.org/10.3390/app11188593