Study on the Coupled Vibration Characteristics of a Two-Stage Bladed Disk Rotor System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Super-Element Power Reduction
2.2. Substructure Modal Synthesis
3. Results and Discussion
3.1. Dynamic Frequency Calculation and Precision Check
3.2. Static Frequency Analysis of Blades
3.3. Modal Analysis of a Single-Stage Bladed Disk System
3.3.1. Modal Analysis of the First-Stage Bladed Disk System
3.3.2. Modal Analysis of the Second-Stage Bladed Disk System
3.4. Modal Analysis of the Two-Stage Bladed Disk Coupled System
- (1)
- (2)
- (3)
3.5. Comparison of the Results between the Two-Stage and Single-Stage Systems
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bai, B.; Bai, G.S.; Tong, X.C. Research on vibration problem of integral mistuned bladed disk assemblies at home and abroad. Chinese. J. Aerosp. Power 2014, 29, 91–103. [Google Scholar]
- Laxalde, D.; Thouverez, F.; Lombard, J.P. Dynamical analysis of multi-stage cyclic structures. Mech. Res. Commun. 2007, 34, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Joannin, C.; Thouverez, F.; Chouvion, B. Reduced-order modelling using nonlinear modes and triple nonlinear modal synthesis. Comput. Struct. 2018, 203, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Hs, A.; Cla, B.; Qt, A.; Bwa, B. Influence mechanism of disk position and flexibility on natural frequencies and critical speeds of a shaft-disk-blade unit—Sciencedirect. J. Sound Vib. 2020, 469, 115156. [Google Scholar]
- Zeng, J.; Zhao, C.; Hui, M.; Cui, X.; Luo, Z. Dynamic response characteristics of the shaft-blisk-casing system with blade-tip rubbing fault. Eng. Fail. Anal. 2021, 3, 105406. [Google Scholar] [CrossRef]
- Ma, H.; Lu, Y.; Wu, Z.; Tai, X.; Wen, B.C. A new dynamic model of rotor-blade systems. J. Sound Vib. 2015, 357, 168–194. [Google Scholar] [CrossRef]
- Zhao, T.Y.; Wang, Y.X.; Pan, H.G.; Yuan, H.Q.; Cai, Y. Nonlinear forced vibration analysis of spinning shaft-disk assemblies under sliding bearing supports. Math. Methods Appl. Sci. 2021. [Google Scholar] [CrossRef]
- Wang, J.H.; Wu, J.W. Vibration simulation analysis of ceramic matrix composite turbine rotor integral blade-disk. J. Acoust. Vib. 2021, 9, 46–52. [Google Scholar]
- She, H.; Li, C.; Tang, Q.; Wen, B.C. Effects of blade’s interconnection on the modal characteristics of a shaft-disk-blade system. Mechanical. Syst. Signal Process. 2021, 146, 106955. [Google Scholar] [CrossRef]
- Al Bedoor, B.O. Natural frequncies of coupled blade-bending and shaft-torsional vibrations. Shock Vib. 2007, 14, 65–80. [Google Scholar] [CrossRef]
- Yang, C.H.; Huang, S.C. The influence of disk’s flexibility on coupling vibration of shaft-disk-blades systems. J. Sound Vib. 2007, 301, 1–17. [Google Scholar] [CrossRef]
- Chiu, Y.J.; Chen, D.Z. The coupled vibration in a rotating multi-disk rotor system. Int. J. Mech. Sci. 2011, 53, 1–10. [Google Scholar] [CrossRef]
- Chiu, Y.J.; Yang, C.H. The coupled vibration in a rotating multi-disk rotor system with grouped blades. J. Mech. Sci. Technol. 2014, 28, 1653–1662. [Google Scholar] [CrossRef]
- Ma, H.; Lu, Y.; Wu, Z.Y.; Tai, X.Y.; Wen, B.C. Vibration response analysis of a rotational shaft-disk-blade system with blade-tip rubbing. Int. Int. J. Mech. Sci. 2016, 107, 110–125. [Google Scholar] [CrossRef]
- Wang, L.; Cao, D.Q.; Huang, W. Nonlinear coupled dynamics of flexible blade-rotor-bearing systems. Tribol. Int. 2010, 43, 759–778. [Google Scholar] [CrossRef]
- Luo, R. Free transverse vibration of rotating blades in a bladed disk assembly. Acta Mech. 2012, 223, 1385–1396. [Google Scholar] [CrossRef]
- Rzadkowski, R.; Drewczynski, M. Coupling of vibration of several bladed discs on a shaft part ii. forced vibration analysis. Adv. Vib. Eng. 2010, 9, 363–374. [Google Scholar]
- Bladh, R.; Castanier, M.P.; Pierre, C. Effects of multi-Stage coupling and disk flexibility on mistuned bladed disk dynamics. J. Eng. Gas Turbines Power 2003, 125, 121–130. [Google Scholar] [CrossRef]
- Vargiu, P.; Firrone, C.M.; Zucca, S.; Gola, M.M. A reduced order model based on sector mistuning for the dynamic analysis of mistuned bladed disks. Int. J. Mech. Sci. 2011, 53, 639–646. [Google Scholar] [CrossRef] [Green Version]
- Petrov, E.P.; Ewins, D.J. Method for analysis of nonlinear multiharmonic vibrations of mistuned bladed disks with scatter of contact interface characteristics. J. Turbomach. 2005, 127, 128–136. [Google Scholar] [CrossRef]
- Rzadkowski, R.; Maurin, A. Multistage coupling of eight mistuned bladed disks on a solid shaft of the steam turbine, forced vibration analysis. J. Vib. Eng. Technol. 2014, 2, 495–508. [Google Scholar]
- Li, C.F.; She, H.X.; Tang, Q.S.; Wen, B.C. The coupling vibration characteristics of a flexible shaft-disk-blades system with mistuned features. Appl. Math. Model. 2019, 67, 557–572. [Google Scholar] [CrossRef]
- Huang, B.W.; Kuang, J.H. Mode localization in a rotating mistuned turbo disk with coriolis effect. Int. J. Mech. Sci. 2001, 43, 1643–1660. [Google Scholar] [CrossRef]
- Zhao, T.Y.; Ma, Y.; Zhang, H.Y.; Pan, H.G.; Cai, Y. Free vibration analysis of a rotating graphene nanoplatelet reinforced pre-twist blade-disk assembly with a setting angle. Appl. Math. Model. 2021, 93, 578–596. [Google Scholar] [CrossRef]
- Zhao, T.Y.; Cui, Y.S.; Pan, H.G.; Yuan, H.Q.; Yang, J. Free vibration analysis of a functionally graded graphene nanoplatelet reinforced disk-shaft assembly with whirl motion. Int. J. Mech. Sci. 2021, 197, 106335. [Google Scholar] [CrossRef]
- Zhao, T.Y.; Jiang, L.P.; Pan, H.G.; Yang, J.; Kitipornchai, S. Coupled free vibration of a functionally graded pre-twisted blade-shaft system reinforced with graphene nanoplatelets. Compos. Struct. 2020, 262, 113362. [Google Scholar] [CrossRef]
- Zhao, T.Y.; Liu, Z.F.; Pan, H.G.; Zhang, H.Y.; Yuan, H.Q. Vibration characteristics of functionally graded Porous nanocomposite blade-disk-shaft rotor system reinforced with graphene nanoplatelets. Appl. Compos. Mater. 2021, 28, 717–731. [Google Scholar] [CrossRef]
- Zhao, T.Y.; Wang, Y.X.; Pan, H.G.; Gao, X.S.; Cai, Y. Analytical solution for vibration characteristics of rotating graphene nanoplatelet-reinforced plates under rub-impact and thermal shock. Adv. Compos. Lett. 2020, 29, 2633366X2093365. [Google Scholar] [CrossRef]
- Zhao, T.Y.; Jiang, Z.Y.; Zhao, Z.; Xie, L.Y.; Yuan, H.Q. Modeling and free vibration analysis of rotating hub-blade assemblies reinforced with graphene nanoplatelets. J. Strain Anal. Eng. Des. 2021, 030932472098690. [Google Scholar] [CrossRef]
- Zhao, T.; Ma, Y.; Zhang, H.; Yang, J. Coupled free vibration of spinning functionally graded porous double-bladed disk systems reinforced with graphene nanoplatelets. Materials 2020, 13, 5610. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Yang, Y.; Pan, H.; Zhang, H.; Yuan, H.Q. Free vibration analysis of a spinning porous nanocomposite blade reinforced with graphene nanoplatelets. J. Strain Anal. Eng. Des. 2021, 030932472098575. [Google Scholar] [CrossRef]
- Zhao, T.; Li, G.; Pan, H.; Yuan, H.Q. Dynamic characteristics analysis for vehicle parts based on parallel optimization algorithm with CUDA. Eng. Comput. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Zhao, T.Y.; Li, H.; Sun, H. Parallel intelligent algorithm analysis of optimization arrangement on mistuned blades based on compute unified device architecture. Proc. Inst. Mech. Eng. 2019, 233, 2207–2218. [Google Scholar] [CrossRef]
- Zhao, T.Y.; Yuan, H.Q.; Yang, W.J.; Sun, H.G. Genetic particle swarm parallel algorithm analysis of optimization arrangement on mistuned blades. Eng. Optim. 2017, 49, 2095–2116. [Google Scholar] [CrossRef]
Methods and Errors | Cyclic Symmetric Structure Analysis Is Used to Harmonize the Dimensionless Dynamic Frequency of Standard Contact Bladed Disk System | Modal Synthesis Super-element Method of Fixed Interface Prestressed Free Interface Substructure Harmonizes the Dimensionless Dynamic Frequency of Standard Contact Bladed Disk System | Method Error | |
---|---|---|---|---|
Number of Knuckle Diameter | ||||
0 | 1.0478 | 0.9889 | 5.62% | |
1 | 1.0492 | 0.9903 | 5.61% | |
2 | 1.0522 | 0.9936 | 5.57% | |
3 | 1.0559 | 0.9975 | 5.54% | |
4 | 1.0596 | 1.0011 | 5.52% | |
5 | 1.0629 | 1.0042 | 5.52% | |
6 | 1.0659 | 1.0069 | 5.54% | |
7 | 1.0686 | 1.0091 | 5.56% | |
8 | 1.0707 | 1.0109 | 5.59% | |
9 | 1.0725 | 1.0122 | 5.61% | |
10 | 1.0738 | 1.0133 | 5.63% | |
11 | 1.0747 | 1.0141 | 5.64% | |
12 | 1.0755 | 1.0146 | 5.65% | |
13 | 1.0760 | 1.0151 | 5.66% | |
14 | 1.0764 | 1.0154 | 5.67% | |
15 | 1.0766 | 1.0156 | 5.67% | |
16 | 1.0768 | 1.0157 | 5.67% | |
17 | 1.0769 | 1.0158 | 5.68% | |
18 | 1.0770 | 1.0159 | 5.68% | |
19 | 1.0770 | 1.0159 | 5.68% |
Stage 1 Blade | Stage 2 Blade | ||
---|---|---|---|
Order Number | Natural Frequency/Hz | Order Number | Natural Frequency/Hz |
1 | 602.0 | 1 | 632.0 |
2 | 1842.6 | 2 | 2273.2 |
3 | 2310.6 | 3 | 3043.1 |
4 | 4243.0 | 4 | 5590.8 |
5 | 4754.5 | 5 | 6616.9 |
6 | 5760.7 | 6 | 7898.7 |
7 | 6231.1 | 7 | 8803.8 |
8 | 6756.8 | 8 | 10,457.0 |
9 | 9294.0 | 9 | 12,714.0 |
10 | 9540.4 | 10 | 13,367.0 |
Order Number | Stage 1 Blade | Stage 2 Blade | ||
---|---|---|---|---|
Natural Frequency/Hz | Vibration Mode | Natural Frequency/Hz | Vibration Mode | |
1 | 602.0 | The first-order bending | 632.0 | The first-order bending |
2 | 1842.6 | The first-order distortion | 2273.2 | The first-order distortion |
3 | 2310.6 | The second-order bending | 3043.1 | The second-order bending |
4 | 4243.0 | The second-order distortion | 5590.8 | The second-order distortion |
Order Number | Natural Frequency | Order Number | Natural Frequency | Order Number | Natural Frequency | Order Number | Natural Frequency | Order Number | Natural Frequency |
---|---|---|---|---|---|---|---|---|---|
1 | 667.68 | 31 | 695.3 | 61 | 1813.10 | 91 | 1855.90 | 121 | 2189.90 |
2 | 668.27 | 32 | 695.33 | 62 | 1813.50 | 92 | 1870.10 | 122 | 2196.70 |
3 | 669.53 | 33 | 695.37 | 63 | 1814.10 | 93 | 1905.80 | 123 | 2198.40 |
4 | 671.51 | 34 | 695.40 | 64 | 1814.40 | 94 | 1914.30 | 124 | 2216.40 |
5 | 673.57 | 35 | 695.43 | 65 | 1814.70 | 95 | 1942.30 | 125 | 2218.50 |
6 | 677.21 | 36 | 695.45 | 66 | 1815.00 | 96 | 1948.30 | 126 | 2255.50 |
7 | 678.36 | 37 | 695.46 | 67 | 1815.20 | 97 | 1963.70 | 127 | 2255.80 |
8 | 682.41 | 38 | 695.48 | 68 | 1815.40 | 98 | 1968.80 | 128 | 2277.60 |
9 | 683.19 | 39 | 1064.10 | 69 | 1815.60 | 99 | 1976.30 | 129 | 2316.50 |
10 | 686.42 | 40 | 1208.30 | 70 | 1815.70 | 100 | 1980.80 | 130 | 2317.80 |
11 | 687.08 | 41 | 1217.00 | 71 | 1815.80 | 101 | 1984.20 | 131 | 2331.20 |
12 | 689.28 | 42 | 1317.70 | 72 | 1815.90 | 102 | 1988.00 | 132 | 2334.40 |
13 | 689.90 | 43 | 1331.70 | 73 | 1816.00 | 103 | 1989.40 | 133 | 2396.50 |
14 | 691.25 | 44 | 1455.40 | 74 | 1816.10 | 104 | 1992.50 | 134 | 2398.80 |
15 | 691.85 | 45 | 1456.30 | 75 | 1816.20 | 105 | 1993.20 | 135 | 2479.40 |
16 | 692.55 | 46 | 1460.20 | 76 | 1816.30 | 106 | 1995.30 | 136 | 2481.80 |
17 | 693.13 | 47 | 1573.40 | 77 | 1816.30 | 107 | 1996.00 | 137 | 2551.80 |
18 | 693.41 | 48 | 1584.50 | 78 | 1816.30 | 108 | 1997.20 | 138 | 2553.80 |
19 | 693.94 | 49 | 1687.90 | 79 | 1816.40 | 109 | 1997.90 | 139 | 2609.60 |
20 | 694.00 | 50 | 1693.00 | 80 | 1823.50 | 110 | 1998.60 | 140 | 2611.20 |
21 | 694.37 | 51 | 1703.60 | 81 | 1823.90 | 111 | 1999.20 | 141 | 2653.90 |
22 | 694.50 | 52 | 1767.90 | 82 | 1824.20 | 112 | 1999.70 | 142 | 2655.40 |
23 | 694.65 | 53 | 1774.70 | 83 | 1824.70 | 113 | 2000.20 | 143 | 2687.30 |
24 | 694.82 | 54 | 1784.70 | 84 | 1825.60 | 114 | 2000.70 | 144 | 2688.90 |
25 | 694.89 | 55 | 1797.20 | 85 | 1826.20 | 115 | 2001.00 | 145 | 2712.60 |
26 | 695.01 | 56 | 1806.20 | 86 | 1828.30 | 116 | 2001.20 | 146 | 2713.90 |
27 | 695.08 | 57 | 1806.40 | 87 | 1830.50 | 117 | 2001.40 | 147 | 2731.60 |
28 | 695.15 | 58 | 1810.20 | 88 | 1831.20 | 118 | 2143.70 | 148 | 2732.40 |
29 | 695.21 | 59 | 1811.20 | 89 | 1832.60 | 119 | 2159.80 | 149 | 2745.50 |
30 | 695.25 | 60 | 1812.30 | 90 | 1842.60 | 120 | 2186.90 | 150 | 2746.00 |
Order Number | Natural Frequency/Hz | Vibration Mode |
---|---|---|
1–38 | 667.68–695.48 | Blade first-order bending vibration |
39–54 | 1064.10–1784.70 | The blade and the wheel vibrate together |
55–92 | 1797.20–1870.10 | First-order torsional vibration of blades |
93–117 | 1905.80–2001.40 | Blade bending-torsion coupled vibration |
118–150 | 2143.70–2746.00 | Second-order bending vibration of blade |
Order Number | Natural Frequency | Order Number | Natural Frequency | Order Number | Natural Frequency | Order Number | Natural Frequency | Order Number | Natural Frequency |
---|---|---|---|---|---|---|---|---|---|
1 | 650.63 | 31 | 748.66 | 61 | 1561.70 | 91 | 2123.10 | 121 | 2249.80 |
2 | 706.22 | 32 | 748.73 | 62 | 1564.70 | 92 | 2123.80 | 122 | 2254.00 |
3 | 725.06 | 33 | 748.80 | 63 | 1610.80 | 93 | 2125.60 | 123 | 2255.50 |
4 | 725.58 | 34 | 748.85 | 64 | 1618.40 | 94 | 2126.30 | 124 | 2264.80 |
5 | 730.03 | 35 | 748.95 | 65 | 1657.50 | 95 | 2127.60 | 125 | 2267.70 |
6 | 733.46 | 36 | 748.98 | 66 | 1714.00 | 96 | 2128.30 | 126 | 2290.40 |
7 | 734.18 | 37 | 749.00 | 67 | 1718.80 | 97 | 2129.30 | 127 | 2293.50 |
8 | 737.91 | 38 | 749.07 | 68 | 1833.40 | 98 | 2129.90 | 128 | 2324.40 |
9 | 738.53 | 39 | 749.10 | 69 | 1838.50 | 99 | 2130.70 | 129 | 2327.60 |
10 | 740.91 | 40 | 749.12 | 70 | 1850.40 | 100 | 2131.20 | 130 | 2361.80 |
11 | 741.53 | 41 | 749.17 | 71 | 1930.90 | 101 | 2131.90 | 131 | 2364.90 |
12 | 742.98 | 42 | 749.19 | 72 | 1934.90 | 102 | 2132.20 | 132 | 2396.30 |
13 | 743.63 | 43 | 749.24 | 73 | 1971.90 | 103 | 2132.80 | 133 | 2399.50 |
14 | 744.48 | 44 | 749.26 | 74 | 2001.70 | 104 | 2133.10 | 134 | 2425.20 |
15 | 745.14 | 45 | 749.28 | 75 | 2004.30 | 105 | 2133.50 | 135 | 2428.40 |
16 | 745.57 | 46 | 749.29 | 76 | 2013.30 | 106 | 2133.70 | 136 | 2448.10 |
17 | 746.21 | 47 | 749.33 | 77 | 2047.30 | 107 | 2134.00 | 137 | 2451.30 |
18 | 746.35 | 48 | 749.37 | 78 | 2048.40 | 108 | 2134.30 | 138 | 2466.00 |
19 | 746.92 | 49 | 749.40 | 79 | 2075.10 | 109 | 2134.70 | 139 | 2469.10 |
20 | 746.99 | 50 | 749.42 | 80 | 2075.30 | 110 | 2135.00 | 140 | 2480.10 |
21 | 747.39 | 51 | 749.43 | 81 | 2091.90 | 111 | 2135.00 | 141 | 2483.00 |
22 | 747.52 | 52 | 749.46 | 82 | 2092.40 | 112 | 2135.40 | 142 | 2491.20 |
23 | 747.75 | 53 | 749.50 | 83 | 2102.90 | 113 | 2135.40 | 143 | 2493.90 |
24 | 747.92 | 54 | 797.09 | 84 | 2103.50 | 114 | 2135.50 | 144 | 2500.10 |
25 | 748.02 | 55 | 835.36 | 85 | 2110.40 | 115 | 2230.70 | 145 | 2502.50 |
26 | 748.21 | 56 | 999.34 | 86 | 2111.20 | 116 | 2232.80 | 146 | 2507.30 |
27 | 748.27 | 57 | 1002.60 | 87 | 2115.80 | 117 | 2233.00 | 147 | 2509.30 |
28 | 748.42 | 58 | 1305.60 | 88 | 2116.60 | 118 | 2235.90 | 148 | 2513.10 |
29 | 748.46 | 59 | 1306.80 | 89 | 2119.90 | 119 | 2238.20 | 149 | 2514.90 |
30 | 748.55 | 60 | 1500.20 | 90 | 2120.70 | 120 | 2247.20 | 150 | 2517.80 |
Order Number | Natural Frequency/Hz | Vibration Mode |
---|---|---|
1 | 650.63 | The vibration of the blade and the wheel is coupled with 0 pitch diameter |
2–53 | 706.22–749.50 | Blade first-order bending vibration |
54–78 | 797.09–2048.40 | The blade and the wheel vibrate together |
79–131 | 2075.10–2364.90 | First-order torsional vibration of blades |
132–150 | 2396.30–2517.80 | Blade bending-torsion coupled vibration |
Order Number | Natural Frequency | Order Number | Natural Frequency | Order Number | Natural Frequency | Order Number | Natural Frequency | Order Number | Natural Frequency |
---|---|---|---|---|---|---|---|---|---|
1 | 656.78 | 40 | 720.99 | 79 | 748.96 | 118 | 1763.90 | 157 | 1852.60 |
2 | 664.55 | 41 | 722.37 | 80 | 748.98 | 119 | 1766.50 | 158 | 1866.90 |
3 | 666.86 | 42 | 728.61 | 81 | 749.03 | 120 | 1781.10 | 159 | 1870.70 |
4 | 666.99 | 43 | 729.35 | 82 | 749.05 | 121 | 1795.60 | 160 | 1874.00 |
5 | 668.81 | 44 | 735.55 | 83 | 749.07 | 122 | 1805.10 | 161 | 1875.30 |
6 | 674.13 | 45 | 736.26 | 84 | 749.09 | 123 | 1805.60 | 162 | 1894.80 |
7 | 675.66 | 46 | 739.31 | 85 | 749.12 | 124 | 1809.70 | 163 | 1900.60 |
8 | 676.78 | 47 | 739.91 | 86 | 749.17 | 125 | 1810.60 | 164 | 1909.50 |
9 | 681.73 | 48 | 741.74 | 87 | 749.2 | 126 | 1811.90 | 165 | 1937.20 |
10 | 682.5 | 49 | 742.33 | 88 | 749.21 | 127 | 1812.70 | 166 | 1937.30 |
11 | 686.01 | 50 | 743.44 | 89 | 749.23 | 128 | 1813.20 | 167 | 1943.40 |
12 | 686.67 | 51 | 744.06 | 90 | 749.25 | 129 | 1813.80 | 168 | 1952.80 |
13 | 688.97 | 52 | 744.68 | 91 | 749.30 | 130 | 1814.10 | 169 | 1955.20 |
14 | 689.58 | 53 | 745.31 | 92 | 778.35 | 131 | 1814.40 | 170 | 1959.10 |
15 | 690.95 | 54 | 745.60 | 93 | 1025.80 | 132 | 1814.70 | 171 | 1962.10 |
16 | 691.55 | 55 | 746.21 | 94 | 1026.20 | 133 | 1814.90 | 172 | 1964.10 |
17 | 692.26 | 56 | 746.29 | 95 | 1037.40 | 134 | 1815.20 | 173 | 1967.90 |
18 | 692.84 | 57 | 746.80 | 96 | 1195.50 | 135 | 1815.30 | 174 | 1972.00 |
19 | 693.13 | 58 | 746.89 | 97 | 1199.00 | 136 | 1815.40 | 175 | 1976.40 |
20 | 693.66 | 59 | 747.23 | 98 | 1284.50 | 137 | 1815.60 | 176 | 1980.00 |
21 | 693.73 | 60 | 747.38 | 99 | 1292.50 | 138 | 1815.70 | 177 | 1983.90 |
22 | 694.09 | 61 | 747.57 | 100 | 1358.10 | 139 | 1815.80 | 178 | 1985.40 |
23 | 694.23 | 62 | 747.75 | 101 | 1359.40 | 140 | 1815.90 | 179 | 1988.50 |
24 | 694.39 | 63 | 747.83 | 102 | 1420.90 | 141 | 1816.00 | 180 | 1989.30 |
25 | 694.56 | 64 | 748.02 | 103 | 1426.50 | 142 | 1816.00 | 181 | 1991.50 |
26 | 694.63 | 65 | 748.08 | 104 | 1471.40 | 143 | 1816.10 | 182 | 1992.20 |
27 | 694.76 | 66 | 748.22 | 105 | 1484.90 | 144 | 1816.10 | 183 | 1993.50 |
28 | 694.82 | 67 | 748.26 | 106 | 1548.50 | 145 | 1816.20 | 184 | 1994.20 |
29 | 694.90 | 68 | 748.35 | 107 | 1555.20 | 146 | 1819.50 | 185 | 1994.90 |
30 | 694.95 | 69 | 748.46 | 108 | 1566.60 | 147 | 1822.60 | 186 | 1995.50 |
31 | 695.00 | 70 | 748.52 | 109 | 1585.50 | 148 | 1823.10 | 187 | 1996.20 |
32 | 695.04 | 71 | 748.59 | 110 | 1604.20 | 149 | 1824.70 | 188 | 1996.60 |
33 | 695.08 | 72 | 748.65 | 111 | 1615.90 | 150 | 1825.20 | 189 | 1997.20 |
34 | 695.13 | 73 | 748.74 | 112 | 1618.00 | 151 | 1825.30 | 190 | 1997.50 |
35 | 695.15 | 74 | 748.78 | 113 | 1679.80 | 152 | 1826.20 | 191 | 1997.70 |
36 | 695.19 | 75 | 748.79 | 114 | 1695.50 | 153 | 1827.50 | 192 | 1997.90 |
37 | 695.21 | 76 | 748.86 | 115 | 1700.80 | 154 | 1830.10 | 193 | 2011.00 |
38 | 695.22 | 77 | 748.90 | 116 | 1730.40 | 155 | 1831.90 | 194 | 2012.60 |
39 | 695.23 | 78 | 748.92 | 117 | 1763.20 | 156 | 1841.20 | 195 | 2049.70 |
Order Number | Natural Frequency/Hz | VIBRATION MODE |
---|---|---|
1 | 656.78 | Coupled vibration of the two-stage blade and wheel |
2–5 | 664.55–668.810 | First-order bending vibration of the one-stage blade |
6 | 674.13 | Coupled vibration of the two-stage blade and wheel |
7–39 | 675.66–695.23 | First-order bending vibration of the one-stage blade |
40–91 | 720.99–749.30 | First-order bending vibration of the two-stage blades |
92 | 778.35 | Zero pitch diameter vibration of the stage two blades and disks |
93–94 | 1025.80–1026.20 | One-pitch vibration of the stage two blades and disks |
95 | 1037.40 | Zero pitch diameter vibration of the stage one blade and wheel |
96–97 | 1195.50–1199.00 | One-pitch vibration of the stage one blades and disks |
98–99 | 1284.50–1292.50 | Two-pitch vibration of the stage one blades and disks |
100–101 | 1358.10–1359.40 | Two-pitch diameter vibration of the two stage blades and disks |
102–103 | 1420.90–1426.50 | Three-pitch vibration of the stage one blades and disks |
104–106 | 1471.40–1548.50 | Coupled vibration of the two-stage blade and wheel |
107–108 | 1555.20–1566.60 | Four-pitch vibration of the stage one blades and disks |
109–110 | 1585.50–1604.20 | Two-pitch diameter vibration of the two-stage blades and disks |
111–112 | 1615.90–1618.00 | Three-section diameter vibration of the stage two blades and disks |
113–114 | 1679.80–1695.50 | Five section diameter vibration of the stage one blade and wheel |
115–116 | 1700.80–1730.40 | Coupled vibration of the two-stage blade and wheel |
117 | 1763.20 | Four-pitch vibration of the stage two blades and disks |
118 | 1763.90 | Bending-torsion coupled vibration of the stage one blade |
119 | 1766.50 | Four-pitch vibration of the stage two blades and disks |
120–158 | 1781.10–1866.90 | First order torsional vibration of the one-stage blade |
159–160 | 1870.70–1874.00 | Five section diameter vibration of the stage two blades and wheel |
Order Number | Natural Frequency/Hz | Level One Blade Disk/mm | Level Two Blade Disk/mm | Ratio |
---|---|---|---|---|
99 | 1292.5 | 1.0060 | 0.2319 | 4.34 |
104 | 1471.4 | 0.3266 | 0.1907 | 1.71 |
105 | 1484.9 | 0.4579 | 1.0943 | 2.39 |
106 | 1548.5 | 0.5240 | 0.9044 | 1.73 |
115 | 1700.8 | 0.5405 | 0.0969 | 5.58 |
116 | 1730.4 | 0.4907 | 0.5007 | 1.00 |
Level One | Level Two | Two Levels of Coupling | Vibration Mode | |||
---|---|---|---|---|---|---|
Order Number | Natural Frequency | Order Number | Natural Frequency | Order Number | Natural Frequency | |
--- | --- | 1 | 650.63 | 1 | 656.78 | Coupled vibration of the two-stage bladed disk |
1–38 | 667.68–695.48 | --- | --- | 2–5 | 664.55–668.81 | Level one blade vibration |
6 | 674.13 | Coupled vibration of the two-stage bladed disk | ||||
7–39 | 675.66–695.23 | Level one blade vibration | ||||
--- | --- | 2–53 | 706.22–749.50 | 40–91 | 720.99–749.30 | Level two blade vibration |
39–54 | 1064.10–1784.70 | 54–78 | 797.09–2048.40 | 92–103 | 778.35–1426.50 | Single stage coupled vibration of the bladed disk |
104–106 | 1471.40–1548.50 | Coupled vibration of the two-stage bladed disk | ||||
107–114 | 1555.20–1695.50 | Single-stage coupled vibration of the bladed disk | ||||
115–116 | 1700.80–1730.40 | Coupled vibration of the two-stage bladed disk |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Jin, X.; Fu, Y.; Zhao, T. Study on the Coupled Vibration Characteristics of a Two-Stage Bladed Disk Rotor System. Appl. Sci. 2021, 11, 8600. https://doi.org/10.3390/app11188600
Yu Y, Jin X, Fu Y, Zhao T. Study on the Coupled Vibration Characteristics of a Two-Stage Bladed Disk Rotor System. Applied Sciences. 2021; 11(18):8600. https://doi.org/10.3390/app11188600
Chicago/Turabian StyleYu, Yinxin, Xiaolong Jin, Yanming Fu, and Tianyu Zhao. 2021. "Study on the Coupled Vibration Characteristics of a Two-Stage Bladed Disk Rotor System" Applied Sciences 11, no. 18: 8600. https://doi.org/10.3390/app11188600
APA StyleYu, Y., Jin, X., Fu, Y., & Zhao, T. (2021). Study on the Coupled Vibration Characteristics of a Two-Stage Bladed Disk Rotor System. Applied Sciences, 11(18), 8600. https://doi.org/10.3390/app11188600