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Abstract: This study investigated the applicability of algae (Hizikia fusiformis, Green gracilaria, and
Codium fragile) for removing heavy metals (Cd2+, Cu2+, Ni2+, and Pb2+) from aqueous solutions.
Among the algae, H. fusiformis was chosen as a bioadsorbent and modified with NaOH and HCl. The
results showed that the biosorption capacity of H. fusiformis improved significantly after treatment
with NaOH; however, H. fusiformis modified with HCl did not achieve the expected value. The
NaOH treatment enhanced the biosorption of metals on the treated H. fusiformis because of the
hydrolysis reaction producing carboxylic (–COOH) and hydroxyl groups (–OH). The kinetics for
Cd2+, Cu2+, Ni2+, and Pb2+ biosorption well fitted to pseudo-first-order, pseudo-second-order, and
Elovich models, with R2 of >0.994. The Freundlich model provided a good fit for the equilibrium
biosorption of Cd2+, Cu2+, and Ni2+ by both algae and the Langmuir model for Pb2+. The maximum
biosorption of metals was in the order Pb2+ >> Cu2+ ≈ Ni2+ > Cd2+, with qmax of 167.73, 45.09, 44.38,
and 42.08 mg/g, respectively. With an increase in the solution pH, metal biosorption was enhanced,
and considerable enhancement was observed in the pH range of 2–4. Thus, H. fusiformis is expected
to be considered a superior candidate for metal biosorption.

Keywords: heavy metals; biosorption; modification; algae; Hizikia fusiformis

1. Introduction

A large amount and high concentration of heavy metals in industrial wastewater,
mainly from mining, metal processing, tanneries, pharmaceuticals, pesticides, organic
chemicals, rubber and plastics, lumber, and wood products, has been discharged into
water bodies without adequate treatment [1]. Heavy metal concentrations exceeding the
permissible standards in drinking water and wastewater have often been observed in many
countries [2]. Heavy metals are toxic to humans and other animal predators because they
accumulate in the body through the food chain [3,4]. These can, accumulated in the body,
cause toxic effects such as cancer and gastrointestinal disease, as well as neurological and
renal disturbances [5–7]. Therefore, it is vital to develop methods and technologies to
remove heavy metals before being discharged into the aquatic environment [8].

Various methods, including ion exchange [9], coagulation/precipitation [10], mem-
brane separation [11], adsorption/filtration [12,13], and electrochemical treatment [14],
have been applied to industrial wastewater contaminated with heavy metals. However,
most of these methods have limitations for use in the field because of the generation of
large amounts of sludge from the chemical process as well as the cost for build-up and
management, and low technical maturity [15–17]. For these reasons, the attraction for
environmentally friendly technologies as low cost, effective, and easy-to-apply alternatives
has been increased by many researchers [18–20]. The adsorption process is preferable for
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heavy metal removal because of the relatively low cost for build-up and maintenance, sim-
ple implementation, easy operations, availability of a number of adsorbents, environment
friendly, high removal efficiency, and ability to remove a variety of pollutants present in
wastewater [8,21,22].

The use of living or dead biomass has been considered one of the most effective,
economical, and promising bioadsorbents for removing toxic metals from contaminated
water [23,24]. Biomass from bacteria, fungi, and algae is also considered a promising
adsorbent for removing heavy metals from wastewater because of the abundance of this
biomass in nature and its rapid growth, and ease of cultivation [25–27]. Among the types
of naturally occurring biomass, marine algae, in particular, are a renewable source and
easily obtainable in large quantities [28,29]. A statistical review on biosorption [5] reported
that algae had been widely used as raw material for biosorbents 15.3% more than other
types of biomass (activated carbon or activated sludge) and 84.6% more than fungi and
bacteria. Marine algae also have a high affinity for metals because the polysaccharides,
proteins, or lipids on the outer cell wall of the algae provide adsorption sites for the metals
via complex formation and ion exchange [30]. Both live and dead algae can be used as
adsorbents for heavy metals, and dead algae have several advantages over living algae
in terms of utilization. Dead marine algae may be even more cost-effective than living
algae because inactive algae require neither food nor essential elements for biological
growth [5]. Moreover, dead biomass is not affected by the toxicity of metal ions, and
the chemical and physical modification of the biomass can be applied to enhance the
adsorption capacity [5,31]. Acid or base modification is the most common method of
enhancing the bioadsorption of heavy metals to algae, which results from exposure of
active metal-binding sites contained in the cell wall or chemical modification of cell wall
components [32].

Therefore, in this study, we evaluated the feasibility of marine algae as bioadsorbents
for removing heavy metals from contaminated water. As harvested dead biomass, Hizikia
fusiformis, Green gracilaria, and Codium fragile purchased from a local market were tested in
this study, and to the best of our knowledge, the heavy metals (Cd2+, Cu2+, Ni2+, and Pb2+)
bioabsorption capacity of these species had never been compared together under identical
experimental conditions. In addition, the effects of acid or base treatment on the biosorption
capacity of H. fusiformis was explored, and the morphology and functional group analyses
of untreated and modified biosorbents were performed using field emission-scanning
electron microscopy (FE-SEM) and Fourier transform infrared spectroscopy (FTIR). The
removal efficiency according to reaction time and initial heavy metal concentration were
compared, and experimental data were analyzed using kinetic adsorption models and
isotherms to quantify the biosorption characteristics. The effect of solution pH on metal
bioabsorption capacity was also evaluated.

2. Materials and Methods
2.1. Bioadsorbent Preparation

As harvested dead biomass, brown marine algae, Hizikia fusiformis, Green gracilaria,
and Codium fragile were purchased from a local seafood market in South Korea. The algae
samples were washed with deionized water to remove salts and sand until there was
no change in the effluent, and then dried at 70 ◦C for one week. The dried samples of
H. fusiformis, G. gracilaria, and C. fragile were ground and sieved to a size of 200–430 µm
using US standard sieves (Humboldt Manufacturing Co., Elgin, IL, USA). The algae with
a high capacity for heavy metal removal was chosen (H. fusiformis), with the goal of
modifying the biomass to enhance the biosorption capacity. HCl (Duksan Chemical, Ansan,
Korea, 35–37%) and NaOH (Duksan Chemicals, Ansan, Korea, 93%) were selected as
reagents for acid and base treatment, respectively. Different concentrations of acid or base
were applied to the chosen algae, as shown in Table 1. For acid treatment, the dried algae
were soaked in two different concentrations (0.1 M and 1 M) of HCl for 1 h, and the treated
algae were washed with deionized water until the pH of the rinsed water was above 4.5.



Appl. Sci. 2021, 11, 8604 3 of 13

In the case of base treatment, 0.1 M and 1 M NaOH solutions were employed, and the
dried algae were allowed to react for 1 h. The base-treated samples were also washed with
deionized water until the rinsing water was below pH 10. The chemically modified algae
were dried at 60 ◦C for 24 h and then stored in a desiccator before use.

Table 1. Conditions for modifying H. fusiformis using HCl and NaOH.

Biomass Untreated NaOH 0.1 M NaOH 1 M HCl 0.1 M HCl 1 M

H. fusiformis HR HN_0.1 M HN_1 M HH_0.1 M HH_1 M

2.2. Characterizations

The morphologies of the untreated and modified algae were investigated using a field-
emission scanning electron microscope (FE-SEM; S-4700, Hitachi, Japan). Gold sputtering
on the sample was performed at 30 mA for 120 s to prevent overcharging the sample. The
specimens of untreated H. fusiformis and H. fusiformis treated with 1 M NaOH were observed
at ×3000 magnification at an accelerating voltage of 5 kV. The functional groups present on
the surface of the algae were analyzed using Fourier transform infrared spectroscopy (FTIR;
Nicolet iS10, Thermo Scientific, Madison, WI, USA). For the FTIR analysis, the algae were
mixed with KBr and formed into pellets, and the spectra in the range of 4000–650 cm−1

were recorded at an average of 200 scans and a spectral resolution of 2 cm−1.

2.3. Batch Biosorption Experiments

Batch biosorption experiments were conducted under different initial concentrations
to observe the effects of algae species, acid/base treatment, initial metal concentration,
reaction time, and pH on the removal of heavy metals. All batch biosorption experiments
were performed by reacting a bioadsorbent (0.05 g) with 30 mL of metal solution at
25 ± 0.5 ◦C with agitation at 100 rpm in a shaking incubator (SJ-808SF, Sejong Scientific
Co., Bucheon, Korea) unless otherwise stated. The stock metal solution (1000 mg/L)
was prepared by dissolving Cd(NO3)2, Cu(NO3)2, Ni(NO3)2, and Pb(NO3)2 (Samchun
Chemical Co., Pyeongtaek, Korea) in deionized water. The initial pH was adjusted to
4 using 0.1 M NaOH and 0.1 M HNO3.

For the comparison of different algal species, including H. fusiformis, G. gracilaria,
and C. fragile, 0.05 g of each dried algae was reacted with 30 mL of 100 mg/L of mixed-
metal solution at pH 4 for 24 h. The biosorption experiments for H. fusiformis treated with
different concentrations of HCl or NaOH were performed under the same conditions as
the algae comparison experiments.

The biosorption characteristics of 1 M NaOH-treated H. fusiformis (HN_1M) were
analyzed by varying the reaction time (30–1440 min), initial heavy metal concentrations
(10–1000 mg/L), and solution pH (2–9). Kinetic biosorption experiments were performed
with pH 4 and 10 mg/L of metal solution and 0.05 g of bioadsorbent under different
reaction times (30, 60, 120, 180, 360, and 1440 min). Equilibrium biosorption experiments
were conducted with different initial metal concentrations (10, 50, 100, 300, 500, 700, and
1000 mg/L) for a fixed reaction time of 1440 min. The influence of pH on heavy metal
biosorption was investigated under different pH values from 2.0 to 9.0 at 10 mg/L of initial
metal concentration for 1440 min of reaction time.

After biosorption experiments, the heavy metal solution was separated from the bio
adsorbent using filter paper (0.45-µm polypropylene filter; Whatman, Clifton, NJ, USA).
HNO3 (2%) was applied in drops to the filter solution, to prevent the precipitation of heavy
metals prior to analysis. The metal concentration in the solution was measured using an
inductively coupled plasma spectrometer (ICP-OES 5100 Series, Agilent Technologies Inc.,
Carpinteria, CA, USA). The amount of metal absorbed was calculated from its initial and
final concentrations. The removal percentage was obtained from the ratio of the removed
amount to the initial concentration.
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2.4. Data Analysis

Kinetic data for the study were obtained using the following pseudo-first-order
(PFO, Equation (1)) [33], pseudo-second-order (PSO, Equation (2)) [34], and Elovich
(Equation (3)) [35] models:

qt = qe[1 − exp(−k1t)] (1)

qt =
k2q2

e t
1 + k2qet

(2)

qt =
1
β

ln(1 + αβt) (3)

where qt (mg/g) is the adsorbed amount of heavy metal at time t, qe (mg/g) is the adsorbed
amount of heavy metal at equilibrium, k1 (1/min) is the PFO rate constant, k2 (g/mg·min)
is the PSO rate constant, α is the initial rate constant (mg/g·min), and β is the desorption
constant (g/mg). Kinetic adsorption data within 180 min were used to analyze PFO, PSO,
and Elovich models. The intraparticle diffusion (IPD, Equation (4)) [36] model was also
used to analyze kinetic experimental data from 0 to 1440 min:

qt = kit0.5 + C (4)

where ki is the IPD rate constant (g/mg/h0.5), and C is the intercept that reflects the
boundary-layer effect or surface adsorption (mg/g).

The equilibrium data were analyzed using the Langmuir isotherm model (Equation (5))
and Freundlich isotherm models (Equation (6)] [37]:

qe =
qobCe

1 + bCe
(5)

qe = KFC1/n
e (6)

where q0 (mg/g) is the maximum biosorption capacity, b (L/mg) is the Langmuir constant,
Ce (mg/L) is the metal concentration in solution at equilibrium, KF ((mg/g)·(L/mg)1/n) is
the distribution coefficient, and n is the Freundlich constant. The variable was determined
by fitting the Langmuir and Freundlich models to the observed data.

All parameters of the kinetic and equilibrium models were estimated by non-linear
regression using the Dynamic Fit Wizard function of Sigma-Plot 10.0 (SPSS INC, Chicago,
IL, USA). The goodness of model fit was expressed by the determination coefficient (R2)
and the sum of squared errors (SSE).

3. Results and Discussion
3.1. Comparison of Heavy Metal Uptake by Different Algae

The removal efficiency of dried marine algae, Hizikia fusiformis, Green gracilaria, and
Codium fragile for Cd2+, Cu2+, Ni2+, and Pb2+ were shown in Figure 1 (initial metal con-
centration: 100 mg/L; pH: 4.0; adsorbent dosage: 1.67 g/L; reaction time: 24 h; agitation
speed: 100 rpm; temperature: 25 ± 0.5 ◦C). The Cd2+, Cu2+, Ni2+, and Pb2+ metal ion
removal performances were 14.9%, 31.6%, 10.9%, and 10.9%, respectively, for H. fusiformis.
H. fusiformis had the highest removal efficiency, followed by C. fragile, and G. gracilaria.
Biomass from different algal species exhibited different metal-binding capacities under
these experimental conditions (pH 4 and 25 ◦C). Differences between algal species in the
magnitude of metal-binding capacity may have been due to the properties of the algae
such as structure, functional groups, and surface area, depending on the algal division,
genera, and species [38]. Based on these experimental results, H. fusiformis was selected for
further experiments.
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Figure 1. Comparison of metal removal capacity of biomass from different species of algae.

3.2. Effect of Acid and Base Treatment on Heavy Metal Removal by H. fusiformis

The biomass from H. fusiformis was treated with acid (0.1 M and 1 M HCl) and base
(0.1 M and 1 M NaOH) to investigate the effect of chemical treatment on heavy metal
uptake capacity, and the effects were compared in Figure 2 (initial metal concentration:
100 mg/L; pH: 4.0; adsorbent dosage: 1.67 g/L; reaction time: 24 h; agitation speed:
100 rpm; temperature: 25 ± 0.5 ◦C). The treatment of H. fusiformis with NaOH was effective
in increasing the Cu2+ uptake capacity, from 35.5 to 58.65 mg/g, whereas H. fusiformis
modified by acid did not show such an effectiveness. In addition to Cu2+ uptake, the
uptake of other metals, namely, Cd2+, Ni2+, and Pb2+, were also higher in NaOH-modified
H. fusiformis than in untreated H. fusiformis. Galun, et al. [39], reported that NaOH-treated
biomass of Penicillium digitatum also showed enhancement of Cd2+ biosorption. This could
be explained by the change in the cell wall structure and functional groups on the cell
wall by chemical modification, which generally enhances the biosorption characteristics of
biological materials, mainly due to hydrolysis reactions [40]. The hydrolysis reaction can
produce more carboxylic (–COOH) and hydroxyl groups (–OH) on the surface of the cell
wall, leading to enhanced metal-binding properties of algal biomass [41].

3.3. Changes in Characteristics of H. fusiformis after Base Treatment

FE-SEM micrographs of (a) untreated H. fusiformis and (b) after treatment with 1 M
NaOH are shown in Figure 3. The crystal precipitates disappeared after NaOH treatment,
but the surface of treated H. fusiformis was degraded, showing more cracks and greater
porosity. This led to improvements in surface area and pore volume, which indicated the
potential higher adsorption capacity of the adsorbents [5]. After NaOH treatment, the more
active sites absorbed more heavy metals.
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(Scale bar: 10 µm).

FTIR was used to identify the functional groups on the surface of untreated and
treated algae and to investigate the contribution of functional groups to the biosorption
of metals by algae. The FTIR spectra of H. fusiformis is shown in Figure 4. The broad and
intense absorption peaks at 3249–3292 cm−1 corresponded to the O-H stretching vibrations
present in cellulose, pectin, absorbed water, hemicellulose, and lignin [42]. The small bands
in the range of 2920–2935 cm−1 are attributable to the C–H stretching vibrations of methyl,
methylene, and methoxy groups [43]. The peaks at 1604–1618 cm−1 corresponded to the
ester carbonyl (C = O) groups and carboxylate ion (COO-) stretching band of pectin [25,44].
The vibrations at 1430–1455 cm−1 are attributable to aliphatic and aromatic (C-H) groups
in the plane deformation vibrations of methyl, methylene, and methoxy groups. The
bands in the range of 1000–1300 cm−1 were assigned to the C-O stretching vibration of
R-COOH and R-OH [2]. The change in the vibrational frequency of functional groups
after treatment showed that treatment with NaOH could increase the number of ester
(1160 cm−1) and carboxylic groups (1419 cm−1), effectively absorbing heavy metals in an
aqueous solution [45]. The peaks of H. fusiformis at 1082 cm−1 and 890 cm−1 represent C-O
stretching and C = C bending.
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3.4. Biosorption Characteristics of 1 M NaOH-Treated H. fusiformis
3.4.1. Effect of Reaction Time

The biosorption data for the uptake of metal ions versus contact time at pH 4 are shown
in Figure 5 (initial metal concentration: 10 mg/L; pH: 4.0; adsorbent dosage: 1.67 g/L;
reaction time: 30–1440 min; agitation speed: 100 rpm; temperature: 25 ± 0.5 ◦C). The
adsorbed amount of metal ions increased rapidly within the first 30 min, and equilibrium
was reached after 180 min. After this equilibrium period, the amount of metal biosorption
remained constant. The removal efficiencies of Pb2+, Cd2+, Cu2+, and Ni2+ ions at 180 min
were 97.7%, 88.9%, 79.8%, and 61.5%, respectively. High biosorption at the beginning of
experiments was also found in other studies: Chlorella vulgaris and the freshwater alga
Scenedesmus quadricauda took up 90–95% of Cu2+ within the first 15 min of the experiment
and reached equilibrium biosorption after about 2 h [46]; Ecklonia radiate took up 90% of
Cu2+ and Pb2+ ions within 30 min and reached equilibrium biosorption after approximately
1 h [47]. This phenomenon can be explained by the fact that the active sites on the surface
of algal materials were not occupied at the initial times, resulting in a high biosorption
rate of heavy metals without competition with unadsorbed metals and replacement of
adsorbed metals [41,43].

The parameters for the PFO, PSO, and Elovich models obtained from the kinetic
experimental data from 0 to 180 min are listed in Table 2. For H. fusiformis, it can be
concluded that the data fitted well with all three models applied in this study with a high
correlation (R2 > 0.994). Figure 5a shows that PFO and PSO models seemed to fit better to
the experimental data than Elovich models. The good prediction of kinetic data by PFO
and PSO models indicates that two or more steps influence the biosorption process [48,49].
The reaction rates of the PFO and PSO models followed the decreasing order of Cd2+ >
Ni2+ > Cu2+ > Pb2+. Pb2+ showed a lower reaction rate but higher equilibrium sorption
than Ni2+.

Figure 5b presents that the biosorption process of heavy metals by 1 M NaOH-treated
H. fusiformis involved two stages of diffusion processes. The parameters for the IPD model
obtained from the kinetic experimental data from 0 to 1440 min are listed in Table 3. The first
step for the diffusion of heavy metals to the external surface of the bioadsorbents was faster
than the second step for the diffusion of metals internal pores of the bioadsorbents [50].
Two straight lines in Figure 5b are observed not to pass through the origin, indicating
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that the biosorption rate of the heavy metals was not only controlled by intraparticle
diffusion [51].
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Table 2. Pseudo-first-order, pseudo-second-order, and Elovich model parameters for heavy metal biosorption on 1 M
NaOH-treated H. fusiformis.

Metals
Pseudo-First-Order Model Pseudo-Second-Order Model Elovich Model

qe (mg/g) k1 (1/min) R2 SSE qe (mg/g) k2 (g/mg·min) R2 SSE α (mg/g/min) β (g/mg) R2 SSE

Cd2+ 5.869 0.126 1.000 0.004 5.924 0.175 1.000 0.004 2.30 × 104 2.640 0.994 0.164

Cu2+ 5.709 0.087 1.000 0.006 5.870 0.055 1.000 0.004 1.15 × 104 2.625 0.998 0.049

Ni2+ 3.952 0.112 1.000 0.001 4.005 0.173 1.000 0.000 4.05 × 104 4.191 0.996 0.048

Pb2+ 5.726 0.069 1.000 0.006 5.996 0.030 0.999 0.016 8.21 × 103 2.598 0.998 0.056

Table 3. Intraparticle diffusion model parameters for heavy metal biosorption on 1 M NaOH-treated H. fusiformis.

Metals
Intraparticle Diffusion Model–1st Step Intraparticle Diffusion Model–2nd Step

ki (g/mg/min0.5) C (mg/g) R2 SSE ki (g/mg/min0.5) C (mg/g) R2 SSE

Cd2+ 0.0490 5.816 0.999 0.019 0.0001 6.401 1.000 0.001

Cu2+ 0.0573 5.923 1.000 0.011 0.0001 6.657 1.000 0.000

Ni2+ 0.0147 5.737 1.000 0.001 0.0001 5.889 0.997 0.006

Pb2+ 0.0276 2.352 0.988 0.285 0.0001 5.810 1.000 0.002

3.4.2. Effect of Initial Heavy Metal Concentration

Equilibrium biosorption experiments were performed to quantify the maximum
biosorption capacity of 1 M NaOH-treated H. fusiformis (initial metal concentration:
10–1000 mg/L; pH: 4.0; adsorbent dosage: 1.67 g/L; reaction time: 1440 min; agitation
speed: 100 rpm; temperature: 25 ± 0.5 ◦C). Figure 6 shows that the biosorption of different
metal ions increased with an increase in the initial heavy metal concentration and reached
the maximum adsorbed amount at >300 mg/L of initial heavy metal concentration. The
equilibrium parameters derived from the fitting of the Langmuir and Freundlich models to
the experimental data are presented in Table 4. The Freundlich model provided a good
fit for the equilibrium data of biosorption with a high correlation coefficient (R2 = 0.965
for Cd2+, R2 = 0.956 for Cu2+, and R2 = 0.970 for Ni2+). Similar results were obtained by
Hong and Park [52], who reported that Cd2+, Cu2+, and Ni2+ biosorption by sepiolite was
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well fitted to the Freundlich model. In contrast, the fit of the equilibrium data for Pb2+

ion biosorption by the Langmuir model was better (R2 = 0.967, SSE = 1054.9) than the
Freundlich model. These results indicate that the biosorption of Cd2+, Cu2+, and Ni2+

adsorbed on the 1 M NaOH-treated H. fusiformis via the formation of a multilayer but Pb2+

via monolayer [21].
The maximum biosorption of the treated H. fusiformis, obtained from the Langmuir

model, was in the order of Pb2+ >> Cu2+ ≈ Ni2+ > Cd2+. The affinity of these heavy metals
for H. fusiformis can be explained by the electronegativity of metals, the hydrolysis constant,
and the charge-to-radius ratio [21,53]. Among them, electronegativity was most suitable to
explain our experimental data. The electronegativities of the four heavy metals, in decreas-
ing order, were Pb2+ (2.33) > Ni2+ (1.91) > Cu2+ (1.90) > Cd2+ (1.69) [54,55]. Electronegativity
can influence heavy metal adsorption because metals with higher electronegativities can
build stronger covalent bonds with O atoms present on the surface of the adsorbent [54].
Pb2+, which had the highest electronegative value, showed the highest biosorption, whereas
Cd2+, which had the lowest electronegative value, presented the lowest biosorption. Ni2+

and Cu2+ had similar electronegativity and biosorption amounts similar to those of treated
H. fusiformis. This relatively superior Pb2+ adsorption derived from electronegativity has
also been reported similarly in other algae (Codium vermilara, Spirogyra insignis, Asparagopsis
armata, Chondrus crispus, Fucus spiralis, Ascophyllum nodosum) [56].

The adsorption of metals onto adsorbents increased as the hydrolysis constant (pK)
decreased. The pK values of the metals, in increasing order, were Cu2+ (pK = 7.7) = Pb2+

(pK = 7.7) < Ni2+ (pK = 9.9) < Cd2+ (pK = 10.1) [57]. The least amount of Cd2+ with pKa was
removed by H. fusiformis, but the hydrolysis constants for other metals were not consistent
with their uptake by H. fusiformis. The larger ionic radius led to the lower charge density
and columbic attraction between ions and the surface of adsorbents, and the ionic radius
of metals, in decreasing order, was Pb2+ (1.20 Å) > Cd2+ (0.97 Å) > Cu2+ (0.73 Å) > Ni2+

(0.69 Å) [58]. Pb2+, which had a larger ionic radius and lower charge density, was taken
up by H. fusiformis, indicating that electrostatic attraction was not a critical factor for the
uptake of heavy metals by H. fusiformis.

The removal of heavy metals by biosorption using algae has many advantages: high
removal efficiency, low-cost material, reduction of chemical and hazardous sludge, re-
generation of biosorbent, and metal recovery [59]. The Langmuir maximum biosorption
capacities of 1 M NaOH-treated H. fusiformis was compared to that of various algae such as
red, green, and brown algae (Table 5), which was comparable to that of other biomass.
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Table 4. Langmuir and Freundlich model parameter of Cd2+, Cu2+, Ni2+, and Pb2+ sorption by 1 M
NaOH-treated H. fusiformis.

Metals
Langmuir Model Freundlich Model

qm (mg/g) KL (L/mg) R2 SSE KF ((mg/g)·(L/mg)1/n) 1/n R2 SSE

Cd2+ 38.390 0.0158 0.882 118.0 6.127 0.272 0.965 34.5

Cu2+ 42.250 0.2879 0.952 96.0 14.844 0.186 0.956 88.3

Ni2+ 41.872 0.0079 0.933 66.0 3.198 0.369 0.970 29.5

Pb2+ 162.201 0.1127 0.967 1054.9 42.060 0.222 0.950 1382.9

Table 5. Comparison of Langmuir maximum biosorption capacities of pretreated H. fusiformis with
other materials.

Adsorbents Pb2+ (mg/g) Cu2+ (mg/g) Cd2+ (mg/g) Ni2+ (mg/g) References

Asparagpsis armata 63.7 21.3 32.3 17.1 [56]
Spirogyra insignis 51.5 19.3 22.9 17.5 [56]

Fucus spiralis 204.1 70.9 114.9 50.0 [56]
Codium vermilara 63.3 16.9 21.8 13.2 [60]
Chondrus crispus 204.1 40.5 75.2 37.2 [60]

Ascophyllum nodosum 178.6 58.8 87.7 43.3 [60]
Caulerpa lentillifera 28.98 8.26 4.70 - [61]

P. palmata 15.17 6.65 - - [62]
H. fusiformis 162.20 42.25 38.39 41.87 This study

3.4.3. Effect of Solution pH

The effect of solution pH (2–9) on the removal of heavy metals by pretreated H.
fusiformis was also studied (initial metal concentration: 10 mg/L; pH: 2.0–9.0; adsor-
bent dosage: 1.67 g/L; reaction time: 1440 min; agitation speed: 100 rpm; temperature:
25 ± 0.5 ◦C). The results show that the uptake of heavy metals significantly increased in
the pH range of 2–4 (Figure 7). The biosorption of Cd2+, Cu2+, and Pb2+ plateaued above
pH 4, and the Ni2+ biosorption continued to increase until pH 9. In acidic pH conditions
(pH < 4), the active surface sites of the adsorbent were protonated [63], lowering the
biosorption of heavy metals at these pH values [25]. However, as the pH increased, the
adsorption of heavy metals increased as the competition between H+ ions and heavy metals
decreased [64]. Furthermore, at pH > 6, these metal ions can be adsorbed to negatively
charged surfaces of pretreated H. fusiformis via electrostatic interaction because the point of
zero charges of algae has been reported in the range of pH 4–6.1 [65–68].
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4. Conclusions

This study investigated the removal efficiency of different algae, namely, H. fusiformis,
G. gracilaria, and C. fragile, in removing heavy metals (Cd2+, Cu2+, Ni2+, and Pb2+) from
contaminated water. H. fusiformis was selected for further studies to improve their biosorp-
tion capacity using acid and base treatments. The enhancement of the biosorption capacity
of H. fusiformis by modification with a base was due to the carboxylate and ester functional
groups on the base-treated algae. The equilibrium data fitted well in the Freundlich model
(except for Pb2+). The reaction rates obtained from the kinetic models for 1 M NaOH-treated
H. fusiformis followed the decreasing order of Cd2+ > Ni2+ > Cu2+ > Pb2+. The maximum
biosorption of metals was in the order Pb2+ >> Cu2+ ≈ Ni2+ > Cd2+, which was consistent
with their electronegativity values rather than the hydrolysis constant and ionic radius. The
increase in solution pH, especially in the range of pH 2–4, enhanced the metal biosorption
by 1 M NaOH-treated H. fusiformis because of feasible precipitation and less protonation
of the adsorbent surface under the high concentration of OH− ions. Algal biomass can
be easily obtained in large quantities, and these features will enable this biomass to be a
biosorbent material for heavy metal removal in the future.
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